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Reduced density matrix for nonequilibrium steady states: A modified Redfield solution approach
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We describe a method to obtain the reduced density matrix (RDM) correct up to second order in system-bath
coupling in nonequilibrium steady-state situations. The RDM is obtained via a scheme based on analytic
continuation, using the time-local Redfield-like quantum master equation, which was earlier used by the
same authors [J. Chem. Phys. 136, 194110 (2012)] to obtain the correct thermal equilibrium description.
This nonequilibrium modified Redfield solution is then corroborated with the exact RDM obtained via the
nonequilibrium Green’s function technique for the quantum harmonic oscillator. Lastly, the scheme is compared
to different quantum master equations (QMEs), namely the time-local Redfield-like and the Lindblad-like QMEs,
in order to illustrate the differences between each of these approaches.
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I. INTRODUCTION

Statistical mechanics [1–4] has been one of the cornerstones
of equilibrium physics, which has enabled us to calculate
any arbitrary macroscopic property of a system in contact
(implicitly assumed to be weak) with a giant environment
(typically referred to as bath). Even though the framework of
statistical mechanics has been highly successful, its nonequi-
librium counterpart still eludes the scientific community. Even
in the particular case of steady states, the nonequilibrium
formulation is predominantly mathematical and formal [5–7]
without a general prescription to obtain the exact reduced
density matrix.

Unlike Gibbs, who searched for a statistical ensemble
compatible with equilibrium thermodynamics, we focus on
obtaining a nonequilibrium steady-state reduced density ma-
trix compatible with the laws of quantum dynamics. This
objective is known under a wider label of open quantum
systems [8–11]. The goal is typically addressed by use of
a wide variety of formally exact [12–17] or perturbative
master equations [18–21]. For the steady-state nonequilibrium
scenario all of the perturbative approaches are appropriate only
in the regime of vanishing system-bath coupling or in the van
Hove limit [22–24]; see Ref. [25] for an elucidate exposition
on this limit. Hence, it is crucial to obtain the reduced density
matrix (RDM) containing higher orders of the system-bath
coupling in order to extract essential information about the
physical quantities related to transport.

Our main goal in this paper is to obtain the nonequilibrium
steady-state reduced density matrix for a general system
connected to multiple heat baths up to second order in the
system-bath coupling. We achieve this using an analytic
continuity technique, which we have introduced previously
[24] for the case of thermal equilibrium. For this nontrivial
steady-state nonequilibrium case exact results presently exist
mainly for transporting currents across classical [26] and
quantum harmonic chains [27–30]. It is only recently that Dhar,
Saito, and Hänggi [31] have analytically obtained the exact
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steady-state RDM of an open system composed of harmonic
oscillators. Due to the lack of exact general solutions for
anharmonic systems in nonequilibrium steady state, in this
work we corroborate our result with the analytic solution of
Dhar et al. and additionally compare it to other commonly used
quantum master equations (QMEs). The deficiencies in those
other commonly used QMEs definitely call for an accurate
approach such as ours in order to investigate nonequilibrium
phenomena for general anharmonic systems.

The paper is organized as follows: In Sec. II we describe
our model and the time-local Redfield-like quantum master
equation in the presence of multiple baths obtained under
the weak system-bath coupling approximation. The central
scheme of this paper is briefly described in Sec. III, where
we obtain the nonequilibrium modified Redfield solution.
Section IV illustrates the numerical implementation of our
scheme for the steady-state density matrix of a quantum
harmonic oscillator and provides comparison with the exact
nonequilibrium Green’s function method and the Redfield-
and the Lindblad-like QMEs, illustrating some of the pitfalls
in these commonly used techniques. In Sec. V we summarize
and propose promising further extensions.

