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Recently, it has been shown that entropy can be used to sort Brownian particles according to their size.
In particular, a combination of a static and a time-dependent force applied on differently sized parti-
cles which are confined in an asymmetric periodic structure can be used to separate them efficiently,
by forcing them to move in opposite directions. In this paper, we investigate the optimization of the
performance of the “entropic splitter.” Specifically, the splitting mechanism and how it depends on
the geometry of the channel, and the frequency and strength of the periodic forcing is analyzed. Us-
ing numerical simulations, we demonstrate that a very efficient and fast separation with a practically
100% purity can be achieved by a proper optimization of the control variables. The results of this
work could be useful for a more efficient separation of dispersed phases such as DNA fragments or
colloids dependent on their size. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4892615]

I. INTRODUCTION

In many natural systems and industrial applications, mat-
ter consists not of pure substances but of mixtures of dif-
ferent components. Examples include polydispersed colloids
and polymers, red and white blood cells, or healthy and can-
cerous cells.1–3 The capability of sorting these different con-
stituents to achieve pure substances is thus a crucial challenge
with very important technological applications in industry,
nanotechnology, and biology. These components, dispersed
in a liquid phase, diffuse in and eventually are convected by
the presence of external and internal forces. Confinement can
also play a very significant role on a wide range of systems
and scales starting on the nanoscale with ions and molecules
up to objects in the micrometer range like DNA or red blood
cells.4, 5

To find a way to sort these objects, one is always con-
fronted with an interplay of different attributes like charge,
mass, and size that lead to differential responses to the appli-
cation of an external field. A separation dependent on parti-
cles’ mass and size is usually carried out by centrifugation,6

whereas electrophoresis combines diffusion through a gel
with an external electric field to sort out particles of different
sizes and charges.7–9 A purely size-dependent separation in its
simplest form is realized by a sieve or porous materials.10, 11

The current techniques proposed for particle separation rely
on forcing the particles to move at different velocities but
in the same direction. Other separation techniques based on
size-dependent hydrodynamical long-range interactions3, 12 or
ratcheting of particles moving in asymmetric arrays or chan-
nels have been suggested.13–22

Recently, a novel splitting mechanism based on entropic
rectification was presented and suggested as a device which

a)Present address: Institut für Theoretische Physik, Universität Ulm,
Albert-Einstein-Allee 11, 89069 Ulm, Germany. Electronic mail:
thomas.motz@uni-ulm.de.

can be used for efficient particle sorting in a time continuous
mode.23 The essence of this mechanism relies on the use of
an asymmetric and periodic channel to confine spherical par-
ticles of different radii, employing a combination of different
forces to drive their motion. An unbiased time-periodic force
acting on particles confined in an asymmetric and periodic
channel leads to a rectification of the noisy motion and to a
net-drift along a preferential direction (i.e., the one with the
least steep walls). This effect becomes stronger with increas-
ing particle radius. Applying an additional small static force
in the opposite direction, one is able to set up a configuration
where particles below a certain radius travel to the opposite
direction as the larger particles do. If one varies the param-
eters of the channel or the external forces, the critical radius
that dictates in which direction particles move is under perfect
control with this set up. That is the essential concept of the en-
tropic splitter that was introduced in Ref. 23 using a specific
channel geometry and set of parameters.

Whereas the entropic splitter seems to be a very promis-
ing device to sort particles of different sizes, there are still
open questions about its efficiency and control that have to be
addressed before proceeding with an experimental implemen-
tation. To study how to optimize the operation of this potential
device is precisely the aim of this article. More specifically,
we are going to analyze how the different parameters affect
the performance of the entropic splitting mechanism. We will
discuss how a smartly chosen set of parameters can be used
to optimize the efficiency of entropic rectification and separa-
tion, and verify its feasibility using specific examples.

