
PHYSICAL REVIEW E 90, 062135 (2014)

Infinite densities for Lévy walks
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Motion of particles in many systems exhibits a mixture between periods of random diffusive-like events and
ballistic-like motion. In many cases, such systems exhibit strong anomalous diffusion, where low-order moments
〈|x(t)|q〉 with q below a critical value qc exhibit diffusive scaling while for q > qc a ballistic scaling emerges.
The mixed dynamics constitutes a theoretical challenge since it does not fall into a unique category of motion,
e.g., the known diffusion equations and central limit theorems fail to describe both aspects. In this paper we
resolve this problem by resorting to the concept of infinite density. Using the widely applicable Lévy walk model,
we find a general expression for the corresponding non-normalized density which is fully determined by the
particles velocity distribution, the anomalous diffusion exponent α, and the diffusion coefficient Kα . We explain
how infinite densities play a central role in the description of dynamics of a large class of physical processes and
discuss how they can be evaluated from experimental or numerical data.
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I. INTRODUCTION

The trajectory of a particle embedded in a complex or even
some seemingly simple structures may exhibit simultaneous
modes of motion [1,2]. An example is deterministic transport
of a tracer particle in an infinite-horizon ordered Lorentz
billiard, a set of fixed circular hard scatterers arranged in a
square lattice [3–9]. A tracer moving freely among a set of
scatterers, and bouncing elastically once encountering one of
them, exhibits intermittent behavior with long flights where
the particle moves ballistically, separated by collision events
which induce a diffusive-like motion. A similar behavior of the
tracing particle can be induced by the flow acting in the phase
space of chaotic Hamiltonian systems [10,11]. The key to our
discussion are power-law-distributed waiting times between
collision events, induced by the geometry of the scatterers
[5,12–14]. A condition for such non-Drude like dynamics is
that the radii of scatterers is smaller than half the lattice spacing
and that the tracer is a pointlike particle, hence the tracer has an
infinite horizon [5,8]. Also consider the very different type of
motion of polymeric particles in living cells, where subdiffu-
sive motion is separated by long power-law-distributed flights
which induce superdiffusion [15]. Such systems are difficult to
characterize since they exhibit at least two modes of motion.
A common tool in the analysis of such data is the spectrum
of exponents qν(q) [2]. One measures the q-th moment of the
motion for particles starting on a common origin

〈|x(t)|q〉 ∼ tqν(q), (1)

with q > 0. Here, for sake of simplicity, we consider the one-
dimensional case and avoid other possible time dependencies
like a logarithmic increase of moments with time. Scale-
invariant transport implies that ν(q) is a constant independent
of q, for example, for Brownian motion ν(q) = 1/2. In many
fields of science one finds that ν(q) is a nonlinear function
of q; the term strong anomalous diffusion is often used in

this context [2]. Surprisingly, in many cases the continuous
spectrum qν(q) exhibits a bilinear scaling (see details below).
Examples for this piecewise linear behavior of qν(q) include
nonlinear dynamical systems [2,6–9] and stochastic models
with quenched and annealed disorder, in particular the Lévy
walk [16–21] and sand pile models [22]. Recent experiments
on the active transport of polymers in the cell [15], theoretical
investigation of the momentum [23], and the spatial [24]
spreading of cold atoms in optical lattices and flows in porous
media [25] further confirmed the generality of strong anoma-
lous diffusion of the bilinear type. An example is a diffusive
scaling qν(q) = q/2 below a certain value of qc > 0 and a bal-
listic scaling qν(q) = q − qc/2 otherwise. This is an example
of a motion which is neither purely diffusive nor ballistic.

While the mechanisms leading to strong anomalous dif-
fusion could be vast, even the stochastic treatment of such
systems is not well understood. For example, diffusion equa-
tions, either normal or fractional [26], stochastic frameworks
like fractional Brownian motion, or generalized Langevin
equations [27] and the Gauss-Lévy central limit theorem [5,28]
fail to describe this phenomenon. We recently investigated the
Lévy walk process [29–33], a well-known stochastic model of
many natural behaviors which exhibits bilinear strong anoma-
lous diffusion. Examining four special cases we found that a
non-normalizable density, with a diverging area underneath it,
describes these processes [34]. This unusual infinite density
describes the ballistic aspects of strong anomalous diffusion.
Here we find a general formula for the infinite density which,
as we show below, is complementary to the Gauss and Lévy
distributions. The latter are the mathematical basis of many
diffusive phenomena, and here we promote the idea that the
infinite density concept is a rather general tool statistically
characterizing the ballistic trait of the motion. We show how
these un-normalized distributions emerge from a basic model
with wide applications, thus, possibly this overlooked measure
may become an important tool.
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A. REBENSHTOK, S. DENISOV, P. HÄNGGI, AND E. BARKAI PHYSICAL REVIEW E 90, 062135 (2014)

In mathematics the concept of a non-normalized infinite
density was thoroughly investigated [35–37] while in physics
this idea has gained interest only recently (see below).
Conservation of matter implies that the number of particles
in the system is fixed, thus naturally one may normalize
the probability density describing a packet of noninteracting
diffusing particles P (x,t) to unity

∫ ∞
−∞ P (x,t)dx = 1. Hence

dynamical and equilibrium properties of most physical systems
are described by densities which are normalized, for example,
a Boltzmann-Gibbs state in thermal equilibrium or solutions
of Boltzmann or Fokker-Planck equations with normalization
conserving boundary conditions (no absorbing boundaries).
However, in some cases a closer distinction must be made,
namely a distinction based on the observable of interest.
Probably the most common averaged observables are the
moments 〈|x|q〉 of a process x(t), so in this example the
observable is |x(t)|q and we will distinguish between high-
order moments q > qc and low-order ones. In our case we
treat a system with mixed dynamics and show that the
low-order moments are described by the standard machinery
of nonequilibrium statistical physics (fractional diffusion
equations and Lévy central limit theorem) but the high-order
moments, which represent the ballistic elements of the process,
are described by an infinite density. In this sense the infinite
density is complementary to the central limit theorem [34].
We find a general formula for this infinite density relating it
to the velocity distribution of the particles, the anomalous
diffusion exponent α, and the diffusion constant Kα . Our
work shows how the un-normalized state emerges from the
norm-conserving dynamics of the Lévy walk. Previous work
[23,38–44] on applications of the infinite density in physics
dealt with bounded systems which attain an equilibrium. For
example, in the momentum distribution of cold atoms where
the Gibbs measure is finite the infinite density describes
the large rare fluctuations of the kinetic energy [23,44].
Another example would be intermittent maps with unstable
fixed points, e.g., the Pomeau-Manneville transformation on
the unit interval [38,40]. Here we consider systems that
are not in equilibrium, and the dynamics is unbounded,
showing that the potential applications of infinite densities are
vast.

