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Qubit interference at avoided crossings: The role of driving shape and bath coupling
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We derive the structure of Landau-Zener-Stückelberg-Majorana (LZSM) interference patterns for a qubit that
experiences quantum dissipation and is additionally subjected to time-periodic but otherwise general driving.
A spin-boson Hamiltonian serves as the model, which we treat with a Bloch-Redfield master equation in the
Floquet basis. It predicts resonance peaks whose form depends significantly on the operator through which the
qubit couples to the bath. The Fourier transforms of the LZSM patterns exhibit arc structures which reflect
the shape of the driving. These features are captured by an effective time-independent Bloch equation which
provides an analytical solution. Moreover, we determine the decay of these arcs as a function of dissipation
strength and temperature.
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I. INTRODUCTION

The spectrum of a bistable quantum system as a function of
the detuning typically forms avoided crossings. In particular
in the regime between adiabatic following and nonadiabatic
transitions, sweeping the detuning can induce a complex
tunneling dynamics. Its archetype is a two-level system
with a sweep linear in time for which the probability for
nonadiabatic transitions is given by the famous Landau-Zener
formula [1–4]. It predicts a splitting of the wave function
into a superposition of the adiabatic qubit states, which
means that the avoided crossing acts like a beam splitter.
Replacing the linear switching by an ac field results in a
series of avoided crossings, so that the wave function splits
and recombines repeatedly—the quantum mechanical analog
of a Mach-Zehnder interferometer [5]. The resulting LZSM
interference has been demonstrated in various experiments
with solid-state qubits [6–13].

Going beyond the mere demonstration of interference,
Landau-Zener-Stückelberg-Majorana (LZSM) interferometry
can be employed as a tool to determine the dephasing time
of a charge qubit. The analysis of the interference pattern
may be performed in “real space,” i.e., as a function of
detuning and amplitude [12], or in Fourier space [14]. The
latter type of analysis is based on the observation that the
Fourier transforms of LZSM patterns exhibit arc structures
with a characteristic decay [15]. By comparing measured
and computed patterns for a qubit, one can determine the
inhomogeneous broadening as well as the faster decoherence
induced by substrate phonons [14]. Since this procedure takes
considerable numerical effort, any analytic knowledge may be
helpful.

In this work, we reveal how the qubit-bath coupling operator
and the shape of the driving influence the LZSM interference
pattern. In Sec. II we describe the qubit with a time-dependent
spin-boson model [16] and introduce the Floquet-Bloch-
Redfield formalism that provides our numerical solutions.
Section III is devoted to the LZSM pattern in real space
which is governed by the coupling operator to the bath. In
Sec. IV we demonstrate that its Fourier transform, by contrast,
mainly reflects the shape of the driving. Finally, in Sec. V,
we determine the decay of the arcs as a function of the bath
parameters.

II. MODEL AND MASTER EQUATION

A. Qubit in a time-dependent field

We consider a qubit under the influence of a periodic driving
described by the Hamiltonian

H (t) = �

(
ε0 �/2

�/2 Af (t)

)
, (1)

where � is the tunnel coupling between the two levels
which experience a modulated detuning ε0 − Af (t) with shape
f (t) = f (t + T ), driving period T = 2π/�, amplitude A, and
static detuning ε0. Without loss of generality, we assume that
f (t) vanishes on average. The gauge chosen in Eq. (1) is
convenient for qualitative discussions, while the equivalent
symmetrized Hamiltonian H̃ (t) = �

2 {ε0 − Af (t)}σz + ��
2 σx

is preferable for the numerical treatment.
While the most prominent example is the monochromatic

f (t) = cos(�t), our aim is to investigate LZSM interference
for general periodic driving. In our numerical examples, we
consider besides the purely harmonic driving with f0(t) =
cos(�t) also the shapes

f1(t) = cos(�t) + 0.1 cos(3�t), (2a)

f2(t) = cos(�t) + cos(2�t), (2b)

f3(t) = sin(�t) + sin(2�t), (2c)

where f1 and f2 are symmetric functions, i.e., they obey
f (t0 + t) = f (t0 − t) for t0 = 0 and for t0 = T/2. By contrast,
f3(t0 + t) = −f3(t0 − t) is antisymmetric. While f1 modifies
the pure cosine driving only slightly, the other two shapes are
qualitatively different because they possess several maxima
and minima per driving period. As we discuss below in Sec. IV,
this has consequences for the structures observed in Fourier
space; see Figs. 1(g)–1(i).

B. System-bath model

The influence of the environment on the system is modeled
by a bath of harmonic oscillators given by the Hamiltonian
Henv = Hb + Hint with Hb = ∑

ν �ωνa
†
νaν, and

Hint = 1

2
X

∑
ν

�λν(a†
ν + aν), (3)
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RALF BLATTMANN, PETER HÄNGGI, AND SIGMUND KOHLER PHYSICAL REVIEW A 91, 042109 (2015)

FIG. 1. (Color online) (a)–(c) Adiabatic energies E±(t) (red and blue solid lines) of the Hamiltonian (1) in units of �� for vanishing static
detuning, ε0 = 0, and the driving shapes f1(t)–f3(t) in Eq. (2). The dashed black line marks the integral of the driving F (t) in units of 1/�.
(d)–(f) Resulting nonequilibrium populations in ε0-A space. (g)–(i) Two-dimensional (2D) Fourier transform W (τε,τA) of the interference
patterns, defined in Eq. (23). The dashed lines in the upper half plane mark the analytic expressions for the arc structure derived in Sec. IV. The
patterns are computed with the stationary solution of the Bloch-Redfield master equation for the tunnel matrix element � = 0.5�, dissipation
strength α = 10−3, temperature 1/β = 0.1��, and transverse qubit-bath coupling, i.e., X = σx in Eq. (3).