One of the most important factors influencing the per-
formance of the entropic splitter is the shape of the periodic
confining channel. In Ref. 23, a simple saw-tooth profile with
two different and relatively small slopes was used to facilitate
the applicability of the Fick-Jacobs (FJ) approximation.24–27

However, since (entropic) rectification relies on asymmetry, a
channel structure as that shown in Fig. 1 is the one offering the
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FIG. 1. The two-dimensional geometry of the channel with an exemplary
trajectory of a diffusing particle with r = 0.9 b. The channel has a periodicity
of L, a slope m = 0.9, and a bottlenecks’ half-width b = 0.1 L, whereas the
total width is given by B = b + mL. The dashed lines represent the effective
boundaries given by ωu(x) and ωl(x) that confine the region accessible for the
center of a spherical particle with radius r = 0.9 b (red) and r = 0.3 b (blue).

strongest rectification, as it was verified for point particles in
recent publications.28 For the sake of concreteness, we will fo-
cus on this structure which maximizes rectification. The small
drawback is that, given the steepness of the vertical wall, the
FJ approximation is expected to be not very accurate.27 Ac-
cordingly, mostly numerical studies will be performed.

II. MODEL

The dynamics of a Brownian particle with an external
static force f and an additional time-dependent force F(t) act-
ing along the x-axis can be described by the overdamped
Langevin equation23

γ
d�r
dt

= (f + F (t))�ex + √
2γ kBT �ξ (t). (1)

Since we assume hard spheres γ is given by the Stokes’ fric-
tion, �r is the particle’s position in the 2D channel, �ex the unit
vector in x-direction and kBT represents the thermal energy of
the heat bath. The Gaussian random force �ξ (t) with zero mean
is uncorrelated in time and therefore obeys the condition for
white noise given by 〈ξ i(t) ξ j(t

′)〉 = 2δijδ(t − t′) with i, j = x,
y. The overdamped limit will be considered, corresponding to
t � m/γ . Under this condition, effects caused by the particle’s
inertia can safely be neglected.29, 30 F(t) is a periodic square
wave with frequency ω and amplitude A explicitly given by
F(t) = A sgn[sin (ωt)], and acts along �ex according to Eq. (1).

The Langevin equation has to be solved with reflecting
boundary conditions at the channel walls. The 2D channel
with period length L and bottleneck width 2b is shown in
Fig. 1 with an exemplary trajectory of a diffusing particle.
Taking also the total width 2B and so the slope m = (B
− b)/L into account, the channel geometry is fully defined
by the equation for the upper boundary yu(x)

yu(x) = b + m(L − x̄),

where x̄ is given by the modulo function x̄ = x mod L and
causes a periodic structure. Due to the symmetry, the lower
boundary yl(x) is given by yl(x) = −yu(x).

When implementing hard-spheres, one has to modify the
accessible space for the center of the particles by introducing

an effective boundary. This can be constructed by drawing the
center’s trajectory of a particle that moves along the boundary
yu(x), creating circles in the vicinity of the bottlenecks start-
ing at the position Lp = L − rm/

√
1 + m2 and parallel lines

with a vertical distance of h = r
√

1 + m2 along the straight
parts. Translated into formulas, this argumentation leads to
the upper effective boundary ωu(x):

ωu(x) =

⎧⎪⎪⎨
⎪⎪⎩

b − √
r2 − x̄2 0 ≤ x̄ < r

b + m (L − x̄) − r
√

1 + m2 r < x̄ ≤ Lp

b −
√

r2 − (x̄ − L)2 Lp < x̄ ≤ L

.

(2)
The lower effective boundary is given by ωu(x) = −ωl(x). The
result is shown by the dashed lines in Fig. 1 where the smaller
accessible space for the centers of spherical particles com-
pared to point particles, and its dependency on particle size,
is visible.

In order to achieve a dimensionless description, all quan-
tities that occur in the Langevin Eq. (1) will be scaled in
terms of the characteristic period length L and diffusion time
τ = L2/Db, where Db = kBT/γ b and γ b = 6πηb are the diffu-
sion constant and Stokes’ friction of a spherical particle with
a reference radius r = b, respectively. In terms of these char-
acteristic parameters, we have

ω̂u(x) = ωu(x)

L
x̂ = x

L
t̂ = t

τ
ω̂ = ω τ.

(3)
Moreover, to simulate DNA in an external electrical field we
shall assume the force to depend linearly on the radius r:

f = f0
r

b
A = F0

r

b
. (4)

With these transformations the scaled version of the Langevin
equation reads

d�r
dt

= (f0 + F0 sgn[sin(ωt)])�ex +
√

2b/r�ξ (t), (5)

where for the sake of simplicity the hat-symbols have been
omitted.