II. TIME-LOCAL QUANTUM MASTER EQUATION IN THE
PRESENCE OF MULTIPLE BATHS

Our basic model is similar to that used by many researchers
in the field of transport and goes under a wider label of the
Magalinskiı̆-Zwanzig-Caldeira-Leggett model [32–35] in the
field of quantum dissipation. The total Hamiltonian comprises
of multiple baths and a system and is written as follows:

Htot = HS +
∑

α

(Hα + HRα + HSα), (1)

where HS denotes the generally anharmonic system Hamilto-
nian. Here

Hα =
∞∑

k=1

(
p2

k,α

2mk,α

+ mk,α ω2
k,α

2
x2

k,α

)
, (2)
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describes the α-th bath as an infinite collection of harmonic
oscillators, each having a mass mk,α and a frequency ωk,α . The
above description of the baths being of the harmonic form is
one particular choice which helps us concretize the description
below, but by no means is it a restriction to our approach and
one could, in general, choose fermionic or spin baths [36–39].
The potential renormalization term is given by

HRα = (Y α)2

(
1

2

∞∑
k=1

c2
k,α

mk,α ω2
k,α

)
, (3)

where Y α denotes any function of the system variables
connected to the α-th bath and ck,α denotes the coupling
constant of the k-th oscillator with the system operator Y α . The
renormalization term above occurs naturally when one needs
to ensure the translational invariance of the total Hamiltonian.
The part

HSα = Y α ⊗ Bα, (4)

is the system-bath coupling Hamiltonian, wherein Bα denotes
the collective bath operator. For notational ease throughout
this work we will set h̄ = 1 and kB = 1. In general, the above
Hamiltonian permits transport in the presence of a temperature
difference among the baths.

Given the above Hamiltonian, we first derive an equation,
similar to the time-local Redfield quantum master equation
[19], which helps us deduce the RDM of the system for such
a nonequilibrium scenario. We start by the basic quantum
mechanical definition of the total density matrix at any time t

given by

ρtot(t) = U (t)ρtot(0)U (t)†, (5)

where U (t) = exp[−i Htott] is the total time evolution oper-
ator. Assuming that each of the baths are weakly coupled to
the system we may expand the total evolution operator up to
second order to read

U (t) ≈ e−i Hot

{
I −

∑
α

[
i

∫ t

0
dq(H̃Sα(q) + H̃Rα(q)).

+
∫ t

0
dqH̃Sα(q)

∫ q

0
duH̃Sα(u)

]}
, (6)

where Ho = HS + ∑
α Hα and all operators with ∼’s denote

the Heisenberg evolution (also known as free evolution) under
Ho, i.e., Õ(x) = eiHox O e−iHox .

Assuming that the system and the baths are decoupled
initially, i.e., ρtot(0) = ρS(0)�⊗

α ρα(0), with each bath being
in its canonical distribution, i.e., ρα(0) = exp[−βαHα]/Zα ,
and tracing over the bath degrees of freedom, we obtain

dρ(t)

dt
= −i

[(
HS +

∑
α

HRα

)
,ρ(t)

]
+ R(t), (7)

where ρ(t) is the RDM of the system and [· ,·] is the
commutator. The relaxation operator R, which ensures that
the system is damped by the baths, is given by

R(t) = −
∑

α

∫ t

0
dq{[Y α,Ỹ α(q − t)ρ(t)]Cα(t − q)

− [Y α,ρ(t)Ỹ α(q − t)]Cα(q − t)}, (8)

where Cα(τ ) = Trα[B̃α(τ )Bαρα(0)] is the α-th bath corre-
lator, where the trace is over the α-th bath. One might
argue here that, mathematically, this average should be with
respect to the 0-th order density matrix of the bath at
time t . It is here we invoke the physical assumption that
the bath is extremely large and cannot be influenced by
the system. This leads the bath to remain in its initially
prepared state, exp[−βαHα]/Zα . The physical assumption,
also commonly referred to as the Born approximation, implies
that the bath-correlator follows a Kubo-Martin-Schwinger
(KMS) condition [40,41], i.e., Cα(−τ ) = Cα(τ − i βα), and
the transition rates Re[W α

kl] follow a detailed balance, i.e.,
Re[W α

kl] = exp[−βα�kl]Re[W α
lk]. In the derivation above we

have assumed Trα[Bαρα(0)] = 0, but more generally the term
of the form −i

∑
α[Y α,ρ(t)]Trα[Bαρα(0)] must be added to

the right-hand side of Eq. (7). It is important to note that the
effects of multiple baths is additive in the relaxation operator
R(t) because our total Hamiltonian did not contain any cross
terms having bath-bath correlations.

