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Triggering waves in nonlinear lattices: Quest for anharmonic phonons
and corresponding mean-free paths
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5Nanosystems Initiative Munich, Schellingstr. 4, D-80799 München, Germany

6Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, 200092 Shanghai, China
7Graphene Research Centre, Faculty of Science, National University of Singapore, 117542 Singapore

(Received 14 March 2014; revised manuscript received 16 October 2014; published 17 November 2014)

Guided by a stylized experiment we develop a self-consistent anharmonic phonon concept for nonlinear
lattices which allows for explicit “visualization.” The idea uses a small external driving force which excites
the front particles in a nonlinear lattice slab and subsequently one monitors the excited wave evolution using
molecular dynamics simulations. This allows for a simultaneous, direct determination of the existence of the
phonon mean-free path with its corresponding anharmonic phonon wave number as a function of temperature.
The concept for the mean-free path is very distinct from known prior approaches: the latter evaluate the mean-free
path only indirectly, via using both a scale for for the phonon relaxation time and yet another one for the phonon
velocity. Notably, the concept here is neither limited to small lattice nonlinearities nor to small frequencies. The
scheme is tested for three strongly nonlinear lattices of timely current interest which either exhibit normal or
anomalous heat transport.
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I. INTRODUCTION

In solid phases, phonons are collective, elementary vibra-
tions in harmonic lattices and as such play a prominent role
for physical transport phenomena aplenty [1–4], of which the
transport of heat is a most prominent one. In harmonic lattices
these phonons constitute nondecaying, stable propagating
waves obeying a dispersion relation for angular frequency
ω and corresponding wave number k. This in turn implies
that these phonons possess strictly infinite mean-free paths
(MFPs). Consequently, heat transport in harmonic lattices
is ballistic [5,6] and thus no temperature gradient can be
sustained (a breakdown of Fourier’s law).

Generally, however, everyday solid materials are far from
being perfect harmonic lattices. Therefore, the phonon concept
bears no firm basis away from its underlying (effective) har-
monic approximation. As pointed out by Peierls long ago [2,3],
such anharmonicity is essential for Umklapp scattering—an
indispensable process for a finite, size-independent thermal
conductivity κ in three-dimensional (3D) materials. Phe-
nomenologically [3,4], the thermal conductivity is approxi-
mated in terms of a wave-number-dependent phonon MFP lk ,
i.e. κ = (1/3)

∑
k Ckvklk . Here, Ck is the specific heat of the

phonon mode and vk its phonon group velocity.
Principally, we encounter the dilemma that the rigorous

existence of a phonon excitation in a nonlinear lattice is
self-contradictory to the very existence of a finite MFP.
Particularly, this concept of a nonlinear or anharmonic phonon
may cause considerable unease when dealing with strong
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nonlinear interaction forces and/or high temperatures where
thermal excitations no longer predominantly dwell in the
harmonic well regions of corresponding interaction potentials.
Moreover, the observed breakdown of Fourier’s law with
superdiffusive heat transport in systems of low dimensions
[7–9] with a thermal conductivity diverging with the increasing
length of the sample necessitates that some MFPs must diverge.

One method of addressing the issue is the so-termed renor-
malized phonon picture [10–15]. In essence, this approach
uses an effective harmonic approximation of the nonlinear
interaction forces via a temperature-renormalized phonon dis-
persion. Such renormalized phonon theory, however, neither
determines the phonon MFP nor a phonon relaxation time
(or, likewise, a phonon lifetime). The problem of finite MFPs
and corresponding relaxation times thus remains open. One
possibility of addressing the missing link consists in combining
approximate Boltzmann transport theory for heat transport
with a single mode relaxation time approximation [16,17].
In fact, while this phenomenological scheme is commonly
adopted nowadays, its regime of validity has never been
justified from first principles [18,19].