To complete the model description, strong viscous dy-
namics in the overdamped limit combined with a dilute den-
sity that frustrate hydrodynamic particle-wall interactions and
particle-particle interactions are assumed.31–33 This setting,
for example, mimics the situation in blood with cancerous
cells where ∼1 tumor cell exists within 1 ml of blood which
has a low Reynolds number and basically consists of plasma
and red and white blood cells which are much smaller than
tumor cells.19, 34–36 For studies that take hydrodynamic inter-
actions into account see Refs. 31 and 37.

An alternative, and approximate, description of this sys-
tem can be performed in terms of the corresponding Fick-
Jacobs equation including an entropic potential −T S(x)
= − ln[2 w(x)], which effectively accounts for the effects of
confinement.24–26, 38 Due to the presence of a steep wall in the
channel (see Fig. 1) the FJ is expected to be not very accu-
rate even for very small bias. Nevertheless, the shape of the
entropic barrier and its height provide insightful information
on the transport behavior in this system.
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There are two parameters of the channel that have an ob-
vious influence on the height of the entropic potential and ac-
cordingly on the efficiency of the entropic rectification and
splitting. One is the width of the bottleneck b. Obviously, the
smaller the bottleneck width, the higher the entropic barrier
and the rectification. The second parameter is the slope m of
the wall. An increase of m will lead to larger channel’s half-
width B = b + mL, and accordingly also to higher barriers and
stronger rectification. However, beyond a typical value of the
slope around m ∼ 10, this enhancement is no longer signifi-
cant since for very steep walls and large total widths 2B the
particle distribution does not spread over the whole channel-
width and therefore a further increase of the space has no im-
pact on the net-drift of the particles. This was corroborated in
our simulations. Accordingly, we will fix the values of b and
m, and explore how the other parameters affect the rectifica-
tion efficiency.

III. NONLINEAR MOBILITY

Macroscopic transport quantities like the mobility are
calculated by averaging over an ensemble of 104 trajectories
that are simulated based on Eq. (5) via a Stochastic Euler
procedure.39 In the following, we will analyze the influence
of different parameters on the rectification and splitting ef-
ficiency. First, we study the system’s response behavior by
applying a static force along the principal axis of the channel.
This causes a mean velocity which is closely related to the
nonlinear mobility μ, defined as

μ = lim
t→∞

〈v〉
f0

, (6)

where f0 represents the external static force and 〈v〉 the mean
velocity calculated from an ensemble of simulated trajecto-
ries.

Fig. 2 plots the mobility as a function of the static bias, in
the absence of a periodic force. The upper plot shows μ+ that
represents the mobility for an f0 that is positive and points to
the right in Fig. 1. For small forces f0 < 1, μ+ is almost con-
stant with a different value for each particle radius r. As f0 gets
stronger, μ increases and eventually converges to μ+ = 1 for
all particle radii if f0 is large enough. The inflection point of
the mobility curve for any given radius roughly coincides with
the vanishing of the entropic barrier, which occurs at values
of the external force equal to the force at the inflection point
of the entropic potential, given by finfl = mb

r(b−r/
√

1+m2)
. For

f0 > 103, the forcing is so strong that all particles move in
a lane in the center of the channel which has a width of 2b.
Therefore, the particle’s motion is not disturbed by the chan-
nel walls for these values of f0, leading to μ+ = 1.

The middle plot shows μ− for f0 < 0, which is equiv-
alent to an f0 pointing to the left in Fig. 1. For small |f0|,
the mobility μ− is constant with a value that depends on r.
As |f0| is increased, the mobility shows a non-monotonic be-
havior which strongly depends on r. Interestingly, for very
large |f0| the mobility of all particles converges back to one.
This is in contrast to the behavior of point particles (r = 0)
in the same channel, where μ− converges to a limiting value

