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Abstract—We study transport of a harmonically driven iner-
tial particle moving in a symmetric periodic potential and sub-
jected to both unbiased Gaussian thermal equilibrium noise and
biased non-equilibrium Poissonian shot noise. The dependence of
the average velocity on noise parameters exhibits a rich variety
of anomalous transport characteristics: We identify an absolute
negative mobility around zero biasing noise, the emergence of a
negative differential mobility and the occurrence of a negative
nonlinear mobility. As a feasible physical system we propound a
setup consisting of a single resistively and capacitively shunted
Josephson junction device.

I. INTRODUCTION

Absolute negative mobility (ANM) is a counterintuitive
phenomenon: particles move in a direction opposite to a static
bias force. It seems to be in contradiction to the Newton
equation of motion, the second law of thermodynamics and
observations of motion at a macroscopic scale. However, under
non-equilibrium conditions, there is no fundamental principle
which excludes ANM. What are essential ingredients for the
occurrence of ANM? The minimal model is formulated in
terms of a one-dimensional Newton equation for a Brownian
classical particle moving in a symmetric spatially periodic
potential, driven by an unbiased harmonic force A cos(Ωt)
and biased by a static force F [1]. The ANM response in
a symmetric periodic potential is so that an average particle
velocity ⟨v(F )⟩ obeys the relation: ⟨v(F )⟩ = −⟨v(−F )⟩,
which follows from the symmetry arguments. In particular,
⟨v(0)⟩ = 0. So, for F = 0 there is no directed transport in
the long-time regime (in a stationary state). The static force
F ̸= 0 breaks the symmetry and therefore induces a directed
motion of particles. In the paper, we replace the static force F
by a random force η(t) of a time-independent non-zero mean
value ⟨η(t)⟩ = η0. As an example of the random force η(t),
we consider non-equilibrium Poissonian shot noise, which is
composed of a random sequence of δ-shaped pulses with
random amplitudes. We assume that the particle is coupled
to its environment (thermostat) of temperature T and thermal
fluctuations ξ(t) are included as well. We study the dependence
of the long-time average velocity ⟨v⟩ = η0 on parameters of
both random forces η(t) and ξ(t) and find a rich variety of
anomalous transport regimes including the absolute negative
mobility regime.

The layout of the present work is as follows. In Sec. II
we present details of the model of a driven inertial Brownian

particle exposed to biased white Poissonian shot noise. In next
section we elaborate on various anomalous transport processes
occurring in this system. Sec. IV provides conclusions.

II. THE MODEL

We consider a Brownian particle of mass M moving in a
one-dimensional spatially periodic potential V (x) = V (x +
L) = ∆V sin (2πx/L) and driven by both an unbiased time
periodic force F (t) = F (t + T ) = A cos(Ωt) and a biased
stochastic force η(t). The dynamics of the particle is modelled
by the Langevin equation [2]:

Mẍ+ Γẋ = −V ′(x) + F (t) + η(t) +
√
2ΓkBT ξ(t). (1)

Here, the dot and prime denote differentiation with respect to
time t and the Brownian particle’s coordinate x, respectively.
Thermal equilibrium fluctuations due to the coupling of the
particle with the environment are modelled by Gaussian white
noise ξ(t) of zero mean ⟨ξ(t)⟩ = 0 and the correlation
function ⟨ξ(t)ξ(s)⟩ = δ(t − s). The parameter Γ is the
friction coefficient, kB is the Boltzmann constant and T is
temperature of the environment. The biased stochastic force
η(t) is chosen in the form of a random sequence of δ-shaped
pulses with random amplitudes defined in terms of generalized
white Poissonian shot noise [3]

η(t) =

n(t)∑
i=1

ziδ(t− ti) (2)

where ti are random instants of δ-shaped pulses characterized
by the Poissonian counting process n(t) with the parameter λ,
i.e. the number n(t) of pulses in the time interval [0, t] follows
the Poisson distribution

Pr{n(t) = k} =
(λt)k

k!
e−λt. (3)

The parameter λ determines the mean number of pulses per
unit time. The amplitudes zi of kicks are random variables
independent of each other and of counting process n(t). They
are assumed to be exponentially distributed,