II. LÉVY WALK MODEL

In the Lévy walk process the trajectory of the particle x(t)
consists of epochs of ballistic travel separated by a set of
collisions which alter its velocity [5,26,29,31,32]. At time t =
0 the particle is on the origin. Its initial velocity −∞ < v0 <

∞ is random and drawn from a probability density function
(PDF) F (v), whose moments are all nondiverging [45]. The
particle travels with a constant speed for a random duration
τ1 > 0 whose PDF is ψ(τ ). The particle’s displacement in
this first sojourn time is v0τ1. At time t1 = τ1 we draw a
new velocity v1 and a waiting time τ2 from the corresponding
PDFs F (v) and ψ(τ ). The second displacement is v1τ2. This
process is renewed. The waiting times {τi} (i = 1,2, . . . ) and
the velocities {vj } (j = 0,1, . . . ) are mutually independent
identically distributed random variables. The points on the time
axis tN = ∑N

i=1 τi are the collision times, when the particle

switches its velocity. The position of the particle at time t is

x(t) =
N∑

j=1

vj−1τj + vNτb. (2)

Here N is the random number of collisions or renewals in
the time interval (0,t). The time interval τb = t − tN is called
the backward recurrence time [17]. The last term in Eq. (2)
describes the motion between the last collision event and the
measurement time t ,

t =
N∑

j=1

τj + τb. (3)

A model where N is fixed and t is random, namely, a process
stopped after N collisions (so τb = 0), is the classical problem
of summation of independent identically distributed random
variables for which the Lévy-Gauss central limit theorem
applies [28].

We assume that F (v) = F (−v), hence from symmetry the
density of particles P (x,t) is also symmetric since all particles
start on the origin. We also assume that the even moments of
F (v) are finite, hence the tail of F (v) decays faster than any
power law. The PDF of waiting times is given in the long-time
limit by

ψ(τ ) ∼ A

|�(−α)|τ
−1−α, (4)

where A > 0 and

1 < α < 2. (5)

As discussed briefly in the summary, our main finding, that
a non-normalized infinite density describes the density of
particles P (x,t), is found also for α � 2, but for simplicity of
presentation we consider only a limited interval for α. The case
1 < α < 2 corresponds to enhanced diffusion 〈x2〉 ∝ t3−α

which is faster than normal diffusion but slower than ballistic
[31]. The regime α < 1 is called the ballistic phase of the
motion since then 〈x2〉 ∝ t2. For that case and for a general
class of the velocity PDF, F (v), the PDF P (x,t) is given
by a formula in Refs. [46,47]. The case α > 2 corresponds
to normal diffusion in the mean-square displacement sense
〈x2〉 ∝ t .

A convenient tool is the Laplace transform of the waiting-
times PDF denoted

ψ̂(u) =
∫ ∞

0
exp(−uτ )ψ(τ )dτ. (6)

For a power-law-distributed waiting time under investigation,
i.e., 1 < α < 2, and for small u the following expansion holds
[17,26,32,48]:

ψ̂(u) = 1 − 〈τ 〉u + Auα + · · · , (7)

where 〈τ 〉 = ∫ ∞
0 τψ(τ )dτ is the averaged waiting time.

III. SOME BACKGROUND ON THE LÉVY WALK

The position of the particle is rewritten as

x =
N∑

i=1

χi + χ∗, (8)
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where χi = vi−1τi are the flight lengths and χ∗ = vNτb. Since
the velocity distribution is narrow and symmetric, the PDF of
flight lengths q(χ ) is also symmetric, q(χ ) = q(−χ ). Since
the durations of the flights are power-law distributed we have

q(χ ) ∝ |χ |−(1+α) (9)

for large |χ |. In the regime 0 < α < 2 the variance of jump
length is infinite hence the Gaussian central limit theorem does
not apply. In the regime 1 < α < 2 the average waiting time
〈τ 〉 is finite. Neglecting fluctuations, the number of flights is
N = t/〈τ 〉 when t is long. Hence in this oversimplified picture
we are dealing with a problem of a sum of N -independent
identically distributed random variables with a common PDF
q(χ ) with a diverging variance. In this picture the last jump
χ∗ is negligible. Thus, one may argue that x is described by
Lévy’s generalized central limit theorem. This means that the
PDF of x is expected to be a symmetric Lévy stable law [49]
(see details below). However, such a treatment ignores the
correlations between flight durations and flight lengths and
the fluctuations of N . In fact the finite speed of the particles
implies that jumps much larger than the typical velocity
times the measurement time t are impossible. Thus, the
mean-square displacement and higher-order moments always
increase slower than ballistic, for example, 〈x2〉 < const t2. In
contrast, a sum of independent identically distributed random
variables with an infinite variance, often called a Lévy flight,
yields a diverging mean-square displacement 〈x2〉 = ∞. For
that reason, Lévy walks, which take into consideration the
finite velocity, are considered more physical if compared with
Lévy flights [2,31]. Since both the Gauss and the Lévy central
limit theorems break down in the description of moments of
Lévy walks, more specifically in the tails of the PDF of x, it
is natural to ask if there exists a mathematical replacement for
these widely applied theorems.

A more serious treatment of the Lévy walk is given in
terms of the Montroll-Weiss equation. Let P (x,t) be the PDF
of the position of particles at time t for particles starting at the
origin. From the mentioned symmetry of the process P (x,t) =
P (−x,t), P (x,t)|t=0 = δ(x) so clearly all odd moments of
P (x,t) are zero. We define the Fourier-Laplace transform,

P (k,u) =
∫ ∞

−∞
dx

∫ ∞

0
dt exp(ikx − ut)P (x,t). (10)

The Montroll-Weiss equation gives the relation between the
distributions of the model parameters, namely velocities and
waiting times with P (k,u) [30,32,48],

P (k,u) =
〈

1 − ψ̂(u − ikv)

u − ikv

〉
1

1 − 〈ψ̂(u − ikv)〉 . (11)

Here the averages are with respect to the velocity distribution
〈...〉 = ∫ ∞

−∞ dv · · · F (v). The derivation of this classical result
is provided in an Appendix. Note that in the original work of
Montroll and Weiss a decoupled random walk was considered
and the origin of Eq. (11) can be traced to the work of Scher
and Lax [50] and that of Shlesinger, West, and Klafter [29]
(see also Refs. [30,32,48,51–53]). Examples [5,26,31] for
physical processes described by the Lévy walk are certain
nonlinear dynamical systems [2,6,29,54], polymer dynamics
[55], blinking quantum dots [56–59], cold atoms diffusing

in optical lattices [60,61], intermittent search strategies [62],
dynamics of perturbations in many-body Hamiltonian systems
[63–65], and particle dynamics in plasmas [66].

In what follows we naively expect that one can reconstruct
the normalized density of particles in the long-time limit
from the exact expressions for the moments of the process.
Specifically, we obtain the exact expression for the long-time
limit of the integer moments of the Lévy walk process
〈x2n(t)〉 with n = 1,2, . . . , where the case n = 0 is trivial since
〈x0〉 = ∫ ∞

−∞ P (x,t)dx = 1, and then we use the moments to
construct a series equivalent to the Fourier transform of the
density

〈exp(ikx)〉 =
∫ ∞

−∞
eikxP (x,t)dx = 1 +

∞∑
n=1

〈(ikx)2n〉
(2n)!

. (12)

Luckily, we can evaluate analytically the sum for the model
under consideration. Then we perform the inverse Fourier
transform of the such obtained function. One then naively
expects to get the long-time limit of the density P (x,t) since
we use the long-time limit of the moments. It turns out that
this procedure yields a density which is not normalizable (for
reasons which will become clear later). However, while the
solution is not normalizable, it still describes the density of
particles P (x,t) in ways which will hopefully become more
transparent to the reader by the end of the paper.