0
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FIG. 2. The nonlinear mobility μ = lim
t→∞〈v〉/f0 of spherical particles

with different radii r moving in the channel shown in Fig. 1. The upper plot
shows μ for an external static bias f0 in positive direction, whereas f0 is nega-
tive in the middle plot. The dashed lines show the analytic limits for point-like
particles, namely, lim

f0→∞ μ = 1 for a positive f0 and lim
f0→−∞ μ = b/B

for a negative f0 (lower line in the middle plot). The lower plot shows the
rectification coefficient α, characterized by a fast decrease of α for large par-
ticle radii. An ensemble of 104 non-interacting particles was simulated until
an accuracy of 10−3 for μ was achieved.

of μ− = b/B for large negative forces. That implies that the
particles are uniformly distributed along the y-axis. The con-
vergence to μ− = 1 we found here is an effect that has its
origin in the rounded bottlenecks of the effective confinement
ωu(x) and ωl(x) described by Eq. (2). When the effective shape
around the bottleneck is rounded, a particle moving in the
negative direction and touching the confinement in a range of
b − r ≤ |y| ≤ b will be eventually guided into the bottleneck
even at very large negative forcings, and so contributes to the
transport. In contrast, a point particle that hits a vertical wall
perpendicular to the force’s direction will get stuck against
the wall at very large forces, and will not be able to pass
through the bottleneck. This extreme sensitivity of the limit-
ing value of the mobility to the slope near the bottleneck was
already found for point particles by Dagdug et al. in Ref. 28
by investigating periodic channels where the compartments
first are separated by vertical boundaries, leading to a mono-
tonic decrease of μ and, second, by boundaries with finite
slopes what leads to the behavior found here for hard spherical
particles.
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The strong dependency on the particle radius of the typi-
cal forces required for recovering μ− = 1 can be understood
using a simple estimate based on diffusion. Essentially all par-
ticles of a given radius r will pass through the bottleneck if
the distance travelled by diffusion in the vertical direction,
y = √

2 b/r t , during the time required to cross one period of
the channel, t = 1/〈v〉, is smaller than the bottleneck width
b. Assuming that the velocity is roughly proportional to the
force 〈v〉 ∼ f0, the above criterion leads to a simple estimate
fb = 2

rb
of the force, in reduced units, beyond which the par-

ticles diffuse in the vertical direction a distance smaller than
the bottleneck radius b, and thus are expected to be focused
through the channel. This simple argument explains why μ−
starts to converge to one at smaller forces for large particles.
There is also another striking feature in the behavior of μ− for
r = 0.9b. A plateau in the mobility is visible for intermediate
values of the force around 102. This plateau seems to be asso-
ciated to the existence of a region of negative forces where the
height of the effective entropic barrier becomes nearly con-
stant. The complex nonmonotonic behavior of the mobility
for f0 < 0 already suggests that making an adequate choice of
the external force’s value for an optimal particle separation is
not a trivial issue.

To get an idea of the dynamics for an applied oscillating
force in the adiabatic regime, the lower plot in Fig. 2 shows
the rectification coefficient defined as40, 41

α = μ+ − μ−
μ+ + μ−

. (7)

As expected, α initially rises with |f0| for all radii but more
intensively the larger the r is. Accordingly, there is entropic
rectification and larger particles drift on average to the right
at larger velocities than smaller particles. However, for |f0|
≥ 102 the values of α start to decrease beyond a critical force
that depends on the particle radius r, and in fact for large r
drop below the ones for small r. This is caused by the accu-
mulation of the particles along the channel’s principal axis for
large negative f0 that progressively destroys the rectification
effect. As described before, the forces where this accumula-
tion occurs are smaller the larger the particle radius is. Thus,
at very large amplitudes of the oscillating force, smaller parti-
cles are rectified more efficiently than larger particles. Eventu-
ally, for large f0 all particles are accumulated along the center
for both negative and positive forces, the dynamics in both di-
rections are equal and therefore α vanishes. The maximum in
the rectification coefficient α roughly coincides with the min-
imum in the negative mobility, and is thus controlled by the
onset of the channeling effect discussed above.

The previous results suggest that amplitudes F0 of the os-
cillating force in the range 10 ≤ F0 ≤ 102 are considered to
be adequate for an optimal particle separation since the ac-
cumulation effects for larger forces make it difficult to adjust
an additional static force in order to let two different kinds of
particles move in opposite directions.

