
           

                                    
                               

Diffusion of chiral Janus particles in a sinusoidal channel
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Introduction. – Over the last decade the problem of
controlling transport of regular Brownian particles in nar-
row corrugated channels has attracted the attention of
many investigators with the purpose of better understand-
ing biological processes in the cell or designing artificial
micro- and nano-devices [1,2]. In a recent development [3]
regular Brownian particles have been replaced with a
special type of diffusive tracers, namely, with active or
self-propelled artificial microswimmers. Since such parti-
cles operate by harvesting energy from their environment,
mostly in a nonequilibrium steady state, their autonomous
transport is generally enhanced [3].

Self-propulsion is the ability of most living organisms
to move, in the absence of external drives, thanks to
an “engine” of their own [4]. Optimizing self-propulsion
of micro- and nano-particles (artificial microswimmers)
is a growing topic of today’s nanotechnology [5–8]. In
artificial microswimmers [9,10] self-propulsion takes ad-
vantage of the local gradients asymmetric particles can
generate in the presence of an external energy source (self-
phoretic effects). Such particles, called Janus particles
(JP), consist of two distinct “faces”, only one of which is
chemically or physically active [11]. Thanks to their func-
tional asymmetry, JP’s can induce either concentration
gradients (self-diffusiophoresis) by catalyzing a chemical

(a)E-mail: yunyunli@tongji.edu.cn

reaction on their active surface [12–14], or thermal gra-
dients (self-thermophoresis), e.g., by inhomogeneous light
absorption [15] or magnetic excitation [16].

The self-propulsion mechanism acting on an pointlike
particle can be modeled in terms of an effective force and,
possibly, an effective torque, which result from local gra-
dients in the suspension fluid surrounding the particle. In
contrast with the case of externally applied macroscopic
gradients, such phoretic forces and torques cause no long-
range flow patterns in the fluid; as we do not explicitly
account for the fluid flow disturbances, phoretic forces and
torques are taken here as independent model parameters
(for more details see the discussion in ref. [17]). In the
absence of a torque, the line of motion is directed parallel
to the self-phoretic force and the JP propels itself along
a straight line, until it changes direction after a mean
persistence length, lθ, due to gradient fluctuations [18]
or random collisions against other particles or geometric
boundaries [19]. In the presence of asymmetries in the
propulsion mechanism, the self-phoretic force and the line
of motion are no longer aligned and the microswimmer
tends to execute circular orbits with radius RΩ, as if sub-
ject to a torque with chiral frequency Ω [20,21] (fig. 1).

Active chiral motion has long been known in biol-
ogy [21–23] and more recently observed in asymmetrically
propelled micro- and nano-rods: A torque can be intrin-
sic to the propulsion mechanism, due to the presence of
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Fig. 1: (Color online) (a) Chiral levogyre Janus particle
with Ω > 0 in the bulk. Sketch of a noiseless particle
with self-propulsion velocity v0 and finite torque frequency Ω,
eq. (1), moving along a circular arc of radius RΩ (dashed line);
(b) Sketch of the sinusoidal channel of eq. (2). Due to its sym-
metry, this channel does not rectify JP diffusion.

geometrical asymmetries in the particle fabrication, en-
gineered or accidental (asymmetric JP’s) [24–26], or ex-
ternally applied, for instance, by laser irradiation [15] or
hydrodynamic fields [27].

Active Brownian motion is time correlated per se, which
means that rectification of a JP can be easily achieved by
choosing spatially asymmetric channel boundaries [3]. As
we intend to investigate the interplay of propulsion chi-
rality and geometric confinement on the diffusivity of a
channeled JP, here we restrict our analysis to the case
of sinusoidal channels, where the rectification current is
known to be identically zero, both for passive and active
Brownian motion. The extension of the present work to
the case of spatially asymmetric channels will be presented
elsewhere. The main results presented below can be sum-
marized as follows: i) A finite torque, |Ω| > 0, tends to
suppress the particle diffusivity even in the bulk, accord-
ing to a simple law that fits remarkably well the simulation
data. This effect grows prominent for chiral radii much
shorter than the self-propulsion length, RΩ � lθ. ii) The
diffusivity of channeled microswimmers, besides decreas-
ing with |Ω| as in the bulk, exhibits an additional side
peak, which corresponds to the optimal condition, when
a channel compartment can accommodate for a closed or-
bit of the chiral swimmer, thus trapping it. iii) These
properties are rather sensitive to both the self-propulsion
mechanism of the microswimmer and the geometry of the
channel, which points to simple techniques for sorting out
microswimmers according to their swimming properties.