Expressing the non-Markovian master equation Eq. (7) in
the energy eigenbasis of the system Hamiltonian, we find

dρnm(t)

dt
= −i �nmρnm(t) +

∑
kl

Rkl
nmρkl(t), (9)

where �nm = En − Em is the difference in energies of the
bare system Hamiltonian and the relaxation four tensor Rkl

nm,
which captures the non-Markovian nature, is given by

Rkl
nm =

∑
α

[
Y α

nkY
α
lm

(
W α

nk + W α∗
ml

) − δl,m

∑
j

Y α
njY

α
jkW

α
jk

− δn,k

∑
j

Y α
lj Y

α
jmW α∗

j l

]
. (10)

The rates W α
kl take the form

W α
kl = W̃ α

kl + i
γ α

0

2
, (11)

where

W̃ α
kl =

∫ t

0
dτ e−i�klτ Cα(τ ), (12)

γ α
0 =

∞∑
k=1

c2
k,α

mk,α ω2
k,α

. (13)

The damping kernel at zero time γ α
0 arises from the renormal-

ization part of the Hamiltonian HRα .

III. STEADY-STATE NONEQUILIBRIUM MODIFIED
REDFIELD SOLUTION

The QME given in Eq. (7) is analogous to the Redfield
master equation but here in the presence of multiple baths.
Hence, similar to the Redfield case, the above equation also
does not provide the correct steady-state solution [22–24] and
contains errors in the diagonal terms of the RDM at the second
order of system-bath coupling. To avoid these errors and to
obtain the RDM correctly up to second order, in this section we
employ the techniques of the modified Redfield solution [24]
for the nontrivial nonequilibrium steady-state scenario.
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A. Extracting the correct steady-state RDM elements from the
quantum master equation

We start by extracting the correct steady-state elements of
the RDM from the time-local Redfield-like QME Eq. (9). In
order to establish a steady state we first take the limit t → ∞
by setting the upper limit of the integral in Eq. (12) to ∞. The
steady-state condition then implies

dρnm(t)

dt
= 0. (14)

Since we assumed a weak system-bath coupling approxima-
tion while deriving the time-local Redfield-like QME, we
consistently do the same in case of the steady-state RDM ρnm

and assume a general power series expansion in the coupling
strength of the form

ρnm =
∑

i=0,2,4,···
ρ(i)

nm. (15)

Above, ρ(i) is the i-th order RDM, where i indicates the
power dependence of the system-bath coupling. The ρ(0)

nm above
should be interpreted as the RDM obtained in the limit the
system-bath coupling goes to zero. The limit is crucial to
ensure that the system, instead of staying in its initial state,
feels the effect of the bath and relaxes to the correct steady
state.

Similar to the equilibrium case [23,24], it can be shown that
the steady-state diagonal elements obtained by solving Eq. (9)
are incorrect in the second order of system-bath coupling.
Hence, using Eq. (15) in Eq. (9) and solving order by order,
we obtain the 0-th order elements as

∑
α,k

(
Y α

nkY
α
knW̃

α′
nk − δn,k

∑
l

Y α
nlY

α
lkW̃

α′
lk

)
ρ

(0)
kk = 0, (16)

while for (n 	= m),

ρ(0)
nm = 0, (17)

where W̃ α′
kl = Re[W̃ α

kl]. Unlike the equilibrium case, the
solution to the above is in general not a Gibbs-distribution due
to the lack of a detailed balance condition. The second-order
off-diagonal elements are given by

ρ(2)
nm = 1

i �nm

∑
α,k

Y α
nkY

α
km

[(
W α

nk + W α∗
mk

)
ρ

(0)
kk

−W α∗
kn ρ(0)

nn − W α
kmρ(0)

mm

]
, (n 	= m). (18)

The above set of equations describing the 0-th order and
second-order off-diagonal elements have been obtained under
the assumption that our bare system Hamiltonian does not
possess any degeneracies in its energy eigenspectrum. The 0-th
order equation, Eq. (17), can also be equivalently obtained in
the van Hove limit (also sometimes referred to as the Davies
limit [20,42]) by rescaling the time t and coupling strength
λ as λt = τ , where τ should always remain constant [43]. In
the steady state, since t → ∞, the coupling obeys λ → 0 so
τ remains constant. This causes the second-order off-diagonal
elements to vanish in the steady state and, hence, we make use
of the time-local Redfield-like QME which retains some of the
crucial second-order information.

