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Abstract—We study transport properties of an inertial Brown-
ian motor which moves in a symmetric spatially periodic potential
and is subjected to both a symmetric, unbiased time-periodic
driving a cos (ωt) and a static constant force F or, likewise,
nonequlibrium noise of equal mean value 〈η(t)〉 = F . We focus
on the efficiency of the motor and discuss various definitions.
We show that within selected parameter regimes, nonequilibrium
noise η(t) can be significantly more effective than the determinis-
tic force F . This implies that the motor moves much faster and its
efficiency distinctly increases. These features are independent of
the assumed Brownian motor efficiency measure. We demonstrate
this feature with detailed simulations by resource to generalized
white Poissonian noise. Our theoretical results can be tested and
corroborated experimentally by use of a setup that consists of a
resistively and capacitively shunted Josephson junction.

I. INTRODUCTION

Interaction of nonlinearity and noise in nonequilibrium sys-
tems often gives rise to subtle and counterintuitive phenomena,
in the sense that those might seem at first glance to con-
tradict our everyday experience. Prominent examples include
stochastic resonance [1], Brownian ratchets [2], [3], molecular
motors and machines [4], or intra-celluar transport [5], to name
only a few. In particular, transport processes in the microscale
domain in situ occur in strongly fluctuating environments.
Typically randomness hinders directed transport manifested
in quantifiers such as the average velocity of a Brownian
particle. However, a constructive role of both equilibrium
and nonequilibrium fluctuations has since been demonstrated
in many noise-assisted phenomena including enhancement of
diffusion [6] and amplification of transport efficiency [7]. The
standard way to move particles into a desired direction is to
apply a constant force F pointing in this direction. Here we
show that a stochastic force η(t) of equal mean value as F can
be much more effective than its deterministic counterpart. We
demonstrate this fact with an archetypal model of Brownian
motor. In doing so, we concentrate on an unusual regime in
which the Brownian particle moves in a direction opposite
to a biasing force thus indicating the anomalous transport
behaviour in the form of Absolute Negative Mobility (ANM)
[8]–[13].

The layout of the present work is as follows. In Sec. II
we describe a mathematical model of the inertial Brownian
motor which is driven by both a time periodic and constant
force F or biased noise η(t). In the next part we present the
detailed analysis of three quantifiers characterizing efficiency

of the Brownian motor. The last section provides a summary
and the conclusions.

II. FORMUALTION OF THE MODEL

We consider a classical Brownian particle of mass M =
1 moving in a one dimensional periodic potential V (x) =
V (x+ 1) = sin 2πx and driven by an unbiased time-periodic
force a cos (ωt) with amplitude a and angular frequency ω. We
study two scenarios: the system is subjected to (i) a constant
force F or (ii) nonequlibrium noise η(t). In order to compare
these two cases we set the mean value of noise η(t) equal
to F , namely 〈η(t)〉 = F . The corresponding dimensionless
Langevin equations read

ẍ+ γẋ = −V ′(x) + a cos(ωt) +
√

2γDT ξ(t) + F, (1a)

ẍ+ γẋ = −V ′(x) + a cos(ωt) +
√
2γDT ξ(t) + η(t) , (1b)

where the dot and the prime denote a differentiation with
respect to time t and position x of the Brownian particle, re-
spectively. The parameter γ is the friction coefficient. Thermal
equilibrium noise is modeled by symmetric and unbiased δ-
correlated Gaussian white noise ξ(t) of mean 〈ξ(t)〉 = 0 and
the correlation function 〈ξ(t)ξ(s)〉 = δ(t − s). Its intensity
DT ∝ kBT is proportional to the thermal energy, where
T is temperature and kB is the Boltzmann constant. The
dimensional version of Eqs. (1) and corresponding scalings
of time and the particle position is presented in Ref. [14].
From Eq. (1a) it follows that the average particle velocity
〈v(F )〉 obeys the relation 〈v(F )〉 = −〈v(−F )〉. In particular,
〈v(0)〉 = 0, so for F = 0 there is no directed transport
in the asymptotic long-time regime. The static force F �= 0
breaks the symmetry and therefore induces a directed motion
of the particle. From the above it follows that we can limit
our considerations to the case of positive values of the force
F > 0.