where ων are the frequencies of the oscillators, while �λν

are the system-oscillator coupling energies. For the qubit
operator X that couples to the bath, we mainly consider
σx and σz as well as a linear combination of the two.
According to their orientation on the Bloch sphere with
respect to the driving, we refer to the coupling as transverse
(σx) and longitudinal (σz), respectively. Moreover we assume
that system and environment are initially uncorrelated, i.e.,
we choose an initial condition of the Feynman-Vernon type,
ρtot(t0) = ρ(t0) ⊗ Renv,eq for the total system density operator
ρtot, with ρ(t0) being the initial reduced density operator of
the qubit, while Renv,eq ∝ exp(−βHb) is the Gibbs state of the
bath with inverse temperature β.

Starting from the Liouville–von Neumann equation
i�ρ̇tot = [H (t) + Henv,ρtot] for the total density matrix and
applying standard techniques, one can derive the Markovian
weak-coupling master equation [17]

d

dt
ρ = L(t)ρ

= − i

�
[H (t),ρ] − 1

4

∫ ∞

0
dτ (S(τ )[X,[X̃(t − τ,t),ρ]]

+A(τ )[X,{X̃(t − τ,t),ρ}]), (4)

where {A,B} = AB + BA denotes the anticommutator and
X̃(t ′,t) is a shorthand notation for U †(t,t ′)XU (t,t ′), with
U being the propagator for the coherent qubit dynamics.

The influence of the environment is subsumed in the symmetric
and the antisymmetric bath correlation functions,

S(τ ) = 1

2
〈{B(τ ),B(0)}〉eq

= 1

π

∫ ∞

0
dωJ (ω)coth(�ωβ/2) cos(ωτ ), (5)

A(τ ) = 1

2
〈[B(τ ),B(0)]〉eq

= 1

π

∫ ∞

0
dωJ (ω) sin(ωτ ), (6)

respectively, with the collective bath coordinate B(t) =∑
ν λν{a†

ν exp(iων t) + aν exp(−iων t)}. The angular brackets
〈· · · 〉eq denote the average with respect to the thermal equilib-
rium of the environment. In a continuum limit we consider
the Ohmic spectral density J (ω) = π

∑
ν λ2

νδ(ω − ων) ≡
2παωe−ωc/ω with the dimensionless dissipation strength α,
while the high-frequency cutoff ωc eventually is taken to
infinity.

C. Bloch-Redfield theory in the Floquet basis

Since the system Hamiltonian is periodic in time we can
apply the Floquet theorem, which states that the corresponding
Schrödinger equation possesses a fundamental set of solutions
of the form |�α(t)〉 = e−iεα t/� |�α(t)〉, with the quasiener-
gies εα and the Floquet states |�α(t)〉 = |�α(t + T )〉 [16].
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They can be calculated from the eigenvalue equation
{H (t) − i�∂t } |�α(t)〉 = εα |�α(t)〉. Expressing the master
equation (4) in the Floquet basis {|�α(t)〉} [16,17] yields

d

dt
ραβ(t) =

∑
α′β ′,k

e−ik�tL(k)
αβ,α′β ′ρα′β ′(t) (7)

with the density matrix element ραβ = 〈�α(t)|ρ|�β(t)〉 and

L(k)
αβ,α′β ′ = −i(εα′ − εβ ′ )δα,α′δβ,β ′δ0,k

+
∑
k′

(Nαα′,k′ + Nββ ′,k′−k)Xαα′,k′Xβ ′β,k−k′

+ δβ,β ′
∑
k′,β ′′

Nβ ′′α′,k−k′Xαβ ′′,k′Xβ ′′α′,k−k′

+ δα,α′
∑
k′,α′

Nα′′β ′,k′−kXβ ′α′′,k−k′Xα′′β,k′ , (8)

the kth Fourier coefficient of the Liouville operator. We have
introduced the transition matrix elements

Xαβ,k = 1

T

∫ T

0
dt eik�t 〈�α(t)|X|�β(t)〉 (9)

and Nαβ,k = N (εα − εβ + k��) with N (ω) = αωnth(ω) as
well as the bosonic thermal occupation number nth(ω) =
(eβ�ω − 1)−1.

In the long-time limit, the system relaxes to a steady state
which obeys the time periodicity of the driving, ρ∞(t) =
ρ∞(t + T ). Hence we can use the Fourier decomposition
ρ∞(t) = ∑

k e−ik�tρ(k) of the density operator to obtain the
set of linear equations

−i�k�ρ
(k)
αβ =

∑
α′,β ′,k′

L(k−k′)
αβ,α′β ′ρ

(k′)
α′β ′ . (10)

This master equation avoids the common moderate [17] or
full [18] rotating-wave approximation with respect to the
driving frequency � and, hence, is rather reliable [19]. In our
case, numerical convergence is already obtained with |k| � 5,
i.e., for truncation at the fifth sideband, even when the Floquet
states may contain many more relevant sidebands. Thus the
numerical effort for solving Eq. (10) stays at a tolerable level.