IV. THE MOMENTS

To obtain the long-time behavior of spatial moments
〈x2n(t)〉 we first find the Laplace transforms 〈x2n(u)〉. Here,
as mentioned, odd moments are zero due to the assumed
symmetry F (v) = F (−v). For that aim we use the well-known
expansion

P (k,u) =
∫ ∞

−∞
eikxP (x,u)dx

=
∫ ∞

−∞

[
1 +

∞∑
n=1

(ikx)2n

(2n)!

]
P (x,u)dx

= 1

u
+

∞∑
n=1

(ik)2n〈x2n(u)〉
(2n)!

. (13)

Expanding the numerator and denominator of the Montroll-
Weiss equation, Eq. (11), using the expansion Eq. (7), to the
leading order in the small parameter uα−1, while keeping the
ratio k/u fixed, we get

P (k,u) ∼ 1 − Ãuα−1
〈(

1 − ikv
u

)α−1 〉
u
[
1 − Ãuα−1

〈(
1 − ikv

u

)α 〉] (14)

with Ã = A/〈τ 〉. As is well known, such small u expansions
correspond to the long-time limit [17,26]. Further expanding
the denominator to find the first nontrivial term we obtain

P (k,u) ∼ 1

u

{
1 − Ãuα−1

[〈(
1 − ikv

u

)α−1〉

−
〈(

1 − ikv

u

)α〉]
+ · · ·

}
. (15)
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The leading (1/u) term is obviously the normalization condi-
tion P (k,u)|k=0 = 1/u. In this expansion we included terms
of the order uα−1, while higher-order terms, which are found
from further expansion of the denominator in Eq. (14), but also
nonuniversal terms which stem from the expansion of ψ̂(u),
Eq. (7), to orders greater than uα , are neglected. We Taylor
expand Eq. (15) in k/u, using the series expansion

(1 − ε)α−1 − (1 − ε)α = −
∞∑

m=1

(−α)mεm

α(m − 1)!
, (16)

where (a)m = �(a + m)/�(a) = a(a + 1) · · · (a + m − 1) is
the Pochhammer symbol. Averaging over velocities we find

P (k,u) ∼ 1

u
− Ã

∞∑
n=1

(2n)(−α)2n(−1)n

(2n)!(−α)
uα−2−2n〈v2n〉k2n (17)

with 〈v2n〉 = ∫ ∞
−∞ v2nF (v)dv. Comparing with Eq. (13) yields

in the small-u limit

〈x2n(u)〉 ∼ Ã

α
(−α)2n(2n)〈v2n〉uα−2−2n, (18)

which is valid for 1 < α < 2 and n = 1,2, . . . . Using the
Laplace pair uα−2−2n ←→ t2n+1−α/�(2n + 2 − α) we find
the long-time limit of the even spatial moments

〈x2n(t)〉 ∼ B
2n

(2n − α)(2n + 1 − α)
〈v2n〉t2n+1−α, (19)

with B = A/[|�(1 − α)|〈τ 〉]. As is well known, the process
exhibits superdiffusion 〈x2〉 ∝ t3−α . We now use the asymp-
totic result for 〈x2n(t)〉 to find the infinite density of the Lévy
walk process.

V. THE INFINITE DENSITY, 1 < α < 2

The density of particles P (x,t) and its Fourier transform
P (k,t) are defined according to

P (k,t) =
∫ ∞

−∞
P (x,t)eikxdx,

P (x,t) = 1

2π

∫ ∞

−∞
P (k,t)e−ikxdk. (20)

We Taylor expand P (k,t) as in Eq. (12), yielding

P (k,t) = 1 +
∞∑

n=1

(ik)2n〈x2n(t)〉
(2n)!

. (21)

Clearly, we have P (k,t)|k=0 = 1 which is the normalization
condition, namely, for any finite t the density of particles
P (x,t) is normalized to unity. We next insert the exact
long-time expressions for the moments, Eq. (19), in the series
Eq. (21), using 〈v2n〉 = ∫ ∞

−∞ v2nF (v)dv to define

PA(k,t)

≡ 1 + B

tα−1

∞∑
n=1

∫ ∞

−∞
dvF (v)

2n(ikvt)2n

(2n)!(2n − α)(2n + 1 − α)
.

(22)

Here the subscript A denotes an asymptotic expression in the
sense that we have used the long-time limit of the spatial

moments. It is convenient to define

G̃α(y) =
∞∑

n=1

(−1)ny2n

(2n − 1)!(2n − α)(2n + 1 − α)
, (23)

hence

PA(k,t) = 1 + B

tα−1

∫ ∞

−∞
dvF (v)G̃α(kvt). (24)

It is easy to validate the following identity:

G̃α(y) = αB̃α(y) − (α − 1)B̃α−1(y), (25)

where

B̃α(y) =
∞∑

n=1

(−1)ny2n

(2n)!(2n − α)
. (26)

With the expansion, cos(y) = ∑∞
n=0(−1)ny2n/(2n)!, it is also

easy to see that

B̃α(y) =
∫ 1

0

cos(ωy) − 1

ω1+α
dω. (27)

Using Mathematica this function is expressed in terms of the
generalized hypergeometric function,

B̃α(y) =
{

1 − 1F2

[
−α

2
;

1

2
,
2 − α

2
; −

(y

2

)2
]}/

α. (28)

For y � 1 we find B̃α(y) ∝ yα , thus the nonanalytical behav-
ior of ψ̂(u) for small argument u, appears in B̃α(y) when y is
large.

For the inverse Fourier transform we obtain

PA(x,t) = 1

2π

∫ ∞

−∞
e−ikxPA(k,t)dk. (29)

For that aim we investigate

Bα(x,vt) ≡ 1

2π

∫ ∞

−∞
dke−ikxB̃α(kvt). (30)

Using Eq. (27) we have

Bα(x,vt) = 1

2π

∫ ∞

−∞
e−ikxdk

∫ 1

0

cos(ωkvt) − 1

ω1+α
dω. (31)

The Fourier pair of cos(ky) is [δ(x − y) + δ(x + y)]/2, hence
for x �= 0

Bα(x,vt) =
{

1
2

(|v|t)α
|x|1+α , |x| < |v|t
0, |x| > |v|t.

(32)

Note that this function is not integrable. Mathematically, the
integral formula of Fourier transform Eq. (29) is valid for
Lebesgue integrable functions (called L1) while we are dealing
with a distribution. We insert Eq. (24) in Eq. (29) using the
definition Eq. (25), i.e.,

PA(x,t) =
∫ ∞

−∞
dk

e−ikx

2π

{
1 + B

tα−1

∫ ∞

−∞
dvF (v)

× [αB̃α (kvt) − (α − 1) B̃α−1 (kvt)]

}
. (33)
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With the inverse Fourier formula Eq. (31) the k integration
yields

PA(x,t) = δ(x) + B

tα−1

∫ ∞

−∞
dvF (v)

× [αBα (x,vt) − (α − 1) Bα−1 (x,vt)] . (34)

The δ(· · · ) term is clearly arising from the normalization
condition, namely the 1 in Eq. (33). Hence using Eq. (32) and
the symmetries F (v) = F (−v) and Bα(x,vt) = Bα(x, − vt)
we find

PA(x,t) = B

tα

∫ ∞

|x|/t

dvF (v)

[
α

|v|α
|x/t |1+α

− (α − 1)
|v|α−1

|x/t |α
]

,

(35)

for x �= 0. If we take t to be large though finite, the function
PA(x,t) is not normalizable, since for small nonzero |x| we
get PA(x,t) ∝ |x|−(1+α) and thus the spatial integral over
PA(x,t) diverges. Since the number of particles is conserved
in the underlying process, P (x,t) is normalized to unity. One
may therefore conclude that the non-normalized state PA(x,t)
does not describe the density of particles and hence does not
describe physical reality. This oversimplified point of view
turns out to be wrong as we proceed to show in the next
section. We now define the infinite density.