In summary, the present state of the art is that the physical
value for this thermal MFP � is evaluated indirectly only:
Its evaluation involves both a characteristic relaxation time
or lifetime scale τ and as well a characteristic scale for the
phonon speed v, yielding � = vτ . Thus, this MFP is not
uniquely given in the sense that various time scales come
to mind: namely, the so-termed phonon lifetime (as obtained
from Lorentzian fit) in prior phonon quasiparticle studies in
the reciprocal lattice space [20–28], a phonon collision time,
or transport relaxation time (notably being not equivalent with
the phonon lifetime) as obtained from a Peierls-Boltzmann
approach are just but a few [29,30]. Likewise, the a priori
choice for the speed scale taken as the group velocity is
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also empirical. Consequently, a direct, molecular dynamics
(MD) based visualization rendering this much sought-after,
physically descriptive and useful phonon MFP is highly
desirable.

Here, we put forward an experiment-inspired theoretical
scheme for propagating anharmonic phonons (a-phs) when
ubiquitous nonlinear interaction forces are ruling the lattice
dynamics. Our main objective is to significantly advance
an a-ph concept that simultaneously solves the following
challenges: (i) the concept can be evaluated by MD simulations
and additionally allows for the visualization of the physical
existence of the a-phs together with their MFPs, (ii) the
concept is manifest nonperturbative in the strength of lattice
nonlinearities, and additionally, (iii) the concept is neither
restricted to low temperature nor to low frequencies.

II. TRIGGERING ANHARMONIC PHONONS

To elucidate whether a phonon picture still holds in strongly
nonlinear solids we use a “tuning fork experiment” as sketched
with Fig. 1(a). Here, a tuning fork operating at a small driving
strength and at a fixed frequency ω is placed in front of a
crystalline, nonlinear lattice slab held at a temperature T .
This driving source will generate sound that propagates along
the slab. For a phonon picture to hold up, it is then required
that the propagating disturbance physically causes a collective,
attenuated plane wavelike response. For the MFP to exist, the
spatially dependent wave amplitude preferably is required to
exhibit an exponential decay with a single scale vs increasing
spatial spread. If so, this renders the sought-after MFP for
a-phs in a nonlinear lattice. The a-ph may still hold up,
however, even if the attenuation of the propagating wave occurs
nonexponentially, i.e., when exhibiting multiple spatial scales,
see below.

The driving source triggering the thermal phonons must be
set sufficiently small so that no nonlinear, non-phonon-like
excitations become excited. This implies that the triggered
response of the tuning fork occurs solely within its linear
regime, i.e., the output signal occurs at the same (driving)
frequency only [31].

FIG. 1. (Color online) Hunting for phonons and MFPs in nonlin-
ear lattices: (a) An illustration of the tuning fork experiment; (b) a
schematic sketch of the driving force method in a nonlinear lattice.

To realize this stylized experiment, we start with the
lattice being held at thermal equilibrium. We next apply a
time-dependent external weak force fd (t) = f1 cos ωt , see
in Fig. 1(b), to the first particle and measure the resulting
long time response occurring at all the remaining particles.
For the a-ph concept to make sense this collective response
must assume the form of a propagating plane wave, i.e., the
thermally averaged velocity vn(t) of the nth particle is required
to read for n = 1,2, . . .:

〈vn(t)〉f = |An| cos(ωt + φn) = Re(|An|ei(φn+ωt)), (1)

with the phase obeying

φn = −kn + φ0. (2)

In the expression, 〈·〉f denotes the statistical average under
the influence of the driving force. This so parameterized
excited motion defines an effective phonon with a frequency
ω that precisely matches the input driving frequency ω. The
coefficient, k = −dφn/dn, plays the role of the wave number
k. With the amplitude |An| assumed to decay exponentially as

|An| ∝ e−n/�, (3)

its decay length � provides the searched MFP for this a-ph.
For the sake of simplicity, we first formulate the concept

for one-dimennsional (1D) lattices. The scheme can readily be
generalized to higher dimensions and complex materials by
applying forces to atoms lying on a chosen lattice plane that
trigger either longitudinal or transverse waves which propagate
perpendicular to the plane, which will be discussed in Sec. II B.