D. Excitation probability

For the visualization of the LZSM interference pattern,
one may in the absence of dissipation consider time-averaged
transition probabilities from a particular initial state [5]. In
the presence of a heat bath, however, the system state is in
the long-time limit typically independent of the initial state.
Therefore, we consider time averages of observables such as
populations, e.g., of the diabatic state |↑〉, or the excited state of
the undriven qubit, |e〉. Since in the vast part of the parameter
space considered, the qubit is strongly biased, i.e., � 
 |ε0|,
the choice is of minor practical relevance. We here consider
the latter, namely, the time-averaged probability for the qubit
being in the excited state as a function of the static detuning
ε0 and the driving amplitude A,

Pex(ε0,A) = 1

T

∫ T

0
dt 〈e|ρ∞(t)|e〉, (11)

where ρ∞(t) is the T -periodic long-time solution of the master
equation. Thus, Pex directly relates to the Fourier coefficients
in the Floquet basis, ρ(k)

αβ , which we obtain by solving Eq. (10).

III. INTERFERENCE PATTERN IN ENERGY SPACE

In order to give a first impression of our results, we depict in
Figs. 1(d)–1(f) the LZSM interference patterns for the driving
shapes in Eq. (2) and a transverse qubit-bath coupling. All
three patterns exhibit resonance peaks whenever the detuning
ε0 matches with a multiple of the driving frequency. As a
further condition for a significant nonequilibrium population,
the amplitude must be so large that it reaches the avoided
level crossing, which is the case for min[f (t)] < ε0/A <

max[f (t)]. The peaks depend strongly on the amplitude and for
certain values of A/� they may even vanish. This represents a
generalization of the coherent destruction of tunneling found
for sinusoidal driving [20], a phenomenon responsible for
the characteristic vertical structure of LZSM patterns [5]
which, in turn, can be explained within a Landau-Zener
scenario [21]. Comparing Figs. 1(d)–1(f), we can conclude
that the patterns look very similar, despite the rather different
driving shapes which are visible in the adiabatic energies of
the qubit Hamiltonian (1) depicted in Figs. 1(a)–1(c). The
main differences stem from the fact that the harmonics with
frequency 2� may shift the maximum and the minimum value
of f (t) and, thus, affect the condition for significant excitations
discussed above. For the driving shape f2, this condition
depends on the sign of ε0, which explains the asymmetry of
the pattern in Fig. 1(e), which was also observed in Ref. [22].

A. Influence of the qubit-bath coupling

In Fig. 2, we compare patterns for transverse and lon-
gitudinal qubit-bath coupling, i.e., the coupling via σx and
σz, respectively. Since we already noticed that the patterns
in energy space are not very sensitive to the shape of the
driving, we here restrict ourselves to the purely harmonic
f0(t) = cos(�t). Let us first consider the transverse coupling.
The resulting pattern [Fig. 2(a)] is characterized by resonance
islands which as a function of the detuning ε0 are Lorentzians.
As a function of the amplitude A, their shape follows
approximately the squares of Bessel functions. This behavior
was predicted for the current through ac-gated double quantum
dots [14,23] and for the nonequilibrium population of a driven
two-level system [5]. Moreover, it has been observed in various
experiments [6,8,9,11,14,15].

0

5

10

− 5 0 5

A
/Ω

0/Ω

(a)

− 5 0 5
0/Ω

0

0.5

1

(b)

FIG. 2. (Color online) Nonequilibrium population Pex as a func-
tion of the detuning ε0 and the driving amplitude A for f (t) =
cos(�t). The qubit-bath coupling Hint is determined by X = σx (a)
and X = σz (b), while � = 0.5�, α = 10−3, and 1/β = 0.1��.
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If the bath couples longitudinally with respect to the driving,
i.e., when both the ac field and the environment enter via σz,
the pattern changes qualitatively. As it can be appreciated in
Fig. 2(b), the Lorentzian peaks turn into a triangular structure.
This kind of bath coupling should be relevant for a charge qubit
in a Cooper pair box driven by an ac gate voltage while being
sensitive to environmental charge fluctuations. LZSM patterns
for this setup have been measured in Refs. [7,24] and exhibit
similarities with Fig. 2(b). Recent experiments [25] have
obtained such triangular patterns with much higher resolution.

As a generalization of these two system-bath couplings, we
also considered a bath coupling via the operator

X = σx cos θ + σz sin θ. (12)

The mixing angle θ varies from 0 to π/2, where the limits
θ = 0 and θ = π/2 correspond to the transverse and the lon-
gitudinal cases. This model captures, e.g., a superconducting
charge qubit that interacts capacitively as well as inductively
with the environmental circuitry. Then it is intriguing to know
which dissipative influence dominates the LZSM interference.
For this purpose, we define the normalized overlap between
the pattern for σx coupling and the pattern for the coupling
operator in Eq. (12) as

rx(θ ) =
(
P x

ex

∣∣P X
ex

)
√(

P x
ex

∣∣P x
ex

)(
P X

ex |P X
ex

) , (13)

where (P |Q) = ∫
dε dAP (ε,A)Q(ε,A) denotes the inner

product between two functions in ε-A space. To compare
the mixed case with the pure σz coupling we define rz(θ )
accordingly. Obviously, these quantities possess the limits
rx(0) = 1 = rz(π/2). LZSM patterns generally have in com-
mon that their main contribution stems from regions in which a
resonance condition is fulfilled. Thus, the overlap of apparently
different patterns generally is quite appreciable (typically
up to 0.9 for pattern such as those in Fig. 2). Significantly
larger values, however, are found only when the shape of the
individual peaks is also similar.