On the right-hand side of Eq. (35), x/t enters as a scaling
variable, which we denote as

v =
∫ t

0 v(t)dt

t
= x

t
. (36)

Clearly v is the time average of the velocity and as usual
we consider asymptotic long times. The scaled variable v has
a nontrivial density, and it describes the ballistic scaling of
the process x ∝ t . As we discuss below, there is not a unique
scaling in the model, and the underlying process follows also a
Lévy scaling x ∝ t1/α , which is a typical scaling for anomalous
diffusion. These two types of scalings are in turn related to
the biscaling of the moments, found in many systems (strong
anomalous diffusion). For now we define the infinite density

I (v) = tαPA(x,t). (37)

In view of Eq. (35) we find our main formula

I(v) = B

[
αFα (|v|)
|v|1+α

− (α − 1)Fα−1 (|v|)
|v|α

]
, (38)

where

Fα(v) =
∫ ∞

|v|
dv vαF (v). (39)

We will soon relate the infinite density I(v), with the
normalized Lévy walk probability density P (x,t) while the
definition Eq. (37) relates I(v) with PA(x,t).

Remark: In our previous paper [34] we called I(v) an
infinite covariant density since the transformation of both
space x → cx and time t → ct leaves I(v) unchanged. In
mathematics infinite invariant densities usually reflect solu-
tions which are invariant under time shift only (steady states),
e.g., for maps with an unstable fixed point. To avoid jargon we
will call I(v) an infinite density, meaning a non-normalized
density.

A. Relation between I(v) and the anomalous
diffusion coefficient Kα

In the limit v → 0, Eqs. (38) and (39) give

I (v) ∼ Bα〈|v|α〉
2

1

|v|1+α
. (40)

This small v behavior implies that the integral over I(v)
diverges, hence the name infinite density. One may rewrite
Eq. (40) in terms of the anomalous diffusion constant Kα using

Bα〈|v|α〉
2

= Kαcα (41)

with

Kα = A

〈τ 〉 〈|v|α〉
∣∣∣cos

πα

2

∣∣∣ (42)

and cα = �(1 + α) sin(πα
2 )/π . The constant Kα can be

understood as a generalization of the standard diffusion
constant in the framework of the fractional Fokker-Planck
equation, ∂P (x,t)/∂t = Kα α P (x,t) [26] [note that this
equation addresses the central Lévy-like part of the PDF,
Pcen(x,t), only, see Sec. “The Lévy scaling regime” for a
more detailed discussion]. Briefly, it describes the width of
the density field P (x,t), so it is a measurable quantity.

Further on, we find

I (v) ∼ cαKα

|v|1+α
. (43)

This relation provides the connection between the diffusive
properties of the system and the infinite density. In principle,
one may record in the laboratory the spreading of the particles
and then estimate the exponent α and Kα by observing the
center part of the packet and afterward predict the small v

behavior of the infinite density. The relation given by Eq. (43)
is general in the sense that it does not depend on the particular
form of F (v).

B. Asymptotic behavior of I(v)

In the opposite limit of large v we find

I (v) ∼ B
1 − Q (v)

|v| , (44)

where Q(v) = ∫ v

−∞ F (v)dv is the cumulative velocity distri-
bution obeying 1 − Q(v) → 0, as v → ∞. To find this result
we first integrate by parts Eq. (39),

Fα (v) = vα [1 − Q(v)] + α

∫ ∞

v

vα−1 [1 − Q(v)] dv, (45)

where we used F (v) = dQ(v)/dv, limv→∞ vα[1 − Q(v)] =
0, and v > 0. In the limit of large v we may omit the second
term on the right-hand side of Eq. (45) if it is much smaller
than the first. In that case the following condition must hold:

lim
v→∞

α
∫ ∞
v

vα−1[1 − Q(v)]dv

vα[1 − Q(v)]
= 0. (46)

With L’Hospital’s rule we obtain the condition

lim
v→∞

1 − Q(v)

vF (v)
= 0. (47)
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Hence if 1 − Q(v) approaches zero faster than a power law for
large v, the condition is met and

Fα (v) ∼ vα [1 − Q(v)] . (48)

For example, it is easy to check this equation if 1 − Q(v) =
c exp(−v) for a certain v > v0 and v > v0. The equation is
not valid for a power-law behavior 1 − Q(v) ∼ v−(1+ν) with
ν > 0, which is hardly surprising since we assume all along
that moments of F (v) are either zero or finite, hence power-law
velocity distributions are ruled out from the start. We then
insert Eq. (48) into Eq. (38) to get Eq. (44). Contrary to the
small v behavior of the infinite density, the large v behavior is
directly related to the velocity PDF, F (v).

In hindsight the asymptotic behavior Eq. (44) can be
rationalized using a simple argument: The large 2n-th order
moments 〈x2n(t)〉 are expected to depend only on the rare
fluctuations, namely on the large v limit of I(v). With the
definition of the infinite density we have PA(x,t) ∼ I(x/t)/tα .
We assume for now that we may replace PA(x,t) with the
density P (x,t) and get P (x,t) ∼ I(x/t)/tα (see reasoning for
this below). In this case the moments are

〈x2n(t)〉 =
∫ ∞

−∞
P (x,t)x2ndx

∼
∫ ∞

−∞

I
(

x
t

)
tα

x2ndx = t2n+1−α

∫ ∞

−∞
I (v) v2ndv, (49)

for 2n � 2. For n = 0 the integral yields infinity as mentioned
since I(v) is not normalizable. Inserting the asymptotic ap-
proximation Eq. (44), we find by use of an integration by parts

〈x2n(t)〉 ∼ t2n+1−α2B

∫ ∞

0

1 − Q(v)

v
v2ndv

= B
1

2n
〈v2n〉t2n+1−α. (50)

This is indeed the exact result [Eq. (19)] in the limit 2n � α.
Hence the large v behavior of the I(v), Eq. (44), yields the
expected results for the high-order moments of the spatial
displacement. We will soon justify the replacement tαPA(x,t)
with tαP (x,t) which led us to the correct result but first we
turn to a few examples for the infinite density.

C. Examples

(i) For a two-state model

F (v) = [δ(v − v0) + δ(v + v0)] /2 (51)

we find, using Eqs. (38) and (39),

I (v) =
{

B
2

[
α(v0)α

|v|1+α − (α−1)(v0)α−1

|v|α
] |v| < v0

0 |v| > v0

, (52)

The particle cannot travel faster than v0, hence the infinite den-
sity is cutoff beyond v0 and, similarly, P (x,t) = 0 beyond v0t .