As a model of biased noise η(t) > 0 we choose generalized
white Poissonian noise [15], reading

η(t) =

n(t)∑
i=1

ziδ(t− ti) , (2)

where ti are the random times of a Poissonian counting process
n(t) with the parameter λ. This noise is a random sequence
of δ-pulses with random amplitudes zi. The probability that
k pulses occur in the interval (0, t) is given by the Poisson
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distribution Pr{n(t) = k} = (λt)k exp(−λt)/k!, with λ being
the mean number of δ-pulses per unit time. The amplitudes
{zi} are mutually independent random variables of a common
density ρ(z) and are independent of the counting process n(t).
Without loosing of generality, we can assume that they are
exponentially distributed; i.e., ρ(z) = ζ−1θ(z) exp(−z/ζ),
where θ(z) is the Heaviside step function. In consequence,
all amplitudes {zi} are positive and realizations of the process
η(t) are non-negative, i.e. η(t) ≥ 0. This biased nonequilib-
rium noise thus has finite mean 〈η(t)〉 = λ〈zi〉 =

√
λDP

and the covariance function (〈η(t)η(s)〉 − 〈η(t)〉〈η(s)〉) =
2DP δ(t−s). We introduced the Poisson noise intensity DP =
λ〈z2i 〉/2 = λζ2, where 〈zki 〉 = k!ζk are statistical moments of
the amplitudes {zi}. We also assume that thermal equilibrium
fluctuations ξ(t) are uncorrelated with nonequilibrium noise
η(t); i.e., 〈ξ(t)η(s)〉 = 〈ξ(t)〉〈η(s)〉 = 0. The influence
of the Poissonian noise parameters λ and DP on stochastic
realizations of η(t) is presented in [14]. Here, we only mention
two extreme regimes. The first limiting case is for both, λ and
DP large, implying that the particle becomes frequently kicked
by large δ-pulses. On the contrary, when both λ and DP are
small, then the particle is only rarely kicked by δ-pulses of
small amplitudes.

III. BROWNIAN MOTOR EFFICIENCY

The crucial transport quantity characterizing a Brownian
motor is its average velocity. In the asymptotic long time
regime, it is determined by the relation [16]

〈v〉 = lim
t→∞

ω

2π

∫ t+2π/ω

t

E[v(s)] ds, (3)

where E[v(t)] denotes the average of the actual velocity v(t) =
ẋ(t) over the noise realizations and initial conditions. However,
it is not necessarily of a decisive character in attaining optimal
efficiency for the working operation. For example, a large
transport velocity is of little use if the fluctuations are too
erratic around the average velocity, thus spoiling effectiveness.
We next study the magnitude of the velocity fluctuations. In
the long time regime these are given by the variance

σ2
v = 〈v2〉 − 〈v〉2. (4)

If the variance is large, i.e. if σv > 〈v〉, the Brownian motor
can move for some time in the direction opposite to its average
velocity 〈v〉.

As a measure of the transport effectiveness, we use effi-
ciency defined as the ratio between output and input power

ε =
Pout

Pin
. (5)

The input power Pin = 〈G(t)v〉 is supplied to the system
by all external forces G(t), i.e. G(t) = a cos (ωt) + F or
G(t) = a cos (ωt)+η(t). To obtain its magnitude let us recast
Eqs. (1) into the following form:

dx = vdt, (6)

dv = − (γv + V ′(x)−G(t)) dt+
√
2γDT dW (t), (7)

where W (t) is the Wiener process characterized by its two first
moments 〈W (t)〉 = 0 and 〈W 2(t)〉 = t. We now calculate the
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Fig. 1. The asymptotic long time stationary averaged velocity 〈v〉 of the
studied Brownian particle is presented versus the magnitude of the constant
F or random 〈η(t)〉 bias in the ANM regime. Parameters are: a = 8.95, ω =
3.77, γ = 1.546, DT = 0.001, λ = 151.

differential of the dimensionless kinetic energy v2/2. In order
to achieve this, we first use Ito’s differential calculus getting

d(v2/2) =− (
γv2 + vV ′(x)−G(t)v − γDT

)
dt

+
√

2γDT vdW (t). (8)

Next, we perform the ensemble average for the rate of change
of the kinetic energy

d

dt
E[v2/2] =− (γE[v2] + E[vV ′(x)]

− E[G(t)v]− γDT ), (9)

where for the part containing the Wiener process we exploited
the Ito martingale property. Next, according to the formula (3),
we average over the temporal period of the external harmonic
force. Due to the periodicity of the asymptotic long time
probability density [16] two terms are zero and we finally
obtain

Pin = γ[〈v2〉 −DT ] = γ[〈v2〉 − 〈v2〉eq]
= γ[〈v〉2 + σ2

v − 〈v2〉eq], (10)

where, according to the equipartition theorem, in the thermody-
namical equilibrium 〈v2〉eq = DT . Note that the input energy
depends not only on the force G(t) but also (via 〈v2〉) on all
other parameters of the system.