The result shown in Fig. 3 reveals that upon increasing θ

from θ = 0, i.e., augmenting the influence of σz, the pattern
remains close to that of Fig. 2(a). By contrast, the pattern
for σz coupling is more sensitive to a small admixture of
σx . Thus, unless the bath coupling via σz is much larger,

FIG. 3. (Color online) Overlap of the interference pattern for the
mixed coupling (12) with the patterns for the coupling operators σx

(squares) and σz (triangles) as a function of the mixing angle. All
other parameters are as in Fig. 2.

we find the “usual” interference pattern of Fig. 2(a). This is
consistent with the fact that, in most experiments, one indeed
finds such a LZSM pattern with Lorentzians [6,8,9,15]. Notice,
however, that this reasoning does not necessarily apply to
LZSM patterns for the average current through open double
quantum dots [11,14], because there the dominating incoherent
dynamics is the electron tunneling between the quantum dots
and the leads. Moreover, the Hilbert space for a transport setup
is larger since it must comprise states with different electron
number.

Let us emphasize that the observed significant dependence
of the long-time solution on the coupling is found even in the
limit of very weak qubit-bath coupling and, hence, it is beyond
a mere higher-order effect in the dissipation strength α. This is
in clear contrast to the stationary solution of the Bloch-Redfield
equation for a time-independent problem, which generally is
the grand canonical state, while possible deviations are of
the order α [26]. Nevertheless, we will be able to derive an
effective time-independent Bloch equation for the driven qubit
which captures the influence of the bath coupling operator even
quantitatively.

B. Analysis of the resonance peaks

While the two-dimensional interference patterns in
Figs. 1(d)–1(f) and 2 provide a comprehensive picture, the
details of the resonance peaks are better visible in the
horizontal slices shown in Fig. 4. They reveal that the peaks
for transverse coupling indeed are Lorentzians, while for
longitudinal coupling, the peaks are antisymmetric. Moreover,

FIG. 4. (Color online) Nonequilibrium population Pex shown in
Fig. 2 as a function of the detuning ε0 for the driving amplitude
A = 10�. (a) Comparison between numerical result with σx coupling
obtained with the Bloch-Redfield master equation (solid red) and the
analytical solution (20) for the resonances with n = 7,8 (dotted blue).
(b) Comparison between numerical result with σz coupling (dashed
black) and the analytical solution (22) for n = 2,3 (dotted blue).
(c) Numerical results for σx and σz coupling plotted together with
the analytical result for the off-resonant background predicted by
Eq. (15).
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we witness a triangular-shaped background with a roughly
linear decay in |ε0| while being practically independent of the
tunneling �. Our aim is to explain these features within the
Bloch equations for the qubit derived in the Appendix. We
restrict the discussion to the limit of very low temperatures for
which the interference patterns are most pronounced.

1. Off-resonant background

We start our considerations by noticing that, at low
temperatures, the dissipative dynamics is mainly a decay
towards the qubit ground state. Since for small tunneling
� and large amplitude A, the (adiabatic) qubit levels form
avoided crossings, the states |↓〉 and |↑〉 take turns in having
lower energy; cf. the upper row of Fig. 1. Within an adiabatic
description, we employ the Bloch equation (A4) and replace
the ε-dependent rates by their instantaneous values to obtain
for the z component of the Bloch vector �s = tr(�σρ) the
equation of motion

ṡz = −�[ε(t)]sz − παε(t), (14)

where ε(t) = ε0 − Af (t). If the decay is sufficiently slow,
we can replace the time-dependent coefficients by their time
averages ε(t) = ε0 and �̄ ≡ �[ε(t)] ≈ α(2A + ε2

0/A), where
the latter results from a Taylor expansion in ε0/A. Then
the steady-state solution sz(∞) = παε0/�̄ corresponds to the
nonequilibrium population

Pbg = 1

2
− π |ε0|A

4A2 + 2ε2
0

. (15)

The dash-dotted line in Fig. 4(c) shows that this estimate
indeed describes the triangular-shaped background rather well
which, in turn, confirms the underlying adiabatic picture.

The adiabatic approximation underlying the derivation
of Eq. (15) implies that this result holds in between the
resonances. Close to the resonances, we have to follow a
different path. This implies that we finally obtain a piecewise-
defined analytical solution which, nevertheless, provides a
global picture.

2. Lorentzian peaks for the transverse coupling via σx

An analytical expression for the resonance peaks can be
found within an approximation scheme for close-to-resonant
excitation [5,23]. For a bath coupling via σx , the calculation
is essentially the one given in the Appendix of Ref. [5]. We
sketch it briefly so that we can later highlight the differences
between σx coupling and σz coupling.

Embarking with the master equation (4) we consider the
limit |ε0| � � and assume that the driving frequency is close
to resonance, i.e., n� = (ε2

0 + �2)1/2 ≈ ε0. In this regime the
tunneling contribution, proportional to �, represents a pertur-
bation to the free dynamics governed by 1

2 {ε0 − Af (t)}σz. In
order to capture the coherent dynamics in large part, we apply
the unitary transformation U (t) = exp{−iφ(t)σz/2} with the
time-dependent phase φ(t) = n�t + AF (t), where

F (t) =
∫ t

0
dt ′ f (t ′) (16)

obeys the T periodicity of the driving because f (t)
by definition vanishes on average. Then we obtain the

interaction picture Hamiltonian U †(t)H (t)U (t) − i�U †(t)
U̇ (t). Averaging over the driving period T results in the
effective Hamiltonian

Heff = −�δn

2
σz + ��n

2
σx, (17)

with the detuning δn = n� − ε0 and the effective tunnel matrix
element

�n(A) = �

T

∫ T

0
dt ein�t−iAF (t). (18)

The latter obviously is the nth Fourier coefficient of
� exp{−iAF (t)}, a property that will prove useful. This
generalizes the result for purely harmonic driving, �n =
�Jn(A/�) with Jn the nth-order Bessel function of the first
kind, to arbitrary but periodic shapes f (t). The corresponding
equation of motion for the Bloch vector reads �̇s = �Beff × �s,
where �Beff = (�n,0, − δn)T .