B. Analytic continuation to obtain second-order
diagonal elements

Following the same reasoning used in our previous work
[24], in this section we obtain the second-order diagonal
elements of the steady-state nonequilibrium RDM. In order
to do this we make use of analytic continuation techniques and
use only the information provided by a second-order time-local
Redfield-like QME Eq. (9). We start by a careful inspection of
the second-order off-diagonal elements [Eq. (18)] and assume
that the energy Em continuously approaches En by a small
complex parameter z, i.e., Em = En − z, yielding

ρ(2)
nn ∝ lim

z→0

{
1

i z

∑
α,k

Y α
nkY

α
kn

[(
W̃ α′

nk(0) + W̃ α′
nk(−z)

)
ρ

(0)
kk − (

W̃ α′
kn(0) + W̃ α′

kn(z)
)
ρ(0)

nn

]

+ 1

z

∑
α,k

Y α
nkY

α
kn

[(
W̃ α′′

nk (0) − W̃ α′′
nk (−z)

)
ρ

(0)
kk − (

W̃ α′′
kn (0) − W̃ α′′

kn (−z)
)
ρ(0)

nn +
(

W̃ α′′
kn (−z) + γ0

2

)
z
∂ρ(0)

nn

∂En

]}
, (19)

where

W̃ α
kl(z) =

∫ ∞

0
dτ e−i (�kl+z)τ Cα(τ ), (20)

W̃ α′
kl (z) = Re[W̃ α

kl(z)], and W̃ α′′
kl (z) = Im[W̃ α

kl(z)]. Above,
since ρ(0)

mm also depends on the energy Em, we made use of
the Taylor expansion of ρ(0)

mm of the form

lim
Em→En

ρ(0)
mm � ρ(0)

nn + z
∂ρ(0)

nn

∂En

. (21)

Noting that limz→0 W̃ α
kl(z) = W̃ α

kl(−z) = W̃ α
kl , we find

ρ(2)
nn ∝

∑
α,k

Y α
nkY

α
kn

[
V α′′

nk ρ
(0)
kk − V α′′

kn ρ(0)
nn

] + W α′′
kn

∂ρ(0)
nn

∂En

, (22)

where

V α′′
kl = ∂W̃ α′′

kl

∂�kl

= lim
z→0

W̃ α′′
kl (0) − W̃ α′′

kl (−z)

z
, (23)

W α′′
kl = Im[W α

kl], and W̃ α′′
kl = Im[W̃ α

kl]. In order to obtain
Eq. (22) we have omitted one of the terms which takes the
same form as the left-hand side of Eq. (16) but is zero in the
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limit z → 0. The limiting procedure above is independent of
the way in which Em approaches En, implying the uniqueness
of the limit and thus physically the steady state.

A reader might have observed the proportionality signs
in Eqs. (19) and (22). This is mainly because the diagonal
elements of the RDM have an additional constraint of nor-
malization. At the 0-th order the trace should be unity, which
immediately implies that the second-order elements should be
traceless. Equation (22) does not preserve this normalization
condition, due to the analytic continuity procedure. Therefore,
we renormalize the RDM using

ρnn = ρ(0)
nn + ρ(2)

nn∑
k

(
ρ

(0)
kk + ρ

(2)
kk

)
� ρ(0)

nn + ρ(2)
nn − ρ(0)

nn

∑
k

ρ
(2)
kk , (24)

where we have ignored the fourth- and higher order terms
and used the condition

∑
k ρ

(0)
kk = 1. Therefore, after this

normalization, Eq. (22) transforms into

ρ(2)
nn =

∑
α,k

Y α
nkY

α
kn

[
V α′′

nk ρ
(0)
kk − V α′′

kn ρ(0)
nn + W α′′

kn

∂ρ(0)
nn

∂En

]