Model. – In order to avoid unessential complications,
we restrict our analysis to the case of 2D channels and
pointlike artificial microswimmers of the JP type [9].

The extension of our conclusions to 3D channels and finite-
size particles [28] is straightforward. A chiral JP gets a
continuous push from the suspension fluid, which in the
overdamped regime amounts to a rotating self-propulsion
velocity v0 with independent, constant modulus v0 and
angular velocity Ω. Additionally, the self-propulsion di-
rection varies randomly with time constant τθ, under the
combined action of thermal noise and orientational fluc-
tuations intrinsic to the self-propulsion mechanism.

The bulk dynamics of such an overdamped chiral JP
obeys the Langevin equations [20,23,29]

ẋ = v0 cos θ + ξx(t), (1)
ẏ = v0 sin θ + ξy(t),

θ̇ = Ω + ξθ(t),

where the coordinates of the particle center of mass,
r = (x, y), are subject to the Gaussian noises ξi(t), with
〈ξi(t)〉 = 0 and 〈ξi(t)ξj(0)〉 = 2D0δijδ(t) for i = x, y,
modeling the equilibrium thermal fluctuations in the sus-
pension fluid. The channel is directed along the x-axis,
the self-propulsion velocity is oriented at an angle θ with
respect to it and the sign of Ω is chosen so as to coin-
cide respectively with the positive (levogyre) and neg-
ative (dextrogyre) chirality of the swimmer, see fig. 1.
The orientational fluctuations of the propulsion veloc-
ity are modeled by the independent Gaussian noise ξθ(t)
with 〈ξθ(t)〉 = 0 and 〈ξθ(t)ξθ(0)〉 = 2Dθδ(t), where, as
shown below, Dθ sets the orientational time constant, τθ,
of the self-propulsion velocity, τθ = 2/Dθ. Accordingly,
the microswimmer mean free self-propulsion path approx-
imates a circular arc of radius RΩ = v0/|Ω| and length
lθ = v0τθ [20]. Therefore, for RΩ � lθ, or equivalently,
|Ω|τθ � 1 (strong chirality regime), chiral effects tend to
appreciably suppress the ensuing active Brownian diffu-
sion as shown below.

All noise sources in eq. (1) have been treated as indepen-
dently tunable, although, strictly speaking, thermal and
orientational fluctuations may be statistically correlated
depending on the self-propulsion mechanism [5,12,14].
Moreover, we ignored hydrodynamic effects, which are
known to favor clustering in dense mixtures of JP’s [30,31]
and even cause their capture by the channel walls [32],
and the possible effects of a reflecting obstacle on the JP
self-propulsion mechanism. However, both effects are mit-
igated by considering low density mixtures of pointlike
spherical JP’s. Moreover, we made sure that the param-
eters used in our simulations were experimentally accessi-
ble, as apparent on expressing times in seconds and lengths
in microns and comparing with the experimental setups of
refs. [14,23].

When confined to a channel directed along the x-axis,
the particle transverse coordinate, y, is bounded between
a lower and upper wall, w−(x) ≤ y ≤ w+(x), with

w±(x) = ±1
2

[
Δ + (yL − Δ) sin2

(
π

xL
x

)]
. (2)
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Such a sinusoidal channel is periodic; its compartments
have length xL and are mirror symmetric under both co-
ordinate inversions, x → −x and y → −y, i.e., centro-
symmetric. Throughout our analysis we assumed that the
width, Δ, of the pores connecting the compartments are
much narrower than the maximum channel cross-section,
i.e., Δ � yL.