Depending on the specific choice of the numerator Pout

in (5) different definitions of the Brownian motor efficiency
characterize various aspects of energetics of the system. In
particular, if the particle is working against a constant load F
then efficiency of energy conversion [17] can be defined as

εe =
|F 〈v〉|
Pin

=
|F 〈v〉|

γ(〈v2〉 −DT )
. (11)

Another possibility is to choose the friction force Fv = γv
yielding the well known Stokes efficiency [18]

εs =
Fv〈v〉
Pin

=
γ〈v〉〈v〉

γ(〈v2〉 −DT )
=

〈v〉2
〈v2〉 −DT

. (12)

However, one should be aware of the fact that this is not
exactly output power coming from work against the friction
force as it should be proportional to 〈v2〉 rather than 〈v〉2 (see
the discussion in [19]). Finally when we consider the kinetic
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Fig. 2. The efficiency of energy conversion εe, the Stokes efficiency εs and finally the kinetic efficiency εk are presented as a function of the constant F or
stochastic 〈η(t)〉 bias (left panels), the angular frequency of the external harmonic driving ω (middle panels) and the friction coefficient γ (right panels). Upper
figures correspond to the scenario when the Brownian particle is subjected to the static bias F whereas the bottom ones represent the case of the stochastic
perturbation of equal mean value 〈η(t)〉 = F . Other parameters are the same as in Fig. 1. Additionally, in panels (c)-(f) the bias has fixed constant value
〈η(t)〉 = F = 0.58.

energy of the Brownian particle per period of the external
harmonic driving we get the so called kinetic efficiency

εk =
(〈v〉2/2)(ω/2π)
γ(〈v2〉 −DT )

=
ω〈v〉2

4πγ(〈v2〉 −DT )
. (13)

Physical intuition tells us that large fluctuations σv of the
velocity reduce efficiency. In turn, when velocity fluctua-
tions are small efficiency should be greater. All definitions
of the motor efficiency presented above are consistent with
this premonition. Put differently, transport is optimized in
regimes which maximize the directed velocity and minimize
its fluctuations.

The deterministic dynamics, i.e. when DT = DP = 0 in
(1) is extremely rich, complex and complicated [20], [21]. De-
pending on the parameter values, locked and running solutions
can be observed. Moreover, dynamics involve periodic, sub-
harmonic, quasiperiodic and chaotic motion. Since the Fokker-
Planck-Kolmogorov-Feller master equation [15] corresponding
to the white noise driven Langevin equations (1a) or (1b)
surely cannot be solved analytically, we performed extensive
numerical simulations. The specific details of the employed
numerical code can be found in [22]. Here, we only mention
that all numerical simulations were done by use of a CUDA
environment which is implemented on a modern desktop GPU.
This scheme allowed for a speed-up of a factor of the order
103 as compared to a present-day CPU method [22], [23]. Our
so obtained main results are presented next.

Due to high multidimensionality of the parameter space
{γ, a, ω,DT , F, λ,DP } it is impossible to probe the full space
numerically even for the powerful modern processing units.
We therefore restrict our analysis to a particular, however
interesting regime exhibiting the anomalous transport behavior
in form of the ANM. We start with the asymptotic average
velocity 〈v〉. This quantity is typically reduced when the con-
stant deterministic force F is replaced by the biased random

perturbation η(t), see Fig. 1. However, there are also regimes
in the parameters space where η(t) is more effective. The
characteristic feature is emergence of the interval where for
sufficiently large 〈η(t)〉 > 0 the random force can induce
negative average velocity 〈v〉 < 0 . Moreover, there exists
an optimal value for the bias 〈η(t)〉 ≈ 0.58 at which the
average velocity takes its minimal value. The most interesting
is the fact that in the case of the stochastic force η(t) the
absolute value of 〈v〉 is nearly two times greater than in the
corresponding deterministic case F .