ρ(z) = ζ−1θ(z)e−z/ζ , ζ > 0. (4)

where θ(z) is the Heaviside step function. Therefore all
amplitudes zi are positive and all realizations of Poissonian
noise are non-negative, i.e. the process η(t) ≥ 0. It models                                             

                                                                                                                                             



non-equilibrium drift noise of a positive mean value and a
covariance function in the form

⟨η(t)⟩ = η0 = λ⟨zi⟩ =
√

DPλ > 0, (5a)
⟨η(t)η(s)⟩ − ⟨η(t)⟩⟨η(s)⟩ = 2DP δ(t− s), (5b)

where DP = λ⟨z2i ⟩/2 is the shot noise intensity and the
statistical moments of amplitudes zi are ⟨zki ⟩ = k!ζk for
k = 1, 2, .... Moreover, we assume that Poissonian noise
η(t) is uncorrelated with Gaussian thermal noise ξ(t), i.e.
⟨η(t)ξ(s)⟩ = ⟨η(t)⟩⟨ξ(s)⟩ = 0.

Now, we transform eq. (1) to the dimensionless form. We
propose to use the period L of the spatial potential V (x) and
time τ = L

√
M/∆V as length and time scales, respectively

[4], [5]. Then the dimensionless form of eq. (1) reads
¨̂x+ γ ˙̂x = −V̂ ′(x̂) + F̂ (t̂) + η̂(t̂) + ξ̂(t̂), (6)

where x̂ = x/L, t̂ = t/τ and γ = τΓ/M . The rescaled
potential V̂ (x̂) = V (Lx̂)/∆V = sin(2πx̂) has the unit period.
The dimensionless time periodic force F̂ (t̂) = a cos(ωt̂)
possesses the amplitude a = LA/∆V and the angular fre-
quency ω = τΩ. The rescaled Poissonian shot noise η̂(t̂)
of mean value ⟨η̂(t̂)⟩ = λ̂⟨ẑi⟩ is δ-correlated: ⟨η̂(t̂)η̂(ŝ)⟩ −
⟨η̂(t̂)⟩⟨η̂(ŝ)⟩ = 2D̂P δ(t̂− ŝ), where λ̂ = τλ, ẑi = zi/

√
M∆V

and D̂P = λ̂⟨ẑ2i ⟩/2. Likewise, the dimensionless thermal noise
ξ̂(t̂) of zero mean has the correlation function ⟨ξ̂(t̂)ξ̂(ŝ)⟩ =
2γD̂Gδ(t̂− ŝ), where D̂G = kBT/∆V . From now on we will
use only dimensionless variables and therefore omit hat above
all quantities appearing in eq. (6).

Physical systems described by eq. (6) are widespread and
well known. A significant example is semi-classical dynamics
of a resistively and capacitively shunted Josephson junction
which is driven by both a time periodic current and a noisy
current [6]. In this case the phase difference between the
macroscopic wave functions of the Cooper electrons in both
sides of the junction translates to the Brownian particle coor-
dinate and voltage across the junction translates to the particle
velocity. Other specific systems include rotating dipoles in
external fields [7], superionic conductors [8]–[10] or charge
density waves [11], to name just a few.

III. ANOMALOUS TRANSPORT BEHAVIOUR

The most important transport characteristic for the studied
system is average velocity ⟨v⟩. We are particularly interested in
the asymptotic long time regime, when it adopts the periodicity
of the driving [12]–[14], namely

⟨v⟩ = lim
t→∞

Ω

2π

∫ t+2π/Ω

t

≺ v(s) ≻ ds, (7)

where ≺ v(s) ≻ denotes the average over noise realizations
and initial conditions.

Depending on the behaviour of the asymptotic long time
average velocity ⟨v⟩ as a function of the mean bias η0 in eq.
(5a) one can classify transport of the particle as either normal
or anomalous. For this purpose it is useful to generalize the
standard definition of a mobility coefficient µ of the Brownian
particle [1] in the linear response regime to the case of the
biased stochastic force η(t), namely

⟨v⟩ = µη0, η0 = ⟨η(t)⟩. (8)

Usually the average velocity should be an increasing function
of the bias η0, similarly as in the case of the deterministic static
force F . In such regimes the mobility coefficient µ is positive.
This situation corresponds to normal, Ohmic-like behaviour.
However, more interesting are those regimes where mobility
assumes negative values, exhibiting anomalous transport in the
form of: (i) an absolute negative mobility [1] (near η0 = 0), (ii)
a negative differential mobility [15] or (iii) a negative nonlinear
mobility [16]–[18] (away from η0 = 0).