The 1D lattice Hamiltonian assumes the general dimen-
sionless form [32]:

H0 =
N∑

n=1

[
p2

n

2
+ V (xn+1 − xn) + U (xn)

]
, (4)

where pn and xn denote the momentum and displacement from
the equilibrium position for the n-th particle (with unit mass),
respectively, V (xn+1 − xn) is the interparticle potential and
U (xn) denotes a possibly present on-site potential. Following
the common approach we employ the periodic boundary
conditions. The role of finite temperature T enters by using a
canonical ensemble with the unperturbed distribution reading,
ρeq = Z−1 exp [−βT H0], where βT = 1/kBT is the inverse
temperature and Z the canonical partition function.

Following the spirit of the tuning fork experiment, we then
apply a weak single-frequency signal fd (t) to the first particle
of the lattice. Therefore, the total Hamiltonian of the system
reads

Htot = H0 + Hext = H0 − fd (t)x1. (5)

We can then calculate the thermally averaged velocity at
each site n using canonical linear response theory [31,34],
yielding:

〈vn(t)〉f = βT

∫ t

−∞
ds〈vn(t − s)v1(0)〉fd (s),

= βT

∫ ∞

0
dτ 〈vn(τ )v1(0)〉fd (t − τ ) (6)

where 〈·〉 denotes the canonical ensemble average.
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For fd (t) = f1 cos ωt , the excited motion can equivalently
be cast into the form of Eq. (1), which involves the Fourier
transformed susceptibility, i.e.,

〈vn(t)〉f = f1Re[χn(ω)eiωt ], (7)

where the susceptibility χ (ω) reads

χn(ω)=βT

∫ ∞

0
dτ 〈vn(τ )v1(0)〉e−iωτ ≡ |χn|eiφn . (8)

This appealing result allows one to assign the existence of
an a-ph and its corresponding MFP: (i) an a-ph exists with a
wave number k(ω) if and only if the linear relationship in (2) is
fulfilled and (ii) possesses a unique MFP �(ω) when |χn(ω)| ∝
exp[−n/�(ω)]. Importantly, the phonon response amplitude
|χn(ω)| and its phase φn(ω) now both attain a dependence
on temperature T . The wave vector is given by k(ω,T ) =
−dφn(ω,T )/dn. This very form considerably simplifies the
numerical efforts as compared to directly studying the excited
waves via the MD method, i.e., one finds the whole frequency-
resolved phonon properties at once.

As an expectation, this so introduced a-ph concept should
be naturally consistent with the normal phonon in harmonic
lattices. Such a fact can be readily tested analytically without
invoking the linear response theory, which we demonstrate
below. Following this, we give a brief extension of our method
to the more general three-dimensional case and then move on
to the application of our method.

A. Harmonic lattices

For a harmonic lattice with unit masses and potentials
V (x) = 1

2x2 and U (x) = 0 [32], we expect to observe from
our method that the MFPs are infinite with the wave number k

satisfying

k(ω) = 2 arcsin
ω

2
. (9)

To see this, we apply periodic boundary conditions to the
lattice so that x0/1 = xN/N+1 and p0/1 = pN/N+1. With a peri-
odic driving force fd = f1 cos ωt switched in the infinite past
and applied to the first particle in a 1D chain, the equations of
motion (EOMs) can be put into a compact matrix form, reading

ẍ = −�x + F(t). (10)

Here, � is the force matrix with elements �i,j =
2δi,j − δi,j−1 − δi,j+1 in terms of the Kronecker delta
function δi,j , and F = f cos(ωt) = (f1,0, . . . ,0)T cos(ωt).
Its solution is additive due to F(t) entering a linear equation
of motion. Thus, the excitations of F(t) can be obtained by
Fourier transformation, reading

〈x(t)〉f =
∫ ∞

−∞
G(ω′)F̃(ω′)eiω′tdω′, (11)

where ˜ denotes a Fourier transform and G is the phonon
Green’s function

G(ω′) = (� − ω′2)−1. (12)

For a driving fd = f1 cos ωt , it can then be calculated that
the resulting excited motion reads

〈xn(t)〉f = f1Re[Gn,1(ω)eiωt ], (13)

and consequently

〈vn(t)〉f = f1Re[iωGn,1(ω)eiωt ], (14)

which has the same form as (7) with χn(ω) = iωGn,1.
Due to the cyclic structure of the matrix � − ω2, its inverse