(ii) For an exponential velocity PDF F (v) = exp(−|v|)/2,

I(v) = B

2

[
α� (1 + α,|v|)

|v|1+α
− (α − 1) � (α,|v|)

|v|α
]

, (53)

and �(a,y) = ∫ ∞
y

exp(−t)ta−1dt is the incomplete Gamma
function.

-1 0 1
x/t

10
-4

10
-2

10
0

10
2

10
4

tα 
P

(x
,t)

infinite density

t = 10
4

t = 2*10
4

FIG. 1. (Color online) tαP (x,t) obtained from numerical simu-
lations for the model with uniform velocity distribution, v ∈ [−1,1].
In the long-time-limit simulations converge to the infinite density
Eq. (55). We used function ψ(τ ) = ατ−(1+α) for τ > 1 as the
waiting-time PDF. The parameters are α = 3/2, A = α|�(−α)|, and
〈τ 〉 = 1. Two histograms for t = 104 and 2 × 104 were sampled over
N = 1010 realizations.

(iii) For a Gaussian model F (v) = exp[−v2/2]/
√

2π ,

I(v) = B

2
√

π

[
α
√

2
α
�
(

1+α
2 , v2

2

)
|v|1+α

− (α − 1)
√

2
α−1

�
(

α
2 , v2

2

)
|v|α

]
.

(54)

(iv) While for a uniform model F (v) = 1/2 for −1 < v < 1
and otherwise F (v) = 0 we obtain

I (v) = B

2

[
α

1 + α

(1 − |v|1+α)

|v|1+α
− α − 1

α

(1 − |v|α)

|v|α
]

(55)

for |v| < 1. Similarly to the two-state model, the infinite
densityI(v) for the uniform model is zero for |v| > 1, since the
particle cannot travel with a velocity greater than unity (using
the correct units). In Fig. 1–3 infinite densities are plotted for
several values of α and for different models.

VI. RELATION BETWEEN THE DENSITY P(x,t)
AND THE INFINITE DENSITY

We now verify that the infinite density yields the moments
〈x2n(t)〉 with n = 1,2, . . . . Using

〈x2n(t)〉 ∼ t2n+1−α

∫ ∞

−∞
v2nI (v) dv (56)

and Eq. (38)

〈x2n(t)〉∼2Bt2n+1−α

∫ ∞

0
v2n

[
αFα (v)

v1+α
− (α−1)Fα−1 (v)

vα

]
dv

= 2Bt2n+1−α

∫ ∞

0

[
αFα (v)

d

dv

v2n−α

2n − α

− (α − 1)Fα−1 (v)
d

dv

v2n−α+1

2n − α + 1

]
dv. (57)
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FIG. 2. (Color online) Infinite densities for the model with uni-
form velocity distribution, v ∈ [−1,1], Eq. (55) in the main text.
A = α|�(−α)| and 〈τ 〉 = 1.

Integrating by parts and using Eq. (39) we find the moments,
Eq. (19). Of course, this is the expected result since we have
constructed the infinite density with the long-time behavior of
the even moments.

We can, in principle, calculate the moments also from the
normalized density because, by definition,

〈x2n(t)〉 =
∫ ∞

−∞
x2nP (x,t)dx. (58)

The moments in Eq. (56) and Eq. (58) are identical in the
long-time limit, indicating that the infinite density and the
density P (x,t) are related. Rewriting Eq. (56) with the change

-5 0 5
υ

10
-3

10
0

10
3

I(
υ)

Gaussian  pdf
exponential  pdf
uniform pdf
two state model

0.1 1
υ

10
-3

10
0

10
3

I(
υ)

/K
αc α

FIG. 3. (Color online) Infinite densities for different models, see
Sec. V C in the main text. The parameters are the same as in Fig. 1.
The right panel shows universal behavior of the infinite density in
the small-v limit according to Eq. (43). When the infinite density is
rescaled with the anomalous diffusion constant Kα times the constant
cα , these non-normalized densities fall on a master curve. Hence
once we record Kα and α we can predict the small v behavior
of I(v). Here α = 3/2 and K3/2 = (

√
2π/3)〈|v|3/2〉 and 〈|v|3/2〉 =

1,2/5,
√

π/4,23/4/
√

π for the two state, uniform, exponential, and
Gaussian models, respectively. Notice the log-log scale on the right
panel.

of variables x = vt

〈x2n(t)〉 ∼ t−α

∫ ∞

−∞
x2nI

(x

t

)
dx (59)

we conclude from comparison to Eq. (58) that

I
(x

t

)
∼ tαP (x,t) (60)

for x �= 0. Thus, we can use the density P (x,t), obtained from
a finite-time experiment or simulation, to estimate with it the
infinite density. In the limit t → ∞ the normalized density
multiplied by tα and plotted versus x/t yields the infinite
density. Hence the infinite density is not only a mathematical
construction with which we may attain moments; rather, it
contains also information on the positions of particles in
space and hence presents physical reality in the sense that
it is experimentally measurable. We now demonstrate this
important observation with finite-time simulations.

A. Graphical examples

In Fig. 1 we plot tαP (x,t) obtained from finite-time
simulations of the Lévy walk, versus x/t . According to the
theory, in the limit t → ∞ this plot will approach the infinite
density, Eq. (38). Such a behavior is indeed confirmed with the
simulations in the figure. This implies that with a finite-time
simulation or experiment, which measures the density of
particles, we can estimate the infinite density. In the figure
we see that data collapse (for finite time) is performing better
for large x/t , and convergence for small values of x/t is slow.
Indeed, for x = 0 the density is well described by the Lévy
central limit theorem, as we soon explain.

In the right panel in Fig. 3 we demonstrate numerically
the relation between the small v behavior of I(v) and
the anomalous diffusion coefficient Kα , Eq. (42). Plotting
I(v)/cαKα versus v we see that in the limit of small v, various
models collapse on one master curve. So with the knowledge
of Kα and α, which, as explained in the next section, can be
determined from data, we can predict the small v behavior
of the infinite density. As mentioned, the large-v behavior of
the infinite density, Eq. (44), is sensitive to the shape of the
velocity CDF Q(v), hence for large v the corresponding curves
in the figure depart.

Practically, though dealing with long-time-limit solutions,
Eq. (60) implies that one should analyze the results for
the shortest valid measurement times possible to maximize
the probability of the region of interest. Thus measurement
time must be long, so the asymptotic limit is reached, but
not too long such that we can sample the tails of the PDF
(similarly to many other problems in physics, for example,
large-deviation theory). The estimation of this time scale
depends not only on the details of the model but also on the
number of particles undergoing the superdiffusive process, and
the detailed problem of the estimation of infinite densities from
a finite amount of data is left for future work.

In contrast, the center part of the density, discussed in
the next section, is described by the generalized central limit
theorem, thus it is universal but does not yield information on
F (v). Thus, infinite densities might become important tools
in unraveling the origin of anomalous diffusion, a topic which
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attracted considerable theoretical attention, e.g., Refs. [67–69]
and references therein.