For the dissipative dynamics, we distinguish two limiting
cases. First, during the stage at which the qubit passes through
the crossing, the tunneling term �

2 σx dominates in the Hamil-
tonian (1), while the qubit-bath coupling essentially commutes
with the Hamiltonian. Thus, it induces pure dephasing but no
decay. Since for an Ohmic bath the dephasing rate (A7) is
proportional to the temperature, it can be neglected in the
low-temperature limit under consideration.

For most of the time, however, the qubit Hamiltonian is
dominated by the term proportional to σz so that the bath
causes transitions between the eigenstates of σz. We describe
them by the Bloch equation (A4) which together with the
effective coherent dynamics reads

�̇s =
⎛
⎝−�/2 −δn 0

δn −�/2 �n

0 −�n −�

⎞
⎠�s −

⎛
⎝0

0
�

⎞
⎠. (19)

Notice that since we are interested only in the stationary state,
we can ignore a possible driving-induced renormalization
of the decay rates [27] and treat � as a phenomenological
parameter. However, we wish to stress that our numerical
treatment captures this renormalization. The steady state
�s(∞) is easily obtained by matrix inversion and provides the
nonequilibrium population, reading

P (x)
n = 1

2

�2
n

/
2

(ε0 − n�)2 + �2
n

/
2 + �2/4

. (20)

While this expression holds close to the nth resonance, it
vanishes far away. Therefore, focusing on the peaks and
ignoring Pbg, the global picture is simply given by the sum of
the contributions of all resonances and reads P (x)

ex = ∑
n P (x)

n .
Expressions like the one in Eq. (20) have been found not only
for nonequilibrium populations of driven qubits [5,8,13,15]
but also for the dc current through double quantum dots
[12,14,23].

In Fig. 4(a), we compare the numerically computed interfer-
ence pattern for σx coupling with the analytical solution (20)
at various resonances. While close to the resonances, i.e., for
δn 
 �, the agreement is almost perfect, we observe small
deviations between the resonances which mainly stem from
the off-resonant background discussed above. Notice that our
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analytical solutions (15) and (20) cannot be simply added,
because they hold in different regimes.

3. Antisymmetric resonances for the longitudinal coupling via σz

For longitudinal coupling, the situation is complementary
to the transverse case. Outside the crossing, the bath couples
to a good quantum number of the qubit and, thus, creates pure
dephasing negligible at low temperatures. Therefore, dissipa-
tive transitions are induced only close to the crossing where
the qubit Hamiltonian (1) is dominated by σx . Consequently,
as compared to the case discussed above, the relevant part
of the qubit Hamiltonian and the bath coupling operator are
interchanged. Accordingly, the x and the z components of the
dissipative terms in Eq. (19) are interchanged as well (a formal
derivation along the lines of the Appendix is straightforward).
This yields the Bloch equation

�̇s =
⎛
⎝−� −δn 0

δn −�/2 �n

0 −�n −�/2

⎞
⎠�s −

⎛
⎝�

0
0

⎞
⎠, (21)

whose stationary solution corresponds to the nonequilibrium
population

P (z)
n = 1

2
+ (ε0 − n�)�n

(ε0 − n�)2 + 2�2
n + �2/2

. (22)

Since now the qubit decay occurs only during the short stages
when the levels cross, the phenomenological rate � is expected
to be considerably smaller than for σx coupling.

In Fig. 4(b), we compare the numerically computed inter-
ference pattern obtained with σz coupling with the analytical
solution (22) for n = 2,3. Again, close to a resonance the
analytics and the numerical solution agree rather well. Far
from resonance, however, expression (22) decays only slowly
and the global picture is beyond the simple summation
of all P (z)

n . Exactly on resonance, i.e., for ε0 = n�, the
second term of Eq. (22) vanishes and, hence, the excitation
probability becomes P (z)

ex = 1/2 for all n. This fact together
with the asymmetry of the structure implies that close to each
resonance, we find a region with P (z)

ex > 1/2. Such population
inversion has been found also for driven qubits with other
structureless bath spectral densities [28] and may be induced
by the bath [29].

4. Qubit-bath coupling via σ y

For completeness we also consider a bath coupling via
the Pauli matrix σy . It induces dissipative transitions between
both the eigenstates of σx and those of σz. Therefore, the
corresponding Bloch equation is a combination of Eqs. (19)
and (21). A simplification comes from the focus on parameter
regimes in which the avoided crossings are well separated,
i.e., in which the tunnel coupling � is small such that for
most of the time the qubit Hamiltonian is dominated by the
contribution proportional to σz. Under this condition, the Bloch
equation for σy coupling will be mainly of the form (19) with
the nonequilibrium population essentially given by Eq. (20),
i.e., we expect to find P

(y)
n ≈ P (x)

n .
In order to confirm this conjecture, we have computed

the stationary state for σy coupling and the parameters used
in Fig. 2. The result is practically indistinguishable from

Figs. 2(a) and 4(a) (not shown). This is reflected by a
normalized overlap between these patterns close to unity. To
be specific, we find the value r � 0.996.