Simulating a constrained JP requires defining its colli-
sional dynamics at the boundaries. For the translational
velocity ṙ we assumed elastic reflection. Regarding the
coordinate θ, we assumed that it does not change upon
collision (sliding b.c. [3]). As a consequence the active
particle slides along the walls for an average time of the
order of τθ, until the θ fluctuations, ξθ(t), redirect it to-
ward the interior of the compartment. The present b.c.
choice is consistent with reported experimental observa-
tions [14], though, as mentioned above [32], not universal
(see also [33]). Different b.c. do not change the qualitative
picture emerging from our investigation [3]: For strongly
persistent propulsion mechanisms, lθ � xL, yL, and weak
chirality, RΩ � lθ, the stationary particle probability den-
sity P (x, y) accumulates along the boundaries; this effect
is the strongest in the noiseless case, D0 = 0.

The dispersion of a Brownian particle along the chan-
nel axis [34] is an important issue experimentalists address
when trying to demonstrate rectification. Indeed, drift
currents, no matter how weak, can be detected over an
affordable observation time only if the relevant dispersion
is sufficiently small. This issue is of paramount impor-
tance when one handles with active Brownian particles,
like JP’, whose stochastic dynamics is characterized by
strong persistency, or long correlation times. Under such
conditions the current literature on classical diffusion is of
little help [1,35]. To this purpose we computed the trans-
port diffusivity, Dch, of a JP in the sinusoidal channel of
eq. (2), as the limit

Dch = lim
t→∞[〈x2(t)〉 − 〈x(t)〉2]/(2t), (3)

which we checked to exist for all simulation parameters
(normal diffusion limit).

Bulk diffusion, D. – A full analytical solution of the
model eq. (1) is cumbersome even in the bulk (i.e., in
the absence of boundaries). However, the particle mean
square displacement can be easily computed by noticing
that

〈cos θ(t) cos θ(0)〉 = 〈sin θ(t) sin θ(0)〉
= (1/2) cos(Ωt)e−Dθ |t|, (4)

and the first two LEs of eq. (1) are statistically inde-
pendent, namely limt→∞〈cos θ(t) sin θ(t)〉 = 0. It follows
immediately that a nonchiral particle (Ω = 0) diffuses
according to Fürth’s law [36]

〈Δx(t)2〉 = 〈Δy(t)2〉
= 2(D0 + v2

0τθ/4)t + (v2
0τ2

θ /2)(e−2t/τθ − 1). (5)

Fig. 2: (Color online) Diffusion of a levogyre JP with Ω ≥ 0
and v0 = 1 in a straight channel: Dch vs. Ω for different Dθ and
D0 = 0.01. The boundaries w±(x) are given by eq. (2) with
Δ = yL = 1. The dashed curves represent the corresponding
phenomenological law, Dch = D, holding for straight channels,
with D given in eq. (8). Our results are independent of the
sign of Ω and the width of the straight channel (not shown).

For t � τθ we thus recover the asymptotic normal diffusion
law, 〈Δx(t)2〉 = 2Dt, where the constant D apparently
consists of two distinct contributions,

D = D0 + Ds, (6)

due to the randomness of, respectively, the thermal fluc-
tuations, D0, and self-propulsion, Ds = v2

0τθ/4 (self-
diffusivity).

Determining the Ω dependence of the bulk diffusivity,
D(Ω), of a chiral JP requires more laborious algebraic
passages. Eventually, eq. (5) is replaced by [20,37–39]

〈Δx(t)2〉 = 〈Δy(t)2〉 = 2D0t

+ v2
0

[
Dθ

D2
θ + Ω2 t +

D2
θ − Ω2

(D2
θ + Ω2)2

(e−Dθt cosΩt − 1)
]

− 2v2
0

DθΩ
(D2

θ + Ω2)2
e−Dθt sin Ωt, (7)

and, accordingly, the bulk diffusivity becomes

D(Ω) = D0 +
Ds

1 + (Ωτθ/2)2
, (8)

where D(0) coincides with D in eq. (3). In conclusion,
chirality tends to suppress the self-diffusivity of a Janus
particle.