In simulations we reached a high degree of accuracy with
extensive simulations and resolved the probabilities of the
events at the PDF tails that are six order of magnitudes smaller
than of those contributing to the PDF maximum; see the right
panel of Fig. 1. The PDFs have been sampled with N = 1010

realizations. The corresponding simulations were performed
on two GPU clusters (each consisting of six TESLAK20XM
cards) and took 380 h. The main reason that we chose such
a large number of particles was to illustrate the theory with
maximal possible (at the moment) precision. Single-particle
experiments in a single cell [15] are conducted with much
smaller number of particles, and for that reason it would be
interesting to simulate the process for smaller numbers of
particles and shorter times to see how accurately one may
estimate the infinite density. However, in other experiments,
like laser cooling of cold atoms [60], the number of particles
is vast so these limitations are absent.

Remark: Upon inspection of Fig. 3, we realize that the
probabilities of the events contributing to the PDF tails
are six order of magnitude smaller than those contributing
to the plotted PDF maximum. This six-order-of-magnitude
difference is related to the choice of scale in the figure, since
the infinite density diverges on the origin. For example, in the
left panel we cut off the divergence on the origin. In reality,
experiments are performed for finite times. Hence the infinite
density is slowly approached, but never actually reached, in
the vicinity of the origin (see Fig. 1). Put differently, we need
to sample rare fluctuations, and here sophisticated sampling
algorithms could be useful [70–72].

VII. THE LÉVY SCALING REGIME

The key step in our derivation of I (v) was an expansion of
the Montroll-Weiss equation, Eq. (11), in the small-k,u limit
while the ratio of k/u is kept fixed. This led to a scaling of
the type x ∝ t . As we showed, such an expansion leads to a
non-normalized density I(v), as opposed to the normalization
dictated by Eq. (11).

To complete the large-order moments scheme we now
consider the expansion of the Montroll-Weiss equation as-
suming that kα/u is fixed and u is small, i.e., we consider the
long-time limit and inspect the PDF around the origin. Such
an assumption means that we are looking for a solution with
a scaling x ∝ t1/α . This scaling describes the center part of
the PDF P (x,t) only. It yields a normalized solution but at
a price of a divergent second and all higher moments. Thus,
if we wish to calculate the second moment 〈x2〉, we need to
estimate the tails of the P (x,t) and use the infinite density, i.e.,
perform the fixed k/u expansion. In contrast, if we want to
estimate the normalization, or the low-order moments 〈|x|q〉
with q < α, we need an estimation of the center part of the
PDF, and hence and expansion with kα/u fixed. Such low-order
moments cannot be estimated with the infinite density because

〈|x|q〉 = 2
∫ ∞

0
P (x,t)xqdx �= 2

∫ ∞

0
xq t−αI

(x

t

)
dx = ∞

(61)

for 0 < q < α, due to the singular behavior of the infinite
density at the origin.

To illustrate the above consideration, we take Eq. (14) and
expand it, assuming that |u| � |kv| � 1 and k is small,

Pcen(k,u) ∼ 1 − Aτ

〈
(−ikv)α−1

[
1 − (α − 1) u

ikv

]〉
u − Aτ

〈
(−ikv)α

[
1 − α u

ikv

]〉
∼ 1

u − Aτ 〈(−ikv)α〉 . (62)

The subscript “cen” indicates we aim at the center part of
P (x,t). The term 〈(−ikv)α〉 can further be simplified by
recalling the symmetry of F (v),

〈(−ikv)α〉 = |k|α〈|v|αe− iπα
2 sign(kv)〉

= |k|α 〈|v|α〉 cos
(πα

2

)
. (63)

By inserting it into Eq. (62) we find

Pcen(k,u) ∼ 1

u + Kα|k|α , (64)

where Kα is the anomalous diffusion coefficient, proportional
to the moment 〈|v|α〉 of the PDF F (v), Eq. (42). Thus, here
the dynamics is not sensitive to the full shape of the velocity
distribution but only to a particular α-th moment.

The solution Eq. (64) is well known [5,17,26,32,48]; its
inverse Laplace transform is

Pcen(k,t) ∼ exp (−Kαt |k|α) . (65)

As is well known, the Fourier transform of the symmetrical
Lévy density Lα(y) is exp(−|k|α), which serves as our working
definition of this stable density. Hence, by definition, the
inverse Fourier transform of Eq. (65) yields a symmetric Lévy
stable PDF [5,26,28],

Pcen(x,t) ∼ 1

(Kαt)1/α
Lα

[
x

(Kαt)1/α

]
. (66)

The Lévy density is normalized, and its second moment
diverges since for large x the solution has a fat tail Lα(x) ∝
|x|−(1+α). When α → 2 we approach the Gaussian limit.

One cannot say that either of the two Montroll-Weiss
expansions presented so far is the correct expansion, without
specifying the observable of interest and the domain in x where
one wishes to estimate the density. Thus, if we wish to calculate
the second moment 〈x2〉 from an estimation of the density
of particles, we need the infinite density (i.e., the fixed k/u

expansion) to estimate the tails of the P (x,t). In contrast, if we
want to estimate the normalization, or the low-order moments
〈|x|q〉 with q < α, we need an estimation of the center part of
the packet, Eq. (66).

VIII. INFINITE AND LÉVY DENSITIES
ARE COMPLEMENTARY

As shown in Fig. 4, for long, though finite, times the center
(tail) region of P (x,t) is well approximated by the Lévy
(infinite) density, respectively. We define a crossover position
xc(t) > 0 below (above) which the Lévy (infinite) densities are
valid approximations. The maximum of P (x,t) is clearly on
the origin (neglecting possible finite-time delta peaks found,
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FIG. 4. (Color online) PDF P (x,t) for the model with uniform
velocity distribution, v ∈ [−1,1], see Fig. 1, plotted together with the
Lévy distribution and rescaled infinite density. The parameters are
the same as in Fig. 1.

for example, for the two state velocity model, since these do not
contribute in the t → ∞ limit to the moments of the process).
Hence any estimation for the density for x �= 0 and long times
must be smaller than the value of the density on the origin. On
the origin

P (x,t)|x=0 ∼ Lα(0)

(Kαt)1/α
, (67)

with Lα(0) = ∫ ∞
−∞ exp(−|k|α)dk/2π = �(1 + α−1)/π . Us-

ing P (x,t) ∼ I(x/t)/tα we define xc via the condition

I
(

xc

t

)
tα

= Lα (0)

(Kαt)1/α
. (68)

Since the transition to the Lévy regime is found for the small
argument behavior of the infinite density we use Eq. (43),
I(xc/t) ∼ cαKα/|xc/t |1+α , and after some simple algebra we
find

xc(t) =
[ cα

Lα(0)

] 1
1+α

(Kαt)1/α . (69)

Though only a rough estimation for the transition, the
important point is to notice that xc(t) ∝ t1/α . When data
for P (x,t) are presented versus the scaled variable x/t (the
variable v) we have a crossover velocity xc(t)/t ∼ t (1/α)−1

which goes to zero as t → ∞ since α > 1. Thus, the infinite
density becomes a better approximation of tαP (x,t) versus
x/t as time is increased, see Fig. 1.