IV. BEYOND THE ADIABATIC LIMIT

Besides the amplitude F0, the frequency ω is the second
variable of the oscillating force F(t) that needs to be fixed. Let

0
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FIG. 3. The mean velocity 〈v〉 of particles with r = 0.3 b moving in the
channel of Fig. 1 versus the frequency ω for different amplitudes F0 of the
oscillating force F(t) on a double logarithmic scale, and on a logarithmic scale
shown in the inset. The dashed lines represent the adiabatic limit calculated
as the arithmetic mean 〈v〉 = (〈v〉+ + 〈v〉−)/2 of simulation results obtained
with static forces with the particular values F0 and −F0 leading to the veloci-
ties 〈v〉+ and 〈v〉−, respectively. The dashed line for ω > 102 is a fitted result
according to the law ωa.

us now analyze how the velocity of particles of a given size
depends on the frequency of the forcing beyond the adiabatic
limit. Fig. 3 shows the mean velocity 〈v〉 caused by an os-
cillating drive F(t) versus ω for different amplitudes F0 on a
double-logarithmic scale and on a logarithmic one (inset). For
small values of ω the mean velocity is almost constant and co-
incides with the expected value in the adiabatic limit given by
〈v〉 = (〈v〉+ + 〈v〉−)/2, and represented by the dashed lines.
These adiabatic limit values were evaluated from the veloci-
ties 〈v〉+ and 〈v〉− obtained by simulations with static forces
of absolute values F0 in the positive and negative direction,
respectively. The excellent agreement with the simulation re-
sults for a time-dependent drive proves the validity of the
adiabatic approximation up to frequencies ω ≤ 10. Above
this threshold, 〈v〉 decreases with ω as a power low 〈v〉 ∼ ωa

with an exponent a  −4/3. Thus the highest rectification ve-
locities are achieved for small driving frequencies. The de-
crease of the velocity with the frequency is expected since
a finite net-drift can only occur when the particles pass sev-
eral periods of the channel within a half-period of the oscil-
lating drive. In fact, by equating the time required to pass one
period of the channel τd = L/〈v〉 with the half period τ p/2
= π /ω of the driving, one obtains a simple estimate of the
characteristic frequency ω ∼ π〈v〉 beyond which the recti-
fication velocity starts to decrease. This simple prediction
agrees very well with the results of Fig. 3.

Since slow drivings provide the highest velocities, in the
following a frequency of ω = π /10 will be chosen. This fre-
quency is high enough to allow a fast separation in a short
time, while still low enough to be in the adiabatic regime.

V. IMPROVING SIZE-DEPENDENT PARTICLE
SEPARATION WITH THE ENTROPIC SPLITTER

In order to set up a system where two kinds of particles
move in opposite directions, one has to apply an additional
static bias f0 pointing in the opposite direction to the net rec-
tification, i.e., in the negative direction. With this additional
bias, the mean of the external forces is negative but due to
the rectified motion particles with a radius above a certain
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FIG. 4. Snapshots of the discretized marginal particle distribution P(x, t) at
different times t for particles with radius r = 0.9 b (left column in the legend)
and r = 0.3 b (right column) with an amplitude F0 = 20 of the time-periodic
force F(t) and a static bias f0 = −7. The initial distribution P(x, t = 0) is a
uniform distribution in the range 0 ≤ x ≤ L, shown by the spike at x = L/2.
One should note the higher negative velocity for t > τ p/2 of the particles with
r = 0.3 b. This leads to a negative net-drift of these particles after one period
τ p whereas the particles with r = 0.9 b experience a positive net-drift.

threshold have a net-drift to the right, whereas particles
below this threshold move to the left. To illustrate this
mechanism of separation in opposite directions, Fig. 4
shows the marginal particle distribution given by P (x, t)

= (1/P)
∫ ωu(x)
ωl(x) P (x, y, t) dy where P = ∫ L

0

∫ ωu(x)
ωl(x) P (x, y,

t = 0) dy dx. P(x, t) is plotted for different times within one
period of F(t) with an amplitude F0 = 20 and a static force
f0 = −7, and for two different particle radii r = 0.9b and
r = 0.3b. One can see that the particles with r = 0.3b move

faster to the right within the first half-period where F(t) > 0
holds, whereas in the second half-period, when F(t) < 0, the
motion of the larger particles is disturbed more intensively

caused by the smaller probability of passing the bottleneck
compared to the smaller particles. This leads to a positive net-
drift for the large particles with r = 0.9b and a negative net-
drift for particles with r = 0.3b after one period of F(t).