IV. INTERFERENCE PATTERN IN FOURIER SPACE

In the previous section, we found that the interference
patterns in real space depend only weakly on the shape of the
driving, while the qubit-bath coupling has a strong influence.
The 2D Fourier transform of these patterns [Figs. 1(g)–1(i)]
provides a complementary picture in which the shape of the
driving dominates. For the symmetric driving functions f1 and
f2, we find a pronounced arc structure at τA = 2F (τε/2) and
τA = 2F (τε/2 + T/2); cf. the black dashed lines in Figs. 1(a)
and 1(b). They can be explained within the stationary-phase
treatment of the LZSM interference scenario [15] and have
been measured in Ref. [10]. However, there emerge several
additional features. Most significantly in panel (i), we find that
for the anti-symmetric driving with f3, the structure is different
from the corresponding F (τε/2) depicted by the dashed line
in Fig. 1(c). Moreover, the driving f2 yields further arcs close
to the origin. There also emerge higher-order replica of the
arcs which have been found both experimentally [14,15] and
theoretically [14].

For an analytical approach to the arc structure, we consider
Pex(ε0,A) = ∑

n P (x)
n (ε0,A) derived Sec. III B 2 and define its

Fourier transform as

W (τε,τA) =
∫

dε0

2π

dA

2π
e−iε0τε e−iAτAPex(ε0,A). (23)

We neglect the background contribution Pbg, because it varies
on a scale much greater than �. Thus in Fourier space, it
mainly contributes in the region τε,τA 
 T , i.e., very close to
the origin. The ε0 integral can be evaluated readily to yield

W (τε,τA) = 1

4π

∫
dA e−iAτA

∑
n

�2
n

�∗
n

e−in�τε e−�∗
n |τε |, (24)

with the resonance width �∗
n = (�2

n/2 + �2/4)1/2.

A. Overdamped limit

The remaining A integral in Eq. (24) can be evaluated
directly in the overdamped limit � � � in which �∗

n ≈ �/2
and, thus,

W (τε,τA) = 1

2π�

∫
dAe−iAτA

∑
n

�2
ne

−in�τε . (25)

Focusing on the range of small τε , we have neglected the last
exponential of Eq. (24). To proceed, we evaluate the sum∑

n

(�n)(�ne
−in�τε ), (26)

where the two factors are easily identified as the nth Fourier
coefficients of exp{−iAF (t)} and exp{−iAF (t + τε)}, respec-
tively; cf. the definition of �n in Eq. (18). Thus, expression (26)
represents the inner product of these exponentials. According
to Parseval’s theorem, it can be written in the time domain to
read

1

T

∫ T

0
dt eiAF (t)e−iAF (t+τε ). (27)
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We symmetrize the integrand via the substitution t → t − τε/2
and perform the A integration to obtain

W (τε,τA) = 1

T

∫ T

0
dt δ(τA − G(t,τε)) (28)

= 1

T

∑
ti

1

|g(ti,τε)| , (29)

where

G(t,τε) = F (t + τε/2) − F (t − τε/2), (30)

g(t,τε) = f (t + τε/2) − f (t − τε/2). (31)

The sum in Eq. (29) has to be taken over all times ti that fulfill
τA = G(ti,τε).

Expressions (28) and (29) allow us to extract the arc
structure by the following reasoning. On the one hand, the
argument of the δ function in Eq. (28) specifies the times
ti that contribute to the integral. On the other hand, the
most significant contributions to W stem from regions where
the denominator in Eq. (29) vanishes. Thus, the structure is
determined by the conditions

0 = g(t,τε), (32)

τA = G(t,τε), (33)

which describe one-dimensional manifolds in the Fourier
space (τε,τA). They correspond to the arcs in Figs. 1(g)–1(i).
In practice, the arc structure is obtained in the following way.
One determines from g(ti,τε) = 0 all zeros ti(τε) and inserts
them into Eq. (33), which yields relations of the type τ

(i)
A (τε).

Obviously, τA = τε = t = 0 is a trivial solution for any
driving shape f (t). Thus, the Fourier transform of any LZSM
pattern exhibits a peak at the origin and, owing to the
periodicity of the driving, at multiples of T .

Two generic arcs can be found analytically if the driving
obeys time-reversal symmetry, f (t − ts) = f (−t − ts) (with-
out loss of generality, we henceforth assume ts = 0). Then
Eq. (32) possesses the solutions t1 = 0 and, owing to the T

periodicity of f , t2 = T/2. They provide the arcs

τ
(1)
A = 2F (τε/2), (34)

τ
(2)
A = 2F (τε/2 + T/2), (35)

which are in agreement with Ref. [15].
If a symmetric driving f has only one minimum and one

maximum per period, such as f1 or f (t) = cos(�t), t1 and
t2 are the only roots of Eq. (32). Then the arc structure for
symmetric driving can be obtained fully analytically. This
knowledge facilitates the analysis if one employs LZSM
interference to determine decoherence properties of a qubit
via the arc decay [14].