Based on this picture, we calculate the q-th moment with
q > α being a real number. We divide the spatial integration
into two parts and find

〈|x|q〉 � 2
∫ xc(t)

0

Lα

[
x

(Kα t)1/α

]
(Kαt)1/α

xqdx︸ ︷︷ ︸
inner Lévy region

+ 2
∫ ∞

xc(t)

I
(

x
t

)
tα

xqdx︸ ︷︷ ︸
outer tail, infinite density region

.

(70)

Changing variables according to y = x/(Kαt)1/α in the first
integral on the right-hand side, and to v = x/t for the second

integral we have

〈|x|q〉 � 2(Kαt)q/α

∫ xc(t)/(Kα t)1/α

0
Lα(y)yqdy

+ 2tq+1−α

∫ ∞

xc(t)/t

I (v) vqdv. (71)

In the long-time limit, the lower limit of the second integral
xc(t)/t → 0 while the upper limit of the first integral is a
constant. For q > α the second integral is by far larger than
the first, hence we may neglect the inner region,

〈|x|q〉 ∼ 2tq+1−α

∫ ∞

0
I (v) vqdv. (72)

The vq in the integrand “cures” the nonintegrable infinite
density, i.e., the nonintegrability arising from the small v

divergence of I(v), in the sense that the integral is finite when
q > α. When q = 2n in Eq. (72) with a positive integer n we
retrive Eqs. (19) and (59).

In the opposite limit q < α we find the opposite trend,
namely now the inner region of the density P (x,t) is important
in the estimation of the moments 〈|x|q〉. To see this we first
note that in the intermediate region of x, the Lévy and infinite
densities are equivalent. The intermediate region are values
of x where the density P (x,t) is well approximated by the
power-law tail of the Lévy density, before the cutoff due the
finite velocity, and after the small-x region where the Lévy
density did not yet settle into a power-law behavior. Indeed,
there is a relation between the infinite density and the Lévy
density since they must match in the intermediate region. Using
the known large-y behavior Lα(y) ∼ cαy−(1+α) we obtain

tαPcen(x,t) ∼ cαKα|x/t |−(1+α). (73)

This is exactly the same as the small v = x/t behavior of the
infinite density, Eq. (43), hence the two solutions match as
they should.

To obtain 〈|x|q〉 with q < α we define a velocity crossover
vc which is of the order of the typical velocity of the problem
[a velocity scale of F (v)]. For |x|/t < vc the density P (x,t) is
well approximated by a Lévy density (since in the intermediate
region the latter and the infinite density match), while beyond
vc we have the infinite density description

〈|x|q〉 � 2
∫ vc t

0

Lα

[
x

(Kα t)1/α

]
(Kαt)1/α

xqdx + 2
∫ ∞

vc t

I
(

x
t

)
tα

xqdx. (74)

Now when t → ∞ and q < α the contribution from the second
integral is negligible and the upper limit of the first integral
is taken to infinity, hence after a change of variables y =
x/(Kαt)1/α , and using the symmetry Lα(y) = Lα(−y),

〈|x|q〉 ∼ (Kαt)
q

α

∫ ∞

−∞
Lα(y)|y|qdy. (75)

We see that moments integrable with respect to the infinite
density, i.e., q > α, are obtained from the non-normalizable
measure. While for an observable which is nonintegrable with
respect to the infinite density, i.e., |x|q and q < α, the Lévy
density yields the average and is used in the calculation.

Further mathematical analysis of this behavior is required.
An observable like f (x) = 1/(1 + √|x|) is nonintegrable with
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respect to the infinite density. The average of f (x) with respect
to the Lévy density is finite. Hence the average 〈f (x)〉 is
computed with an integration over the Lévy density. On the
other hand, consider an observable like g(x) = |x|α+εθ (1 −
|x|), where θ (· · · ) is the step function and ε > 0. Now g(x) is
integrable with respect to the infinite density but also integrable
with respect to the Lévy density. So how do we obtain its
average? Do we use the infinite density or the Lévy density?
Since P (x,t) is well approximated by the Lévy density in the
regions where the function g(x) is not zero, i.e., for |x| < 1,
the Lévy density should be used in the calculation. This
example shows that not all averages of observables integrable
with respect to the infinite density are obtained from the
non-normalized density. One can also construct an observable
which is integrable neither with respect to the Lévy density nor
with respect to the infinite density; e.g., a function that behaves
like h(x) ∼ x2 for large x and h(x) ∼ 1 for x → 0. A trivial
example is h(x) = 1 + x2 since the average of this function
is given by both the Lévy density to compute 〈1〉 = 1 and
〈x2〉 � 1 which is found from the infinite density. Hopefully,
future rigorous work will present a full classification of
observables and rules for their calculation. Another approach
to obtain a uniform approximation for P (x,t) is based on the
Lévy and infinite densities. This approximation, which works
for all x, will be presented elsewhere and it can serve as a tool
for calculation of different classes of observables.

A. Strong anomalous diffusion

From Eqs. (72) and (75) we find

〈|x|q〉 ∼
{

M<
q tq/α, q < α,

M>
q tq+1−α, q > α,

(76)
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FIG. 5. (Color online) Moment amplitudes for the uniform
model exhibit a critical behavior on q = α, in the infinite long-time
limit these moments diverge as q → α (α = 3/2 in this example).
Lines correspond to Eqs. (77) and (78) in the main text. Dots are the
results of sampling with N = 109 realizations. The dashed line was
obtained by combining together the Lévy distribution and infinite
density (see Fig. 4) and gluing them together at the point x = 15 000
[73]. Parameters are the same as in Fig. 1 with t = 105.

0 1 2 3 4
q

0

1

2

3

qν
(q

)

FIG. 6. (Color online) The spectrum of exponents qν(q) versus q

exhibits piecewise linear behavior. The finite-time simulations (dots,
parameters as in Fig. 5), for the uniform model, perfectly agree with
theory (lines): for q < α qν(q) = q/α otherwise qν(q) = q + 1 − α

[see Eq. (76)]. Here α = 3/2.

with amplitudes

M<
q = (Kα)

q

α �
(
1 − q

α

)
� (1 − q) cos (πq/2)

(77)

and

M>
q = 2Kαcαq〈|v|q〉

α (q − α) (q − α + 1) 〈|v|α〉 . (78)

The amplitudes M<
q and M>

q diverge as q → α from above or
below, and in that sense the system exhibits a dynamical phase
transition. This behavior is shown in Fig. 5 where finite-time
simulations show a clear peak of the moments amplitudes in
the vicinity of q = α. The system exhibits strong anomalous
diffusion with a bilinear spectrum of exponents, i.e., qν(q) in
Eq. (1) is bilinear. Such a behavior is demonstrated in Fig. 6,
where qν(q) versus q is plotted using finite-time simulations,
which indicate that convergence to asymptotic results is within
reach [18]. As mentioned in the Introduction, this piecewise
linear behavior of qν(q) is a widely observed behavior.