A systematic analysis of the average velocities 〈v〉 for
varying particle sizes and different combinations of the os-
cillating force’s amplitude F0 and a static bias f0 is shown in
Fig. 5. The plots show a nearly linear behavior of 〈v〉 with
respect to f0. Thus, with the static bias one has a simple way
to control the directionality of the motion of particles of a
given size to achieve an efficient splitting. Since for F0 < 100
the rectification increases with F0, both the values of the ve-
locities and the strength of the static bias required to invert
particle motion increase. However, this also leads to a de-
creasing difference of the mean velocities for different radii
r as f0 becomes more negative. In particular, the plot with
F0 = 100 shows that only the velocities of small particles
are really distinctive. Therefore, a separation of large parti-
cles with this large F0 requires to choose f0 very carefully.
On the other hand, one should also note the scale of 〈v〉 in
this plot since F0 = 100 leads to large values of 〈v〉, an or-
der of magnitude larger than those reported in Ref. 23. This
allows a very fast splitting with the limitation that only par-
ticles with r � b can be easily separated from larger ones.
This behavior is related to the particle accumulation near the
center of the channel for large negative forces discussed in
Fig. 2. Consequently, amplitudes F0 < 102 are most construc-
tive for particle separation. If the size difference between par-
ticles is large, relatively large forces can be used for a quick
splitting. To sort out particles with very similar sizes with the
same channel geometry, smaller amplitudes of F0 and f0 can
be used.
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FIG. 5. The mean velocity 〈v〉 of a particle diffusing in the channel of Fig. 1 as a function of the static force f0 for different values of the particle radii r and
the amplitude F0 of the time-dependent force F(t) (plots a–c). ω was chosen in the adiabatic regime with ω = π /10. The table shows the mean number of
oscillations 〈Np〉 until all 2 × 104 particles with the equally distributed radii rs and rl reached the collectors at x = ± 103L of the device. It is shown that higher
values of F0 and f0 deliver a faster splitting process, manifested in the lower averaged number of necessary oscillations 〈Np〉. Remarkably is the purity of 100%
that was obtained in every test shown in the table.
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TABLE I. Characteristic values of the main parameters used as an example
to evaluate the performance of the entropic splitter.

Parameter Characteristic value

L 1 μm
Db

42 2 × 10−12 m2/s
τ 0.5 s
L/τ 2 μm/s
kBT/L 10−15 N

The splitting behavior for different radii r and combina-
tions of the amplitude F0 and the static bias f0 will now be
tested in a specific example. The channel is assumed to have
a total length of 2 × 103 L and we will use 104 particles of
two different sizes to evaluate the separation efficiency. The
particles are uniformly distributed in the interval 0 ≤ x ≤ L at
time t = 0. The oscillatory and static forces are then switched
on and the splitting procedure is continued until all 104 par-
ticles of each kind are either in the left end of the device at x
= −103L or at the right end at x = 103L. This procedure is
repeated 50 times to calculate an averaged number of neces-
sary oscillations 〈Np〉 of the periodic force until all particles
reached a position |x| > 103L. The table in Fig. 5 shows the
results of the tests for different combinations of r, F0, and f0.
As can be seen, the average number of necessary periods 〈Np〉
is the lowest for the combination with the largest forces, cor-
responding to F0 = 102 and f0 = −50, as expected from the
previous discussion and from the plots (a)–(c) in Fig. 5. More
importantly, in all the cases shown in the table, all the small
particles ended up at the left end of the device and all the large
particles exited through the right end, thus achieving perfect
purity in the separation.

To have an estimate in real units of the typical times,
dimensions, and forces involved in the previous example,
Table I shows the values of the characteristic parameters for
Brownian particles in water moving in a channel with period
length L ∼ 1 μm at room temperature.