− ρ(0)
nn

∑
α,k,l

Y α
lkY

α
klW

α′′
kl

∂ρ
(0)
ll

∂El

, (25)

where ∂ρ(0)
nn /∂En can be obtained by differentiating Eq. (16)

as

∂ρ(0)
nn

∂En

=
∑

α,k 	=n Y α
nkY

α
kn

(
V α′

nkρ
(0)
kk + V α′

knρ(0)
nn

)
∑

α,k 	=n Y α
nkY

α
knW̃

α′
kn

, (26)

where V α′
kl = ∂W̃ α′

kl /∂�kl . The above second-order diagonal
elements constitute the main result of this paper. If we compare
the above result to the equilibrium case [24], we find that
the only difference amounts to an extra summation index α.
This is obvious in hindsight because our initial model did not
have any bath-bath correlations. Thus, Eqs. (16), (17), (18),
and (25) form our nonequilibrium modified Redfield solution,
which represents the RDM correctly up to second order in the
system-bath coupling strength.

Although for a general system one needs to solve Eq. (16)
using numerical techniques, we would like to point out
one special regime where we may be able to obtain the
solution analytically. Let us consider the regime where the
temperature differences are small and identical baths with
different temperatures are connected to a single system degree
of freedom, i.e., Y α = Y for all α. In this special regime
an approximate Gibbs-distribution-like state exists for the
0-th order RDM, i.e., ρ(0) ≈ exp(−β̄HS)/TrS[exp(−β̄HS)],
where β̄ is the inverse of the arithmetic average temperature
of various baths. Such a solution allows us to obtain the
second-order RDM analytically, since the second-order terms
are expressions which depend on ρ(0); refer to Eqs. (18) and
(25). The existence of approximate Gibbs distributions have
been investigated before for various classical models [44] and
are valid in the quantum regime as long as the energy spectrum
has a finite width. The width of the spectrum plays an important
role and the narrower the energy spectrum the wider the regime

of validity of the approximate Gibbs state (for more informa-
tion see the appendix). Although such a simple manifestation is
true for the 0-th order RDM the statement cannot be extended
to higher orders in terms of the generalized Gibbs distribution,
i.e., ρ 	= TrB[exp(−β̄Htot)]/Tr[exp(−β̄Htot)].

IV. CORROBORATION AND COMPARISON FOR THE
QUANTUM HARMONIC OSCILLATOR

In this section we compare our nonequilibrium modified
Redfield solution to the lone exact result of the quantum
harmonic oscillator obtained via techniques of nonequilibrium
Green’s function [31]. For this specific case we will choose
our system Hamiltonian to take the form

HS = p2

2M
+ 1

2
Mω2

0x
2, (27)

where x, p, M , and ω0 are the position, momentum, mass, and
angular frequency of the oscillator, respectively. The harmonic
oscillator poses a tough numerical challenge for traditional
QMEs like Eq. (9) because of the relaxation four tensor Rkl

nm

which scales as N4, where N is the system Hilbert space
dimension. The memory requirement for these traditional
QMEs with a modest N = 40 is approximately 40 MB for
storing only the relaxation tensor Rkl

nm. Since our technique
does not need to store the relaxation tensor and only relies on
the storage of the rates W α

kl , which scale as N2, the memory
requirement drastically drops to a mere 25 kB. This enables
us to deal with large system Hilbert spaces like that of the
harmonic oscillator. Also uncontrolled approximations like
the rotating wave approximation [9] should not be applied to
this model because of the equispaced energy spectrum, making
this example a viable testing ground.

We then couple the harmonic oscillator linearly to the
minimal transport setup involving two baths (α = L,R) via the
position coupling, i.e., Y L,R = x and Bα = −∑∞

k=1 ck,αxk,α in
Eq. (4). In order to describe the baths we will make use of the
spectral density J α(ω) defined as

J α(ω) = π

∞∑
k=1

c2
k,α

2mk,α ωk,α

δ(ω − ωk,α). (28)

Now we will choose both baths to have same parameters, i.e.,
J L(ω) = J R(ω) = J (ω), which we will choose to be of the
form

J (ω) = Mγω

1 + (ω/ωD)2
. (29)

The above form of the spectral density is known as the
Lorentz-Drude form, where ωD denotes the cut-off frequency
and γ ∝ ∑∞

k=1 c2
k is the phenomenological Stokesian damping

coefficient which characterizes the system-bath coupling
strength.