G can be analytically obtained. Its first column reads

Gn,1 = −cos
(

N
2 − n + 1

)
z

2 sin(Nz/2) sin z
, (15)

The second column is obtained by cyclically shifting the first
column by one element. The third column is obtained by
cyclically shifting the first column by two elements, and so
on. In the formula, e±iz are the two roots of the quadratic
equation −1 + (2 − ω2)x − x2 = 0. Therefore, z satisfies

cos z = 1 − ω2

2
, (16)

which can be verified by substitution.
For 0 < ω < 2, z is a real number. According to (14)

and (15), the velocity of excited wave varies with n as

〈vn(t)〉f ∼ cos

[(
N

2
− n + 1

)
z

]
sin ωt. (17)

It represents a standing wave formed by two plane waves with
the same wave number k = z satisfying

ω = 2 sin
k

2
, (18)

which just yields the intrinsic dispersion relation for the
harmonic lattice. The plane wave nature also implies the
excited waves have infinite MFPs.

Note that the derivation above is exact and beyond a linear
response. However, it can be shown that applying (7) and (8)
to the harmonic lattice will give exactly the same result in (14)
and (15), due to the fact that for harmonic lattices all higher
order response terms are actually zero and only the linear
response term is present.

B. Generalization to higher dimensions

In order to generalize our method to higher-dimensional
cases, we must apply a periodic driving force at the same
frequency to each particles in a plane. Taking the three-
dimensional (3D) case as an example, if we want to study the
wave propagation along the direction k = hb1 + kb2 + lb3
where b1, b2, and b3 are the primitive vectors in the reciprocal
lattice, we first choose a plane with Miller indices (hkl),
denoted as α, being orthogonal to the direction k. Then, we
apply forces to all particles in this plane. To trigger longitudinal
waves, we apply out-of-plane forces that are perpendicular
to the plane. To trigger transverse waves, we apply in-plane
forces.

With such an setup, (6) can be easily generalized to read

〈
vd

n (t)
〉
f

=
∑
i∈α

∫ ∞

0
dτ

〈
vd

n (τ )vd
i (0)

〉
f d

i (t − τ ), (19)

where i ∈ α means particle i is in plane α and d =⊥ or ‖
which specifies whether the direction of the force and velocity
is out-of-plane (⊥) or in-plane (‖). We now identically set
f d

i (t) = f d
α (t)/Nα (Nα is the number of particles in that plane)
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for all i ∈ α; then (19) can be simplified to read

〈
vd

n (t)
〉
f

=
∫ ∞

0
dτ

〈
vd

n (τ )vd
α(0)

〉
f d

α (t − τ ), (20)

where vd
α = (1/Nα)

∑
i∈α vd

i denotes the average velocity for
all particles in the plane α.

We can further take an average for all particles in the same
lattice plane, denoted as β, which has the same Miller index (so
that it is parallel to α) but contains the nth particle. Therefore,
we obtain for the average velocity for that very plane the result

〈
vd

β(t)
〉
f

=
∫ ∞

0
dτ

〈
vd

β(τ )vd
α(0)

〉
f d

α (t − τ ). (21)

From this result we can infer whether an anharmonic phonon
with a wave vector pointed towards the same direction of
k exists or not, by following the same reasoning used for
one-dimensional lattices.

Note that the derivation is independent of the form of the
Hamiltonian H0. So the method is equally applicable to study
wave transport in inhomogeneous lattices, such as junctions
formed by different materials.

III. NUMERICAL DETAILS

We will apply our concept to three archetype 1D nonlinear
lattices of varying complexity. Before we move on to study
these models in detail, we first describe the numerical details
used to detect the anharmonic phonons.