IX. DISCUSSION

The Lévy walk model exhibits enhanced diffusion where
〈x2〉 ∝ t3−α when 1 < α < 2. Such a behavior is faster than
diffusive and slower than ballistic. Unlike Gaussian processes
with zero mean, the variance 〈x2〉 is not a sufficient charac-
terization of the motion. Mono scaling solutions P (x,t) ∼
t−ξg(x/t ξ ), which assume that the density of particles in
the long-time limit has a single characteristic scale, fail to
describe the dual nature of the dynamics which contains
both Lévy motion and ballistic elements in it. The density
of particles at its center part is described by the symmetric
Lévy distribution. If the Lévy central limit theorem is literally
taken, it predicts a divergence of the mean-square displacement
at finite times, i.e., the variance of the stable PDF Lα(x) is
infinite when 0 < α < 2. The tails of the Lévy walk model
exhibit ballistic scaling; indeed, as well known, the density
is cutoff by ballistic flights. In this work we have found
the mathematical description of the ballistic elements of the
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transport. An uncommon physical tool, a non-normalizable
density, describes the packet of particles. The bilinear scaling
of the moments, i.e., strong anomalous diffusion, means that
we have two complementary scaling solutions for the problem.
The first describes the center part of the packet and is the
well known Lévy stable density with the scaling x ∝ t1/α .
The second scaling solution describes ballistic scaling x ∝ t

and is given by our rather general formula for the infinite
density Eq. (38). The equation exhibits a certain universality
in the sense that it does not depend on the full shape of
the waiting times PDF. It relates the non-normalized density
with three measurable quantities: the velocity distribution of
the particles, the anomalous diffusion exponent α, and the
anomalous diffusion coefficient Kα .

In this paper we have focused on a model with two scalings,
namely ballistic x ∝ t and Lévy x ∝ t1/α motions. In real
systems we may have a mixture of other modes of motion.
For example, Gal and Weihs [15] measured the spectrum
of exponents qν(q) and found for large q a linear behavior
qν(q) ∼ cq and c � 0.8 − 0.6 so this motion is slower than
ballistic but faster than diffusive. This is probably related to
the active transport of the measured polymer embedded in
the live cell, namely to the input of energy into the cell. In
this direction, one should consider more general models, for
example, a variation of the Lévy walks where waiting times are
power-law distributed but the jump’s lengths scale nonlinearly
with waiting times, i.e., x = ∑N

i=1 vi−1(τi)β + vN (τb)β with
β > 0,β �= 1. Work on other regime of parameters is also in
progress. We recently investigated the regime α > 2, where
the Gaussian central limit theorem holds, and found that
the infinite density concept remains intact. Thus in even a
normal process, in the sense that the center part of P (x,t)
is described by the Gaussian central limit theorem, its rare
fluctuations are related to a non-normalizable measure. It is
left for future rigorous work to see if infinite densities describe
nonlinear dynamical systems, at least those where power-law
distributions of waiting times between collision events are
known to describe the dynamics [74,75].

Our results seem widely applicable. We know that biscaling
of the spectrum of exponents is a common feature of different
systems and strong anomalous diffusion is a well-documented
phenomenon. The Lévy walk dynamics is ubiquitous and has
been recorded in many systems. Hence we are convinced that
the infinite density concept has a general validity, ranging from
dynamics in the cell, motion of tracer particles in nonlinear
flows, and spatial diffusion of cold atoms to name a few. The
question of estimation of infinite density from not too large
ensembles of particles and finite-time experiments is left for
future work.

In solid-state physics, transport is in many cases charac-
terized as either ballistic or diffusive. The system falls into
one of these categories depending on the ratio of the size of
the system and mean free path. Here a completely different
picture emerges. Depending on the observable, i.e., the order
of the moment, the same system exhibits either diffusive or
ballistic transport. Observables integrable with respect to the
infinite density are ballistic, while observables integrable with
respect to the Lévy density exhibit superdiffusion. So in these
systems the question of what is measured becomes crucial,

and one cannot say that the process or system itself falls into
a unique category of motion. At least in our model, biscaling
means that we have two sets of tools to master, the infinite
density being the relatively newer concept which might need
more clarifications in future work [76] and become a valuable
approach in other problems of statistical physics.
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APPENDIX: P(k,u) FOR THE LÉVY WALK

In this Appendix we derive the Montroll-Weiss equation
(11) relating the Fourier-Laplace transform of P (x,t) with the
velocity and waiting-time PDFs, F (v) and ψ(τ ), respectively.
We denote the position of the particle xN (t) [instead of x(t)
used in the text], where N is the random number of collisions
and rewrite Eq. (2)

xN (t) =
N∑

j=1

vj−1τj + vNτb. (A1)

The standard approach to the problem is an iterative approach,
namely to relate the probability density of finding the particle
at x after j collision events, with the density conditioned on
j + 1 collisions, e.g., Ref. [48]. Using the renewal assumption
one gets convolution integrals and that leads to Eq. (11). While
we will use a slightly different method, to avoid a complete
repeat of previous derivations, our approach is inspired by the
renewal theory in [17].

The PDF of the position of the particles, all starting on the
origin x = 0, at time t is

P (x,t) =
∞∑

N=0

〈�(t − tN )�(tN+1 − t)δ[x − xN (t)]〉, (A2)

where δ(· · · ) is the Dirac delta function. Here tN denotes
the time of the N -th collision event tN = ∑N

i=1 τi . The
multiplication of the two step functions in Eq. (A2), i.e.,
the �(t − tN )�(tN+1 − t) term, gives the condition tN < t <

tN+1, for the measurement time t . The summation over N in
Eq. (A2) is a sum over all possible number of collision events.
Transforming P (x,t) into the Fourier-Laplace domain, using
Eq. (10), we obtain

P (k,u) =
∞∑

N=0

〈∫ tN+1

tN

exp(ikxN (t) − ut)dt

〉
. (A3)

The averages here are with respect to the velocity and the
waiting-time distributions. Inserting Eq. (A1) in Eq. (A3) we
perform the time integral on the right-hand side of Eq. (A3)
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using tN+1 − tN = τN+1 and τb = t − tN ,

P (k,u) =
∞∑

N=0

〈
1 − exp[(ikvN − u)τN+1]

u − ikvN

N∏
j=1

exp[(ikvj−1 − u)τj ]

〉

=
〈

1 − exp[(ikv0 − u)τ1]

u − ikv0

〉
+

∞∑
N=1

〈
1 − exp[(ikvN − u)τN+1]

u − ikvN

N∏
j=1

exp[(ikvj−1 − u)τj ]

〉
. (A4)

Here we separated the case of zero collisions N = 0 from N � 1. Because the velocities and waiting times are mutually
independent, each separately being independent identically distributed random variables, we can perform the averaging. With
the Laplace transform Eq. (6), ψ̂(u) = 〈e−uτ 〉, we use〈

�N
j=1 exp[(ikvj−1 − u)τj ]

〉 = 〈ψ̂(u − ikv)〉N , (A5)

where the remaining averaging on the right-hand side is with respect to the velocity PDF only 〈· · · 〉 = ∫ ∞
−∞ dv · · · F (v). Hence

from Eq. (A4) we find

P (k,u) =
〈

1 − exp[(ikv − u)τ ]

u − ikv

〉 ∞∑
N=0

〈exp[(ikv − u)τ ]〉N =
〈

1 − ψ̂(u − ikv)

u − ikv

〉 ∞∑
N=0

〈
ψ̂(u − ikv)

〉N
. (A6)

This geometric series sum is convergent and yields the known Montroll-Weiss equation, Eq. (11).
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