Owing to the b.c. adopted here, for a JP diffusing in
a straight channel, say, with w±(x) = ±yL/2, bulk and
channel diffusivity coincide, Dch = D. This statement
is confirmed by the fact that the simulation curves dis-
played in fig. 2 do not depend on yL. Most remarkably,
all three curves are closely fitted by the phenomenological
law (8). As expected from eq. (8), D(Ω) interpolates the
diffusivity of a nonchiral JP, eq. (6), at Ω = 0 and the
thermal diffusivity, D0, for Ω → ∞. In the latter limit,
i.e., for RΩ/lθ → 0, diffusion from self-propulsion is totally
suppressed.
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Fig. 3: (Color online) Diffusion of a nonchiral JP in the sinu-
soidal channel of eq. (2): Dch/D vs. v0 at constant Dθ and Δ
(see legend). D is the bulk diffusivity of eq. (6). Other simula-
tion parameters are xL = yL = 1 and D0 = 0.05. The left and
right arrows denote, respectively, the estimated values of the
suppression constants, κ0 and κs, introduced in the text, i.e.,
κ0 = 0.25 and κs = 0.20 for Δ = 0.02; κ0 = 0.45 and κs = 0.23
for Δ = 0.08.

Channel diffusion, Dch. – When confined to a corru-
gated channel, the particle diffusivity is suppressed by the
geometric constrictions represented by the pores, as shown
in figs. 3 and 4, respectively, for nonchiral and chiral JP’s
diffusing along a sinusoidal channel.

In the absence of self-propulsion, say, for v0 = 0 (or,
equivalently, lθ = 0), the bulk diffusivity is D = D0,
see eq. (6), and the channel diffusivity can be written as
Dch = κ0D0, with κ0 a well-studied function of Δ and
D0 [40,41]. In the opposite limit, v0 → ∞, the bulk diffu-
sion of a nonchiral JP is governed by self-propulsion, that
is, D 	 Ds and, accordingly, in the channel Dch = κsDs.
Both limits of Dch are illustrated in fig. 3 for different val-
ues of Δ and Dθ. Apparently, neither κ0 nor κs depend
on Dθ and both are smaller than one. This conclusion
applies to different compartment geometries, symmetric
and asymmetric, alike, as confirmed by further simulation
results not reported here.

The mechanisms underlying the suppression of channel
diffusion quantified by the constants κ0 and κs, are differ-
ent. For a regular Brownian particle with v0 = 0 moving in
a narrow channel, κ0 can be estimated in Fick-Jacobs’ ap-
proximation for smoothly corrugated channels [1,40] and
in mean-first-exit time formalism for sharply compart-
mentalized channels [41,42]. In both cases, κ0 strongly
depends on the compartment volume, the pore width
and thermal noise, since particle diffusion mostly happens
away from the walls. For nonchiral self-propelling mi-
croswimmers with lθ � xL, yL, the constant κs is mostly
determined by the b.c. introduced to model the parti-
cle collisions against the channel walls. For sliding b.c.,
the probability flows (consequence of the JP’s piling up
against the boundaries [29]) are modulated by the wall
profiles, w±(x), and thus not much sensitive to the pore
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Fig. 4: (Color online) (a) Diffusion of a levogyre JP in the
sinusoidal channel of eq. (2): (a) Dch/D0 vs. τθ for different Ω.
Notice that the smaller Ω, the slower is the convergence of
Dch/D0 to κ0 for large τθ. (b) Dch/D0 vs. Ω for different Dθ.
Here, τx = xL/v0, v0 = 1, D0 = 0.05, and Δ = 0.08. The
dashed line in (a) represents the asymptotic linear power law
of eq. (6).

width itself (as long as the particle size is negligible).
The distinct Δ dependence of κ0 and κs is apparent in
fig. 3.