In all other cases, i.e., when f is not symmetric or if it
possesses more than two extrema per period, we have to solve
Eq. (32) numerically to obtain also the “nongeneric” arcs.
For the symmetric driving f2, this leads to the ellipse-shaped
solutions sketched in the lower panel of Fig. 5(a). Upon
reducing the amplitude of the harmonic with frequency 2�,
they shrink and eventually vanish. Together with the generic

− 1

0

1

− 1 0 1

t/
T

τ /T
− 1 0 1

τ /T

− 1

0

1− 1

0

1
(a) (b)

FIG. 5. (Color online) Determination of the “nongeneric” arcs
for the driving shapes f2 (a) and f3 (b). The color code in the lower
panels depicts G(t,τε), while the horizontal dashed lines mark the
generic solutions of Eq. (32) at multiples of T/2. The solid lines
represent numerical solutions of Eq. (32). Significant contributions
to W (τε,τA) are determined by the solutions of the transcendental
equations (32) and (33), i.e., the cuts of G(t,τε) along the solid and
dashed lines. Projection of these solutions on the τε axis (hinted by
vertical dotted lines) results in the arc structures plotted in the upper
panels and in Figs. 1(h) and 1(i).

solution, we obtain the structure shown in the upper panel
of Fig. 5(a). In particular, there is a region in which the
arc splits into two branches. This prediction is quantitatively
confirmed by the numerical solution of the full problem shown
in Fig. 1(h).

If f is not time-reversal symmetric, we generally have to
determine all ti numerically. For the driving shape f3, this
procedure is visualized in Fig. 5(b), where the solid lines in
the lower panel depict the zeros of g(t,τε) which define two
independent manifolds ti(τε) and those related by the time
shift t → t + T . The corresponding arc structure shown in the
upper panel agrees with the one obtained numerically that is
shown in Fig. 1(i).

B. Weak dissipation

In the limit of weak dissipation, � 
 �n, the resonance
width in Eq. (24) becomes �∗

n = |�n|/
√

2, so that we have to
evaluate the Fourier transform of

∑
n |�n(A)|. This represents

a rather difficult task and, thus, we discuss it only on a
qualitative level.

A main effect of the cusps stemming from the absolute
value is the emergence of higher harmonics; cf. the Fourier
transform of expressions such as | cos(�t)|. Accordingly, in
the Fourier transform of our interference patterns, we find arcs
of higher order, as can be appreciated in Figs. 1(g)–1(i). To be
specific, the arcs given by Eqs. (34) and (35) are generalized
to

τA = 2kF (τε/2k + k′T/2k), (36)

where k = 1,2,3, . . . and k′ = 0,1, . . . ,2k − 1. This predic-
tion agrees with our numerical findings shown in Figs. 1(g)
and 1(h). From a theoretical point of view, it is interesting
to see that arcs of higher order are found already within a
two-level description, i.e., within the most basic model for
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LZSM interference. Thus, their emergence does not require
the consideration of further levels or nonlinearities.

V. DECAY OF THE ARC STRUCTURE

A promising application of LZSM interferometry is to
determine microscopic model parameters such as the dimen-
sionless dissipation strength α. In Ref. [14], this was performed
by comparing the decay of the arc structure of measured
LZSM patterns with theoretical data. The underlying analysis
requires that the decay is noticeably influenced by α and by
the temperature. Therefore, we wish to explore numerically
whether such a dependence can be found also for the present
spin-boson model. Some examples for the arc decay are
shown in Fig. 6(a). It can be appreciated that, in the vicinity
of τε ≈ T/4, the Fourier amplitude decays exponentially,
W (τε) ∝ exp(−λτε). This implies that there the decay can be
characterized by one parameter only, namely, the rate λ which
we determine within a numerical fit procedure. The central

0

0.5

1

1.5

0 0.05 0.1 0.15 0.2

λ
/Ω

α

σx coupling
σz coupling

(b)

0

0.5

1

0 2.5 5 7.5 10

λ
/Ω

1/β Ω

σx coupling
σz coupling

(c)

0

2.5

5

7.5

0 0.25 0.5 0.75 1

ln
W

(τ
)

τ /T

1/β = 0.5 Ω

1/β = 5 Ω

1/β = 10 Ω

(a)

FIG. 6. (Color online) Analysis of the principal arc for the
driving f (t) = cos(�t) and system-bath coupling with � = 0.5�.
(a) Fourier transform of the interference pattern, W (τε,τA), along
the principal arc τA = 2F (τε/2) for σx coupling and α = 0.05. The
symbols show numerical results for different temperatures 1/β, while
the straight lines are fits to an exponential decay. (b) Decay rate
λ for temperature 1/β = 0.5�� as a function of the dissipation
strength α. The error bars are determined by slightly varying the fit
range. (c) Decay rate as a function of the temperature for dissipation
strengths α = 0.05.

question is then whether λ exhibits a clear α dependence, in
particular in the regime of low temperatures ��β � 1 and
small tunneling � � ��, in which most LZSM patterns have
been measured. Figures 6(b) and 6(c) show the decay rate
as a function of the dissipation strength and the temperature,
respectively.

For longitudinal bath coupling, the rate exhibits a rather
weak parameter dependence. A possible reason for this is
that dissipative decays happen mainly during the short stages
when the levels cross. Therefore the effective decoherence
rate is always much smaller than the “natural” width of the
asymmetric peaks given by �n; cf. Fig. 4(a) and Eq. (22).
At first sight, this weak parameter dependence seems not in
accordance with the LZSM patterns for open quantum dots
with a bath coupling via σz [14]. Notice however that the
open double quantum dot used there is beyond the present
model. First, the description of electron transport requires one
to take more states and different electron numbers into account,
especially when spin effects also play a role. Second, there
the dot-lead coupling is responsible for the main dissipative
effects, while the bath coupling represents a perturbation and
does not influence the qualitative behavior.