Before we turn to detailed analysis of the anomalous
transport processes let us make some general comments about
the dynamics corresponding to eq. (6). In the deterministic
case (DG = DP = 0) it embodies a three-dimensional phase
space, i.e. {x, y = ẋ, z = ωt} with three parameters {γ, a, ω}.
Depending on parameter values periodic, quasiperiodic and
chaotic motion can be observed [19]. In some regimes ergod-
icity may be broken and the direction of transport depends
strongly on the choice for the initial conditions. This leads to
the conclusion that different attractors may coexist. At nonzero
temperature, thermal fluctuations enable diffusive dynamics
for which stochastic escape events among possibly coexisting
attractors are probable. In particular, transitions between neigh-
bouring locked states can lead to diffusive directed transport
when the random force η(t) is applied.

A. Normal transport regime

Eq. (6) cannot be studied by use of known analytical
methods. In particular, the Fokker-Planck-Kolmogorov-Feller
master equation [3] corresponding to the Langevin equation (6)
cannot be solved analytically. For this reason we have carried
out comprehensive numerical simulations of the Langevin
dynamics. Full information about the employed numerical
scheme can be found in [20]. We refer the reader to [2] for
further details of our numerical simulations. Here, we want
to point out that all calculations have been done by use of
CUDA environment implemented on a modern desktop GPU.
This gave us possibility to speed the numerical calculations
up to few hundreds of times more than on typical present-day
CPU [21].

We begin our analysis of the transport processes of inertial
Brownian particles described by eq. (6) with brief comment
on the influence of the white Poissonian shot noise parameters
λ and DP on the characteristics of the stochastic realizations.
The reader can find detailed discussion on this topic in Ref. [2].
Here, we only mention two extreme regimes. The first limiting
case is when both λ and DP are large. Then the Brownian
particle is very frequently kicked by large δ-pulses. On the
contrary, when both λ and DP are small, then the particle is
very rarely kicked by weak δ-pulses.

Presence of the white Poissonian shot noise allows for
symmetry breaking and consequently the emergence of trans-
port phenomenon. We recall that due to the choice of the
amplitude distribution of δ-pulses (cf. eq. (4)) only positive
kicks are allowed. Therefore we expect the average velocity to
be positive as well. Any deviation would be counterintuitive. In
particular, we expect that ensemble and time averaged velocity
⟨v⟩ will be an increasing function of the mean value η0. Such
a normal transport regime is depicted in the inset of Fig. 1(a).
The corresponding shot noise realizations correspond to rare
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Fig. 1. Absolute negative mobility. Panel (a): the average velocity ⟨v⟩ as a
function of the mean value of the white Poissonian shot noise η0 for different
frequencies λ and fixed thermal fluctuation intensity DG = 0.001. In the
inset, normal, Ohmic-like transport regime is observed for λ = 0.2. Panel
(b): the influence of thermal fluctuations (temperature) is depicted for: λ = 2
(solid line, DP = 8 · 10−4), λ = 20 (dashed line, DP = 3.8 · 10−4),
λ = 200 (dotted line, DP = 3.6 · 10−5) and λ = 2000 (dashed-dotted line,
DP = 3.8 · 10−6). Note that for high λ the absolute negative mobility is
solely induced by thermal fluctuations. In both panels other parameters read:
friction coefficient γ = 0.9, harmonic driving amplitude a = 4.2 and angular
frequency ω = 4.9.

but large δ-pulses. Consequently, one can observe almost linear
dependence of the average velocity ⟨v⟩ on the mean value η0
which in the case of the static force corresponds to the Ohmic-
like transport behaviour.

B. Absolute negative mobility

Our numerical search has shown that the Ohmic-like
regime dominates in the parameter space. However, it is
possible to find such parameter regimes for which the average
velocity assumes negative values. It means that although only
positive δ-pulses are realized, the particle moves on average in
the negative direction, opposite to the drift Poissonian noise.
Figure 1 presents this situation. In Fig. 1(a) we show the
influence of the mean value η0 of Poissonian noise on transport
of the Brownian particle. The unique feature is the occurrence
of intervals of η0 where ⟨v⟩ is negative. Moreover, starting

out from zero, ⟨v⟩ assumes negative response, takes its local
minimum for definite η0 and then heads towards positive
values. We can see that this minimum is lowered when the
frequency λ of δ-pulses is increased. What is also interesting,
there exists a limiting minimal value of the average velocity
which is reached when λ → ∞.