We use throughout a fourth order symplectic cSABA2 algo-
rithm to integrate the Hamiltonian equations of motion [35].
The time step has always been chosen as h = 0.02 and the
length has been set at N = 2048, using periodic boundary
conditions, for all models studied. At the beginning of each
simulation, a total time t = 2 × 106 is used to thermally
equilibrate the system. After that, the time-homogeneous
equilibrium velocity correlation 〈vn(t)v1(0)〉 is calculated by
using the time average which replaces, using ergodicity for
the nonlinear lattice, the corresponding ensemble average.
An average over 3.2 × 109 steps is used. The correlation
〈vn(t)v1(0)〉 is calculated for each n = 1,2, . . . ,N and t =
0,h,2h, . . . ,tmax. Afterwards, χn(ω) is obtained by taking a
Fourier transform according to Eq. (7).

The upper time limit tmax is properly chosen such that the
excited waves along the periodic ring of size N do not overlap
with each other for t ∈ (0,tmax). Namely, tmax < N/2vs where
vs is the largest group velocity of the phonons studied, i.e.,
the corresponding sound velocity. On the other hand, this tmax

determines the frequency resolution. The larger tmax is, the
smaller is the frequency resolution. Specifically, tmax = 655.36
has been used for all three models.

A few samples of the velocity correlation 〈vn(t)v1(0)〉 are
depicted in Fig. 2 for the Fermi-Pasta-Ulam(FPU)-β lattice at a
temperature T = 0.2. χn(ω) is then calculated via the Fourier
transformation according to Eq. (7). For the other models,
we also observe similar oscillation behavior for the velocity-
velocity correlation function.
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v n
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(0

)

Velocity Correlation Function
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FIG. 2. (Color online) The velocity autocorrelation 〈vn(t)v1(0)〉
of the FPU-β model for n = 1,11,21. The simulation is carried out
on an FPU-β lattice with length N = 2048 at temperature T = 0.2.

IV. DETECTING ANHARMONIC PHONONS

In this section, we apply our method to study three
archetype 1D nonlinear lattices. Of timely interest in the
context of anomalous vs normal heat conduction are the FPU-β
lattice, the FPU-αβ lattice, and the φ4 lattice. Our numerical
simulations shall cover extended regimes of temperature T

and frequencies ω.

A. FPU-β lattice

The prevalently studied nonlinear 1D lattice dynamics in the
literature is the FPU-β dynamics with V (x) = 1

2x2 + 1
4x4 and

U (x) = 0 [36,37]. Its lattice dynamics has been demonstrated
to exhibit superdiffusive heat transport [7–9,38].

Applying the a-ph concept, our findings are depicted in
Fig. 3 for χn(ω) vs lattice sites n, for different driving fre-
quencies ω ∈ (0.0096,2.675) and a dimensionless temperature
T = 0.2 [32]. Beyond ω = 2.675 the response decays very
fast, yielding also a very short phonon MFP. This limits the
evaluation of the corresponding wave number k—practically,
it cannot be extracted with good confidence near k ≈ π .

The results in Fig. 3 provide twofold relevant information:
(i) First, for all frequencies depicted, the phase φn perfectly

decreases linearly with n. This corroborates the existence of
a-phs with a corresponding wave number k = −dφn/dn. We
evaluate k(ω) for different driving frequencies ω, as depicted in
Fig. 4(a), and compare our results with predictions taken from
renormalized phonon theory (dashed lines) [14,15], which
predicts

ω = 2α(T ) sin
k

2
. (22)

Here, α(T ) denotes the temperature-dependent renormal-
ization factor that quantifies the strength of nonlinear-
ity. The temperature dependent sound speed vs emerges
as vs = dω

dk
|k=0 = α(T ). For the FPU-β lattice α(T ) =

(1 +
∫

x4e−(x2/2+x4/4)/T dx∫
x2e−(x2/2+x4/4)/T dx

)1/2 [14,15]; it increases with tempera-

ture, starting out at 1. As seen in Fig. 4(a), excellent agreement
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FIG. 3. (Color online) The response function for an FPU-β chain with length N = 2048 at temperature T = 0.2. (a) A detailed example
for χn(ω) at frequency ω = 1.505 as a function of n. The upper panel shows the phase φn and the lower panel shows the amplitude |χn|.
The inset shows the principal values of the arguments Arg[χn] ∈ [−π,π ). The principal value jumps discontinuously by 2π when −π is
reached. To obtain a continuous varying phase φn, as depicted in the upper panel, we shift the arguments by 2π after each such jump. (b), (c)
A comprehensive view of the phase and the amplitude, respectively, for different frequencies ω ∈ (0.0096,2.675). The driving frequency ω

increases along the arrow.

is obtained for low frequency a-phs. The differences between
the a-ph concept and renormalized phonon theory occur at
large frequencies, with deviations slightly increasing with
increasing temperature. This corroborates with the fact that
effective phonon theory self-consistently applies to weak
anharmonic forces and long wavelength phonons only.