Using this definition of spectral density we can now recast
the bath correlator Cα(τ ) as

Cα(τ ) =
∫ ∞

0

dω

π
J (ω)

[
coth

(
βαω

2

)
cos(ωτ ) − i sin(ωτ )

]
.

(30)
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For the given Lorentz-Drude model the bath correlator can be
evaluated analytically and it takes the form

Cα(τ ) = Mγ

2
ω2

D e−ωDτ

[
cot

(
βαωD

2

)
− i sgn(τ )

]

− 2Mγ

βα

∞∑
j=1

να
j

e−να
j τ

1 − (
να

j

/
ωD

)2 , (31)

where να
j = 2πj/βα are known at the Matsubara frequencies.

The damping kernel defined in Eq. (13) can also be written in
terms of J (ω) as

γ L
0 = γ R

0 = γ0 = 2

π

∫ ∞

0
dω

J (ω)

ω
, (32)

and for the Lorentz-Drude model as γ0 = γωD.
Therefore, the components of the rates W̃ α , defined in

Eq. (12), read as follows:

W̃ α′
kl = J (�kl) nα(�kl), (33)

W̃ α′′
kl = Mγω2

D�lk

2
(
ω2

D + �2
kl

)[
cot

(
βαωD

2

)
+ ωD

�kl

]

+ 2Mγ

�klβα

∞∑
j=1

να
j

(
1 − (

να
j

/
ωD

)2)(
1 + (

να
j

/
�kl

)2) ,

(34)

where the Bose-Einstein distribution function nα(�kl) =
[exp(βα�kl) − 1]−1, with the inverse temperature βα for each
bath.

Now once we have defined the bath properties and the
coupling to the system, we calculate the nonequilibrium
modified Redfield solution for the harmonic oscillator problem
using a fixed number of energy levels. We truncate the number
of levels by ensuring that the highest few are unoccupied up to
temperatures of 5 × TD, with TD = (h̄ω0)/kB being the Debye
temperature. This results in the use of ≈40 energy levels for
the single quantum harmonic oscillator. In order to corroborate
with the exact nonequilibrium Green’s function (NEGF)
results of Dhar et al. [31], we define a discrepancy error,

DX
kl ≡ ρNEGF

kl − ρX
kl

(γ /ω0)
, (35)

where ρNEGF describes the exact RDM obtained via the NEGF
method and ρX could be the RDM either from the nonequi-
librium modified Redfield solution (X = NMRS) or the time-
local Redfield-like quantum master equation (X = TLQME)
described in Sec. II. Now, because the second-order RDM, i.e.,
ρ(2), is proportional to γ it is clear that if ρNEGF matches ρX up
to second order, then the discrepancy error DX → 0 as γ → 0.
In other words, ρNEGF matches ρX in the first order of dissipa-
tion strength γ (second order of coupling strength) for an arbi-
trary value of dissipation only if DX → 0 as γ → 0 is obeyed.

In Fig. 1 we depict the discrepancy error DX
11 in the first

level population of the RDM. Since the temperatures of the
baths are kept low, the first level populations depict a fair
representation of the entire RDM. Clearly, the discrepancy
error shows the correct behavior only for the NMRS [Fig. 1
(top)], whereas for the TLQME [Fig. 1 (bottom)] as γ → 0
the discrepancy error goes to a constant. This indicates that
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FIG. 1. Plot of the discrepancy error DX
11, see Eq. (35), of the

ground-state population versus the dimensionless system-bath cou-
pling strength (γ /ω0) for a quantum harmonic oscillator connected
to two heat baths. The top panel shows the discrepancy error for
the nonequilibrium modified Redfield solution (X = NMRS) and
the bottom panel is for the time-local Redfield-like quantum master
equation (X = TLQME). Panel (a) is for temperatures TL = 156 K
and TR = 140 K, whereas panel (b) is for TL = 156 K and TR = 78
K. Other parameters used for the calculation are M = 1 u, ω0 =
1.3 × 1014 Hz, and ωD = 10ω0.

the TLQME contains errors in the second order of the RDM.
These errors in nonequilibrium can lead to inaccurate results,
especially when one tries to calculate the current based on the
local operator definition. Thus it is only the NMRS which is
well suited for such applications since it accurately captures all
system-bath coupling effects to the lowest order. Importantly,
the bath temperatures do not play a major role in Fig. 1 and
the same qualitative behavior is observed for all temperature
ranges and differences.