For the transverse bath coupling via σx , by contrast, λ grows
significantly and monotonically with the dissipation strength
α, a feature that is essential for the fixing of α from measured
data. The behavior as a function of the temperature is more
involved and even nonmonotonic. For very low temperatures,
the decay rate starts with a value λ ≈ 0.4�, followed by a
steep increase until the thermal energy matches the photon
energy. Then a slow decay sets in which lasts until eventually
the range of exponential decay becomes so small that the fitting
procedure is no longer reasonable.

VI. CONCLUSIONS

We have developed a comprehensive picture of LZSM
interference for the spin-boson model and thereby extended
previous results to arbitrary shapes of the periodic driving
and a generalized qubit-bath coupling. Our central quantity
of interest was the time-averaged population of the excited
state of the undriven qubit. For its numerical computation, we
have employed a Bloch-Redfield master equation decomposed
into the Floquet states of the driven qubit, while avoiding any
rotating-wave approximation even in its moderate form. Thus,
our long-time solution contains the full information about the
coherences.

The interference patterns in “real space”, i.e., as a function
of the detuning and the driving amplitude turned out to be
governed by the qubit operator that couples to the environ-
mental degrees of freedom. By contrast, the shape of the
driving is of minor relevance. In particular, we found that
for a bath coupling that is transverse with respect to the
driving, the resonances are Lorentzians, while they possess
an anti-symmetric structure in the longitudinal case. By a
mapping to an effective static Hamiltonian we have obtained
Bloch equations which yield expression for the LZSM patterns
in agreement with numerical results. As a further feature, the
LZSM pattern exhibits a triangular background which can
be explained within an adiabatic approximation for the full
time-dependent Bloch equations. Moreover, in the presence
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of both a transverse and a longitudinal bath coupling, the
influence of the transverse coupling prevails.

The Fourier transform of the LZSM patterns provides a
complementary picture. This representation of the interference
pattern is dominated by the shape of the driving manifest in
the arc structure. The solution of our effective Bloch equations
allowed us to generalize knowledge about these arcs. For a
driving with time-reversal symmetry, they are given by the inte-
gral of the driving. In addition, they may develop side branches
which can be explained within our analytical approach, but
their determination requires the moderate effort of numeri-
cally solving a transcendental equation. The same numerical
procedure also serves for the case of asymmetric driving.

A promising application of LZSM interferometry is the
fixing of dissipative parameters by comparing the arc decay
for experimental and theoretical data. In this spirit, we have
performed the corresponding theoretical calculations. They
show that for transverse bath coupling, the decay rate increases
significantly with dissipation strength and temperature, as long
as the thermal energy does not exceed the energy quantum of
the driving. Thus, in particular for predominantly transverse
coupling and low temperatures, LZSM interference represents
a useful tools for analyzing decoherence properties. For purely
longitudinal bath coupling, by contrast, the arc decay depends
only weakly on dissipation.

Our investigation reveals that already the LZSM pattern of
a qubit is quite intriguing. It may become even more involved
for Landau-Zener scenarios with three or more levels [30,31]
which are relevant when spin effects enter [32] or for a qubit
that couples to additional degrees of freedom such as, e.g., an
exciton in a photonic crystal with a coupling modulated by
a surface acoustic wave [33]. LZSM interferometry for such
setups represents an emerging field of investigation.
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APPENDIX: BLOCH EQUATIONS

In order to derive an equation of motion for the time-
independent qubit, we start from the master equation (4) and
notice that for the Ohmic spectral density J (ω) = 2παω,
the antisymmetric bath correlation function (6) becomes

A(τ ) = 2παδ′(τ ). This has for the τ integral in Eq. (4) the
consequence that the Heisenberg operator X̃ turns into its time
derivative evaluated at τ = 0. Thus it can be expressed by the
commutator i[H,X], and we obtain

ρ̇ = −i[H,ρ] − 1

4
[X,[Q,ρ]] + πα

4
[X,{[H,X],ρ}], (A1)

where the second term depends on the coherent qubit dynamics
via the operator

Q = 1

2

∫ +∞

−∞
dτ S(τ )X̃(−τ ). (A2)

Since all analytical results of the main paper can be mapped by
a permutation of the Pauli matrices to a qubit in its eigenbasis
with a qubit-bath coupling via either X = σx or X = σz, we
consider the Hamiltonian

H = E

2
σz. (A3)

For X = σx , the Heisenberg operator in Eq. (A2) reads
σ̃x(−τ ) = σx cos(Eτ ) − σy sin(Eτ ). With this expression at
hand, it is straightforward to evaluate the operator Q and to
map the master equation (A1) to an equation of motion for the
Bloch vector �s = tr(�σρ). After some algebra and a rotating-
wave approximation, we find the Bloch equation

d

dt
�s =

⎛
⎝−�/2 E 0

−E −�/2 0
0 0 −�

⎞
⎠�s +

⎛
⎝ 0

0
παE

⎞
⎠, (A4)

where the rate

� = παE coth(βE/2) (A5)

depends on the qubit splitting and at low temperatures,
kT 
 E, it becomes � = πα|E|.

For σz coupling, the Heisenberg operator of the bath
coupling is time independent, σ̃z(−τ ) = σz, so that the τ

integral yields the Fourier transform of the symmetric spectral
density at zero frequency. Moreover, the last term of the master
equation (A1) vanishes. Accordingly, the Bloch equation is
homogeneous and reads

d

dt
�s =

⎛
⎝−�ϕ E 0

−E −�ϕ 0
0 0 0

⎞
⎠�s, (A6)

where the dephasing rate

�ϕ = 4παkT (A7)

vanishes in the zero-temperature limit. Notice that the z

component of the Bloch vector is conserved.
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