The influence of thermal fluctuations on the particle trans-
port is depicted in panel (b) of Fig. 1. Two separate mecha-
nisms responsible for the absolute negative mobility effect are
detected. For small values of λ, the ANM is caused by deter-
ministic chaotic dynamics + Poissonian noise because even at
zero temperature (DG = 0) the average velocity is negative.
In this case thermal fluctuations have destructive influence
on the ANM - increase of temperature results in decrease
of the negative value of velocity and for high temperatures
⟨v⟩ > 0. On the contrary, for large λ the ANM is solely
induced by thermal fluctuations: At low temperature ⟨v⟩ = 0;
for higher temperatures ⟨v⟩ < 0. There exists an optimal
temperature for which this phenomenon is most pronounced.
Further increase of the temperature reduces the ANM and
finally high temperature destroys it resulting in ⟨v⟩ > 0.

C. Negative differential mobility

The average velocity ⟨v⟩ is often non-monotonic function
of η0 and for this reason a differential mobility µD defined by
the relation

µD = µD(η0) =
d⟨v⟩
dη0

. (9)

can assume negative values. In Fig. 2(a) an example of such
behaviour is depicted. For small to moderate λ the average
velocity starts out from zero, assumes negative response in
a form of the ANM and then is almost linearly increasing
function of η0. However, another situation occurs for larger
values of λ. E.g. for λ = 2000, when the particle is very
frequently kicked by small δ-pulse, after crossing zero the av-
erage velocity takes positive values, reaches its local maximum
and then in the interval η0 ∈ (0.3, 0.37) is still positive but a
decreasing function of η0. Indeed, this is the regime of the
negative differential mobility where µD < 0.

D. Negative nonlinear mobility

Further increases of η0 (for the case λ = 2000 in Fig.
2(a)) leads to another interesting phenomenon which we call
negative nonlinear mobility. In contrast to the linear response
regime, in the nonlinear response regime the average velocity
can tend to zero even if the biasing man value η0 assumes
nonzero value. In particular, there can be two value of η0 such
that in between the average velocity is negative. Then, the
nonlinear mobility coefficient µN defined as

µN = µN (η0) =
⟨v⟩
η0

(10)

is negative in this interval which means that the average
velocity assumes the opposite sign to η0. Indeed, this situation
is presented in Fig. 2a in the case of large λ = 2000 for
η0 ∈ (0.37, 0.51).

The influence of thermal noise on transport in the above
considered regime λ = 2000 is depicted in Fig. 2(b). We can
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Fig. 2. Negative differential and nonlinear mobility. Panel (a): the average
velocity ⟨v⟩ as a function of the mean of the white Poissonian shot noise η0 for
different frequencies λ and fixed thermal noise intensity DG = 0.0003. The
reentrant effect of the negative response is presented for λ = 2000. Panel (b):
impact of the thermal noise (temperature) on the anomalous transport regime
is shown for λ = 2000. Other parameters are the same as in Fig.1.

see that thermal fluctuations have destructive impact on the
negative mobility of the Brownian particle. As temperature
increases, the negative mobility is smaller and smaller and
finally disappears.

IV. CONCLUSIONS

With this work, we took a closer look at the richness
of anomalous transport processes occurring in an harmoni-
cally driven inertial Brownian particle which is in addition
exposed to biased Poissonian white shot noise. It turns out
that underlying chaotic dynamics combined with the influence
of thermal fluctuations is able to exhibit a whole variety of
transport characteristics. In particular, the average velocity ⟨v⟩
as a function of the mean value of Poissonian shot noise ⟨η(t)⟩
can manifest each of the three anomalous transport features,
namely, absolute negative, negative differential and nonlinear
mobility. Furthermore, reentrant phenomenon of negative mo-
bility occurs as a function of the mean value η0 = ⟨η(t)⟩ of
the Poissonian shot noise.

Our results can readily be experimentally tested via appro-
priately designing the experimental working parameters for the
single resistively and capacitively shunted Josephson junction
device operating in its semi-classical regime.
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