Next, in Fig. 2, we compare our NMRS to the TLQME,
the Lindblad-like master equation [8,21,45], and the exact
NEGF results [31]. The Lindblad-like solution (dashed green
line) is (completely) positive, which has been critiqued before
for a system connected to a single bath [46–48], and it
fails to capture the effects of the finite system-bath coupling.
These erroneous behaviors of the Lindblad-like solution could
present a serious drawback to tackle transport problems where
the dependence on coupling strength is of primal importance.
On the other hand, the TLQME (dash-dotted red line) produces
unphysical negative probabilities, even for moderate coupling
strengths [Fig. 2 (middle panel) γ /ω0 = 0.25 and (bottom
panel) γ /ω0 = 0.5]. In the equilibrium case this problem has
been critiqued repeatedly [49,50], but to the best of our knowl-
edge the issue has not been addressed in the nonequilibrium
scenario. Clearly, the breaking of positivity for the TLQME is
a result of incorrect second-order diagonal elements, because
our NMRS (solid blue line) seems to behave reasonably well
for coupling strengths well beyond the naive expectation for a
perturbative master equation. Also, as compared to the exact
NEGF results (maroon stars), which take into account all
orders of coupling strength, our NMRS result shows excellent
agreement, even in the moderate coupling strength regime, i.e.,
for γ /ω0 = 0.25 and γ /ω0 = 0.5. In this moderate coupling
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0

0.3

0.6

0.9

γ = 0.01ω0

(a)

0
0.3
0.6
0.9

Po
pu

la
tio

ns γ = 0.25ω0

1 2 3 4 5
Energy levels

-0.3
0

0.3
0.6
0.9
1.2

γ = 0.5ω0

0 10.87

0.88

0

0.3

0.6

0.9
γ = 0.01ω0

(b)

0
0.3
0.6
0.9

Po
pu

la
tio

ns γ = 0.25ω0

1 2 3 4 5
Energy levels

-0.6
-0.3

0
0.3
0.6
0.9
1.2

γ = 0.5ω0

0 0.91

0.92

0.93

FIG. 2. (Color online) Histogram of the populations for the first
five lowest-lying energy levels for different system-bath coupling
strengths for a damped quantum harmonic oscillator. Panel (a)
corresponds to TL = 312 K, TR = 280.8 K and panel (b) to TL =
312 K, TR = 156 K. The inset in the top panels is a zoom of the first
energy level populations. The solid (blue) lines correspond to our
nonequilibrium modified Redfield solution (NMRS), the dash-dotted
(red) lines present the results for the time-local Redfield-like quantum
master equation (TLQME), the dashed (green) lines depict the results
for the Lindblad-like solution, and the (maroon) stars represent the
exact NEGF results. The parameters used for the calculation are
M = 1 u, ω0 = 1.3 × 1014 Hz, and ωD = 10ω0.

strength regime it is expected that higher orders of the
coupling strength will also play a role, due to which a small
difference is observed between the exact NEGF results and our
second-order NMRS approach. It should also be noted that the
NMRS is not (completely) positive and can even give rise
to negative populations if the coupling strength increases far
beyond its a priori regime of validity of finite weak coupling.
The qualitative features of the results described above do not
depend on temperature differences [as seen from Figs. 2(a) and
2(b)] or on absolute temperature, implying that our NMRS is an
excellent method to accurately capture nonequilibrium effects
in the weak to moderate system-bath coupling regimes.

V. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In summary, we presented a novel technique based on
analytic continuity to evaluate the steady-state reduced density
matrix of a general anharmonic system connected to multiple
heat baths correct up to second order in the system-bath
coupling. Our novel NMRS was verified against the only
known exact nonequilibrium solution of the quantum harmonic
oscillator and excellent agreement is obtained between these
two approaches. Other “popular” quantum master equations
were then compared against our NMRS and considerable
differences were found in the regime of moderate system-bath
coupling. In this regime, it was only the NMRS that provides
physically reliable solutions, whereas the other approaches
either violated positivity or did not change with increasing
coupling strength. In order to study systems in nonequilibrium
the moderate (or at least weak but finite) coupling strength
regime is extremely crucial because some of the most interest-
ing phenomena, like transport, solely depend on the strength
of the coupling and are trivially zero for vanishing couplings.
Thus, in cases where local current operators are defined, our
NMRS presents an accurate nonphenomenological approach
to deal with steady-state transport.