(ii) Second, within the depicted frequency regime the
amplitude |χn|, Fig. 3(c), perfectly decays exponentially with
increasing n. Therefore, a sensible MFP � is obtained for each
a-ph; cf. in Fig. 4(b), where we depict the MFPs at three
different ambient temperatures. Moreover, the MFPs diverge
with the decreasing wave number k. This is a salient feature
known for momentum conserving 1D systems [39].

Interestingly, a power-law divergence �(k) ∼ k−μ with μ ≈
1.70 is observed for small k for various temperatures. The
numerical result closely matches the prediction of Peierls-
Boltzmann theory at weak anharmonic nonlinearity, rendering
μ = 5/3 [19,40,41]. A divergent exponent μ > 1 causes an
anomalous divergent heat conductivity κ ∼ Nβ with β = 1 −
1/μ [8,19]. Therefore, we numerically find β ≈ 0.411, which
is close to results in [38,42].
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FIG. 4. (Color online) (a) The dispersion relation for the FPU-β
model. The dashed curves are obtained from the renormalized phonon
theory using Eq. (22). (b) Corresponding phonon MFPs. The dashed
line serves as a guide to the eye for the power-law behavior � ∼ k−1.70.

We stress that with our concept of the a-ph the existence of
MFPs (or its corresponding transport relaxation time τk) in the
FPU-β lattice is here not postulated a priori [19,40,41] but is
confirmed independently via MD simulations in configuration
space.

B. FPU-αβ lattice

The FPU-αβ lattices containing a nonvanishing cubic term
V (x) = 1

2x2 + 1
3x3 + 1

4x4 and U (x) = 0 distinctly differ from
FPU-β lattices. The inherent asymmetry of the interaction
potential yields a nonvanishing internal pressure [43,44].
Figure 5 depicts the response function for the FPU-αβ lattice.

As shown in Fig. 5(b), the perfect linear dependence of the
phases φn on n can still be observed. Therefore, it corroborates
the existence of a-phs in the FPU-αβ case.

The amplitudes |χn|, as shown in Fig. 5(c), however, deviate
from an exponential decay but instead depict multiple scales.
Therefore, a strict MFP cannot be defined. Interestingly, as
depicted as an example in Fig. 5(a), their behavior can be
fitted with a stretched exponential

|χn(ω)| = |χ1(ω)| exp

(
− (n − 1)a

la

)
(23)

with a frequency dependent parameter a. Therefore, an
effective single scale �eff can still be defined for each frequency
ω if we average over all scales, i.e.,

�eff(ω) :=
∞∑
1

|χn(ω)|
|χ1(ω)| ≈

∫ ∞

0
exp

(
−na

la

)
dn

≈ l

a


(
1

a

)
, (24)

where (x) is the Gamma function. The dispersion relation
and the so obtained effective MFPs are displayed in Fig. 6.

Although a renormalized phonon theory for FPU-αβ

lattices does not exist, we still find that Eq. (22) holds

174304-5
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FIG. 5. (Color online) The response function for an FPU-αβ chain with length N = 2048 at temperature T = 0.2. (a) A detailed example
for χn(ω) at frequency ω = 0.566. The upper panel shows the phase φn and the lower panel shows the amplitude |χn|. The inset shows the
principal values of the arguments Arg[χn] ∈ [−π,π ). The principal value jumps discontinuously by 2π when −π is reached. To obtain a
continuous varying phase φn, as depicted in the upper panel, we shift the arguments by 2π after each such jump. (b), (c) A comprehensive view
of the phase and the amplitude, respectively, for different frequencies ω ∈ (0.0096,2.387). The driving frequency ω increases along the arrow.