We consider next the case of channeled chiral JP’s. The
diffusivity of a levogyre JP’s in a sinusoidal channel, illus-
trated in fig. 4, clearly points to two different chirality-
induced suppression mechanisms. We have already shown
how chirality limits the bulk the diffusion of JP’s with
long self-propulsion time constants, that is |Ω|τθ � 1 or
RΩ � lθ, see eq. (8). On the other hand, when the chiral
radius RΩ grows smaller than the compartment dimen-
sions, say, RΩ � xL, or the chiral frequency larger than
the reciprocal of compartment crossing time, τx = xL/v0,
that is |Ω|τx � 1, all swimmers, even those with long self-
propulsion length, lθ � xL, are expected to perform closed
orbits and thus get trapped inside the channel compart-
ments [29]. Such a geometric condition is likely to produce
an additional suppression of channel diffusion.

With these premises the dependence of Dch on the self-
propulsion mechanism parameters, τθ and Ω, can be satis-
factorily explained, at least, at a qualitative level. Curves
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of Dch vs. τθ at constant Ω are reported in fig. 4(a).
By inspection one notices immediately that: i) At large
τθ, D0 is negligible with respect to Ds and, again, Dch 	
κsD(Ω), like for nonchiral JP’s. Most remarkably, we
checked that κs does not sensibly depend on Ω. ii) The
curves Dch vs. τθ go through a maximum, Dmax

ch 	
κsDs/2, the position of which, |Ω|τθ = 2, is insensitive to
the channel geometry. Indeed, position and height of the
maxima located at τθ > τx can be closely approximated by
plotting the bulk diffusivity of eq. (6) as a function of τθ

and making use of the relation Dch = κsD. iii) For finite
Ω, active diffusivity in the channel is suppressed both for
τθ → 0 and τθ → ∞. In both limits, one thus expects that
Dch(Ω) → κ0D0, where κ0 is the corresponding suppres-
sion constant at Ω = 0 given in fig. 3. Note that at low
Ω the convergence toward the expected large τθ asymp-
tote is very slow. The same asymptote is approached
by the large Ω tails of the curves plotted in fig. 4(b).
The Ω dependence of Dch at constant τθ, illustrated in
fig. 4(b), shows explicitly that iv) Dch starts decreasing
appreciably with Ω only for |Ω|τθ � 2, that is in coinci-
dence with the maxima displayed in fig. 4(a). v) Small
diffusivity peaks emerge for |Ω|τθ � 1. They are centered
around a certain value of Ω, ΩM , which does not depend
on the time constant τθ. ΩM can be estimated by notic-
ing that on increasing Ω the chiral radius RΩ = v0/|Ω|
decreases, until the microswimmer performs a full circular
orbit inside the channel compartment, without touching
its walls (actually a logarithmic spiral with exponentially
small steps [20]). In the noiseless limit, this happens for
2RΩ 	 xL, that is, ΩM 	 2v0/xL. This condition can
be regarded as the onset of a mechanism of dynamical
trapping. In Brownian transport theory, the onset of a
trapping mechanism generally corresponds to an excess
diffusion peak [43–45]: That is precisely the phenomenon
we see at work here. Of course, this argument requires that
ΩMτθ � 1, to ensure a sufficiently long self-propulsion
time. Both our estimate for ΩM and the condition for the
diffusivity peak to appear are in close agreement with the
data displayed in fig. 4(b).

Conclusions. – We numerically investigated the diffu-
sion of artificial active microswimmers moving along nar-
row periodically corrugated channels. Our work is meant
to foster research on the rectification of active microswim-
mers in confined geometries. Transport quantifiers, like
rectification power and diffusivity, strongly depend on the
particle self-propulsion mechanism and the channel com-
partment geometry. The emerging picture suggests the
possibility of developing new control techniques for the
manipulation of artificial microswimmers, which are well
within the reach of today’s technology. Specialized mi-
crofluidic circuits can be designed, for instance, to guide
chiral microswimmers to a designated target. The same
technique can be utilized to fabricate monodisperse chi-
ral microswimmers (presently a challenging technological
task). By the same token, microswimmers capable of

inverting chirality upon binding to a load, can operate as
chiral shuttles along a suitably corrugated channel even in
the absence of gradients of any kind.
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Bechinger C., Phys. Rev. Lett., 113 (2014) 029802; ten

Hagen B., Wittkowski R., Takagi D., Kümmel F.,
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