Let us now analyze the Brownian motor efficiency in
this particular regime exhibiting very intriguing anomalous
transport features. The corresponding plots are depicted in Fig.
2. Panel (a) and (b) presents various previously introduced
measures of Brownian motor effectiveness, i.e. the energy con-
version εe, Stokes εs and kinetic εk efficiency as a function of
the static deterministic F and random 〈η(t)〉 bias, respectively.
It follows from the definition that the energy conversion effi-
ciency εe approaches zero when the forces 〈η(t)〉 = F → 0.
This is also the case in two other effectiveness quantifiers as
they are both proportional to square of the asymptotic long-
time stationary velocity 〈v〉2 which is negligibly small for
vanishing the symmetry breaking force of either deterministic
F or stochastic η(t) nature. The reader can observe very
congruent functional dependence of all types of efficiency.
However, the energy conversion efficiency εe is the largest
of them, whereas the kinetic efficiency εk is the smallest. The
locally maximal efficiency of energy conversion εe = 0.0164
for F = 0.61 and εe = 0.0317 for 〈η(t)〉 = 0.57, the Stokes
efficiency εs = 0.0065 for F = 0.59 and εs = 0.0265 for
〈η(t)〉 = 0.54, the kinetic efficiency εk = 0.0013 for F = 0.59
and εk = 0.005 for 〈η(t)〉 = 0.54. The most important remark
is the occurrence of an optimal value of force 〈η(t)〉 = F
regardless of the definition of the efficiency. In particular, by
use of the biased random force, Stokes and kinetic efficiencies
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grow by a factor of 4 and efficiency of energy conversion grows
by the factor 2 over the value obtained with a deterministic
force, compare the upper and bottom panels. This effect
is directly related to the property that the stochastic force
enhances the absolute value of velocity but also minimize its
fluctuations [7].

Panel (c) and (d) depict the same efficiency measures but as
a functions of the angular frequency ω of the external harmonic
driving a cos (ωt). Again, the dependence is similar regardless
of the type of efficiency. However, now it is much more
complicated being rather nonlinear and nonmonotonic curve.
Here the Stokes efficiency is the largest of them. Notably, the
kinetic one depends explicitly on the frequency of the driving
ω and equals zero under its absence. One can observe that the
efficiencies vanish for the sufficiently large angular frequency
ω. It is due to the fact that very fast oscillations of the
harmonic driving significantly hamper the directed transport
and consequently lower its efficiency. Not unexpectedly, there
are intervals of ω for which the transport induced by the
static bias F is more effective than one caused by the random
perturbation η(t). However, there are also values of the angular
frequency when the situation is completely opposite. The last
two panels ((e) and (f)) shows various types of Brownian
motor efficiency versus the friction coefficient γ. The Stokes
efficiency possesses the largest efficiency. Similarly to the
previous two panels the functional dependence behaves in non-
monotonic manner. Generally the efficiency of the directed
transport process induced by the static bias F or random
forcing η(t) is comparable. However, there exist windows of
the friction coefficient γ for which either the first or the second
one is more efficient.

IV. SUMMARY

We have studied in detail two scenarios of directed motion
of the inertial Brownian motors: one driven by the determinis-
tic force F and the other propelled by biased non-equilibrium
noise η(t). In particular, we find domains in the parameters
space such that when F is replaced by η(t) of equal average
bias, the motor velocity is several times larger and its efficiency
becomes considerably enhanced. Specific results are detailed
for generalized white Poissonian noise and exemplified in the
very intriguing regime of anomalous response in the form of an
absolute negative mobility. The main conclusion, remain valid,
however, as well for other models of random perturbations
and also for the tailored transport regime showing a normal
response (not depicted). Thus, the idea that random biased
forces can be beneficial over deterministic biasing carries po-
tential for practical realization in physics of Brownian motors.
Moreover, the proposed mechanism of a nonequilibrium noise
enhanced efficiency may explain exotic transport phenomena
not only in physical but also in biological settings. It can be
implemented in enhancing the working efficiency of synthetic
molecular motors, for example, in a setup consisting of a the
resistively and capacitively shunted Josephson junction device
operating in corresponding experimentally accessible regimes.
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