approximately true for the dispersion of our a-phs, see the
dashed lines in Fig. 6. The corresponding sound speed α(T )
matches well a recent result in [45], which reads

α2 =
1
2β−2

T + 〈V + px; V + px〉
βT (〈x; x〉〈V ; V 〉 − 〈x; V 〉2) + 1

2β−1
T 〈x; x〉 , (25)

where V (x) is the potential, 〈A; B〉 denotes the covariance
〈AB〉 − 〈A〉〈B〉 for any two quantities A and B, and p is the
internal pressure.

C. φ4 lattice

Here, the interparticle potential is V (x) = 1
2x2 together

with an on-site potential U (x) = 1
4x4. For this momentum-

nonconserving nonlinear lattice we still find that the phase
follows a perfect linear decay. Moreover, the corresponding
MFP for the a-ph exists with a single scale, i.e., |χn(ω)| nicely
decays exponentially [figures for χn(ω) are similar to Fig. (3)
so they are not shown here].

Our proposed a-ph concept holds up also in the presence of
an onsite interaction. The dispersion relation and the related
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FIG. 6. (Color online) (a) The dispersion relation for the FPU-
αβ model at different temperatures. The dashed curves are obtained
from (22) with α(T ) set at the sound speed as theoretically derived in
Ref. [45]. (b) The effective MFPs.

MFPs are depicted in Fig. 7. Consistent with the validity of
Fourier’s law for momentum nonconserving systems the long
wavelength phonons exhibit finite MFPs [46,47]. Our result
for the dispersion relation agrees well with the renormalized
phonon theory [48], namely,

ω =
√

4 sin2
k

2
+ σ ; σ =

∑N
i=1

〈
x4

i

〉
∑N

i=1

〈
x2

i

〉 . (26)

V. SUMMARY AND DISCUSSION

The challenge of identifying phonon excitations in strongly
nonlinear lattices beyond their corresponding harmonic ap-
proximation, termed here anharmonic phonons (a-phs), has
been tackled with MD via a theoretically imposed tuning fork
experiment. Doing so enables one to account for the role of
temperature, large frequencies, and lattice nonlinearity in the
strong nonlinearity regime. This experiment-inspired phonon
concept has been successfully tested over extended parameter
regimes of frequency and temperature for three archetype 1D
nonlinear lattice models. Note that a temperature dependent
phonon MFP is typically not accessible with prior theories
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FIG. 7. (Color online) (a) Phonon dispersion relation for a φ4

nonlinear lattice at different temperatures. The dashed curves are
obtained from renormalized phonon theory [48]. (b) Corresponding
anharmonic phonon MFP behavior.
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without making reference to additional assumptions [16–19].
Physically, the MFP relates to a phonon transport relaxation
time which generally does not equal the phonon lifetime [30].

Our concept for the MFP holds up beyond the validity
regime of renormalized phonon theories [10–15], depicting a
single, exponentially decaying scale for both the FPU-β lattice,
exhibiting anomalous heat conduction, and the φ4 lattice,
exhibiting a Fourier’s law behavior. The case of the FPU-αβ

lattice turned out intriguing in that the MFPs no longer exhibit
a single scale but decay with multiple scales.

A hallmark of our scheme is that the existence of the
a-phs and their MFPs is not postulated a priori, but instead
is physically corroborated by following the propagation of
traveling waves with an experiment. The outcome then either
validates, or possibly also invalidates, the existence of the
a-ph with a finite MFP. Our scheme thus distinctly differs

from existing phonon quasiparticle concepts [20–24,26,27]. A
most characteristic feature within our scheme is that here we
directly search for the existence of an a-ph MFP.

The presented a-ph concept allows one to characterize
as well infinite MFPs and multiple spatial decay scales,
all being features that crucially impact anomalous thermal
transport in low-dimensional systems. This a-ph concept
may as well spur interest in describing heat transport in 3D
materials, encompassing engineered complex materials, such
as phononic metamaterials [49–51].
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