Even though our approach is accurate and numerically
efficient, several unresolved challenges still remain. One subtle
issue lies in dealing with systems which posses a degeneracy
for the eigenvalues in the bare system Hamiltonian. One can
mathematically circumvent this issue by recalculating the
order-by-order solution for degenerate systems, as done in
Sec. III A for the case of nondegenerate systems, and then use
our analytic continuity approach to tackle the second-order
diagonal elements correctly. Another important challenge lies
in the hierarchical nature of the master equations, i.e., in order
to know the n-th order RDM one requires a n + 2-th order
master equation. Our novel approach has demonstrated that
up to second order there is a reasonable route to bypass this
hierarchical problem and work at a given order, but it is still
an open question if such a scheme would even work for higher
orders. A deeper mathematical or physical understanding of
why the analytic continuation works is also not settled. It is
also not clear how one could extend our scheme to study
the relaxation dynamics. The uniqueness of the steady state
makes our approach feasible, but the dynamical problem is
a herculean task because there could be various equivalent
dynamical routes. Despite its limitation to steady state we
are confident that our approach paves a new way to address
nonequilibrium physics in general anharmonic systems beyond
the vanishing coupling limit.
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APPENDIX: APPROXIMATE GIBBS DISTRIBUTION
IN THE LIMIT OF VANISHING COUPLING

In specific parameter regimes it is possible to approximate
the 0-th order RDM, described in the main body of the paper, as
an effective canonical distribution ρ(0) ≈ e−β̄HS /TrS[e−β̄HS ],
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with an effective inverse temperature. Here, we would like to
numerically illustrate this idea using a simple example of a
system connected to two identical harmonic heat baths, with
different temperatures, denoted by “L” (left bath) and “R”
(right bath). We look at the equation describing the 0-th order
RDM, Eq. (16), and limit our investigation to the regime where
both the baths are connected to the same system operator, i.e.,
Y L = Y R = Y . Therefore Eq. (16) can be recast as

∑
k

(
YnkYknW̃

c′
nk − δn,k

∑
l

YnlYlkW̃
c′
lk

)
ρ

(0)
kk = 0, (A1)

where W̃ c′ = W̃L′ + W̃R′
. Equation (A1) resembles an approx-

imate detailed balance equation if the rates W̃ c′
follow

W̃ c′
ij ≈ exp(−β̄�ij )W̃ c′

ji, (A2)

where �ij = Ei − Ej is the energy difference of the system
Hamiltonian and β̄ = 2βLβR/(βL + βR) represents the in-
verse of the average temperature. Now since both the baths
have the same physical properties, i.e., J L(ω) = J R(ω) =
J (ω), then using Eq. (33) from the main text, which in fact is
true for all spectral densities, it can be shown that Eq. (A2) is
equivalent to

χ (�ij ,β
L,βR) = ln

[
eβL�ij + eβR�ij −2

2 e(βL+βL)�ij − eβL�ij − eβR�ij

]
+ β̄�ij = 0. (A3)

Thus, without the need of defining a system Hamiltonian
or the bath properties it is possible to numerically check
the validity of Eq. (A3) for various energy differences and
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FIG. 3. (Color online) Plot of the χ (�ij ,β
L,βR) as a function

of inverse temperatures of the baths βL and βR for different energy
differences �ij .

temperatures as shown in Fig. 3. Clearly, when βL ≈ βR, i.e.,
slightly off the diagonals of Fig. 3, Eq. (A3) is satisfied to
a large extent. In cases where the energy difference of the
system Hamiltonian is not that large the regime of validity
of the approximate detailed balance condition goes well
beyond the small temperature-difference regime. Keeping in
mind that the Eq. (A3) should be valid for all combinations
of energy differences, we infer that the approximate Gibbs
behavior, beyond the trivial small temperature-difference
regime, is applicable for systems whose width of the energy
spectrum is much smaller than the temperatures of the baths.
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