Thus, with a scaled driving frequency ω = π /10 corre-
sponding to a period τ p ∼ 10 s, the splitting with F0 = 100
shown in the table takes a time that is on the order of 40 s
in a channel with total length 2 mm. In combination with the
purity of 100% that was obtained in every test this results em-
phasize the potential of the entropic splitter. Similar purities
of separation in shorter times can be achieved in devices with
smaller total lengths.

A simple estimate of the number of particles that can be
separated in a given time can be made using the previous ex-
ample. Assuming that the particles which have to be separated
are continuously inserted into the device at x = 0, a nearly av-
erage uniform distribution of the particles in the channel along
the x-axis will be eventually reached, since the injected par-
ticles will compensate the loss of big and small particles that
exit through different ends of the device. In order to be able to
safely neglect particle-particle interactions, let us assume that
at most one particle is situated in one period of the channel.
This leads to an average total number of particles in the chan-
nel equal to the number of periods, yielding in our previous
example a rate of 2000 separated particles within 40 s.

This is just an order of magnitude estimate of typical sep-
aration rates, since they obviously depend on the magnitude
and frequency of the applied forces, the channel geometry,
and the radii of the particles. But, for practical use in massive
separation, it is very important to note that it is technically
possible to install many periodic channels in parallel. For ex-
ample, Kettner et al.16 created a wafer pierced by approxi-
mately 106 pores. This would lead to separation rates on the
order of 2 × 109 particles within 40 s. Even using just a 2D
parallelization, where all channels of the entropic splitter are
placed in a single plane, this leads to a number of 103 chan-
nels in a plane chip of 1–2 cm edge length and a rate of 2
× 106 particles separated within 40 s. Thus, very high puri-
ties at relatively high separation rates are feasible using many
channels in parallel.

The plausibility of the perfect purity we obtained in
the simulations can be supported by a simple analytic
approximation. The separation purity can be estimated by
the probability that a large particle with an average positive
velocity reaches the “wrong” end of the device, i.e., the left
collector placed at x = −nL, where n is the number of repeat-
ing periods of the channel.23 Assuming Gaussian distributed
particles as it is suggested in Fig. 4, the probability of finding
a particle traveling at an average velocity 〈v〉 after the time
t at x = −nL can be estimated by P (x < −nL, t) = 0.5
− 0.5erf

[
(nL + 〈v〉t)/√4Defft

]
, where Deff is the effective

diffusion coefficient. P(x, t) has a maximum at tmax = nL/〈v〉,
which in scaled units is given by P (x < −n, t = tmax)
= 0.5 − 0.5erf

(√
n〈v〉/Deff

)
. Assuming Deff ∼ 1, and a typ-

ical scaled velocity of 〈v〉 ∼ 2, a purity of 99.9996% can be
achieved already with a channel-length of only 10 L. With a
very large total channel length of 2 × 103 L, the achieved pu-
rity is for all practical purposes of essentially 100%, as found
in our test. Moreover, the previous calculation indicates that
much shorter channels could have been used leading to even
faster separation times and similar nearly perfect purities.

VI. CONCLUSIONS

In summary, we examined how different parameters af-
fect the sorting purity of the entropic splitter. We have found
that it is possible to improve the entropic splitter presented by
Reguera et al. in Ref. 23 using a slightly different geometry
and by investigating a wide range of external forces acting on
the particles. In particular, a maximum in the rectification effi-
ciency can be found for amplitudes of the periodic forcing F0
< 102. That leads to fast and efficient splitting of dissimilar
particles. The application of even larger forces is not conve-
nient, since the particles tend to be focused through the middle
of the channel, thus not feeling the confining walls and loos-
ing the rectification effect. In terms of frequencies, relatively
small frequencies in the adiabatic regime offer the highest ef-
ficiencies. Once again, very high frequencies are not conve-
nient since the particles would not have enough time to cross
the bottlenecks and get rectified. We verified the efficiency of
splitting using specific tests in a wide range of forces, show-
ing that a very fast splitting-performance with a high purity
can be easily achieved. Hence, this improved configuration of
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the entropic splitter has the potential to be implemented in
experiments and become a practical and efficient device for
particle sorting.
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