
        
Simulation of Heat Transport
in Low-Dimensional Oscillator Lattices
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Abstract The study of heat transport in low-dimensional oscillator lattices presents
a formidable challenge. Theoretical efforts have been made trying to reveal the
underlying mechanism of diversified heat transport behaviors. In lack of a unified
rigorous treatment, approximate theories often may embody controversial pre-
dictions. It is therefore of ultimate importance that one can rely on numerical
simulations in the investigation of heat transfer processes in low-dimensional
lattices. The simulation of heat transport using the non-equilibrium heat bath method
and the Green-Kubo method will be introduced. It is found that one-dimensional
(1D), two-dimensional (2D) and three-dimensional (3D) momentum-conserving
nonlinear lattices display power-law divergent, logarithmic divergent and constant
thermal conductivities, respectively. Next, a novel diffusion method is also intro-
duced. The heat diffusion theory connects the energy diffusion and heat conduction
in a straightforward manner. This enables one to use the diffusion method to
investigate the objective of heat transport. In addition, it contains fundamental
information about the heat transport process which cannot readily be gathered
otherwise.
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6.1 Simulation of Heat Transport with Non-equilibrium Heat
Bath Method and Equilibrium Green-Kubo Method

We start out by considering numerically heat transport in typical momentum-
conserving nonlinear lattices, from 1D to 3D. The numerical simulations are
performed with two different methods: the non-equilibrium heat bath method and
the celebrated equilibrium Green-Kubo method. Our major focus will be on the
length dependence of thermal conductivities where the asymptotic behavior towards
the thermodynamic limit is of prime interest. As a result, numerical simulations
are usually taken on lattices employing very large up to even huge system sizes.
Therefore, in order to get a compromise between better numerical accuracy and
acceptable computational cost, a 5-th order Runge-Kutta algorithm [1] is applied
for the simulations of the dissipative systems in the former case, while an embedded
Runge-Kutta-Nystrom algorithm of orders 8(6) [2, 3] is applied for the simulations
of the conservative Hamiltonian systems in the latter case.

6.1.1 Power-Law Divergent Thermal Conductivity in 1D
Momentum-Conserving Nonlinear Lattices

Heat conduction induced by a small temperature gradient is expected to satisfy the
Fourier’s law in the stationary regime:

j D ��rT; (6.1)

where j denotes the steady state heat flux, rT denotes the small temperature
gradient, and � denotes the thermal conductivity. In practical numerical simulations,
the temperature difference �T is usually fixed for convenience. In this setup, for a
system with length L, the steady state heat flux j should be inversely proportional
to L: j D ���T=L, if Fourier’s law is obeyed and � is a constant. However, for
many 1D momentum-conserving lattices [4, 5], it is numerically found that j decays
as L�1C˛ with a positive ˛. This finding indicates that the thermal conductivity �
is length dependent and diverges with L as � / L˛ in the thermodynamical limit
L ! 1. The Fourier’s law is broken and the heat conduction is called anomalous.

For this anomalous heat conduction, transport theories from different approaches
make different predictions for the divergency exponent ˛ [5]. The renormalization
group theory [6] for 1D fluids predicts a universal value of ˛ D 1=3 and it is
claimed that the thermal conductivity of oscillator chains including the Fermi-Pasta-
Ulam (FPU) lattices should diverge in this universal way [7]. Early Mode-Coupling
Theories (MCT) predict one universal value of ˛ D 2=5 for all 1D FPU lattices [4],
while another MCT taking the transverse motion into account predicts ˛ D 1=3

[8, 9]. Later, a self-consistent MCT proposes that there should be two universality
classes instead of one. It states that models with asymmetric interaction potentials
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are characterized by a divergency exponent ˛ D 1=3, while models with symmetric
potentials are characterized by a larger value of ˛ D 1=2 [10–12]. The value of
˛ D 1=3 is also predicted by calculating the relaxation rates of phonons [13].—
For an intriguing discussion of the physical existence of anharmonic phonons and
its interrelation between a phonon mean free path and its associated mean phonon
relaxation time we refer the interested readers to recent work [14].

A theory based on Peierls-Boltzmann equation is applied for the FPU-ˇ lattice,
and ˛ D 2=5 is predicted [15]. In [16], energy current correlation function is studied
for the FPU-ˇ lattice and ˛ D 2=5 is found with small nonlinearity approximation.
Similar to the discrepancy among theoretical predictions, numerical results are also
not convergent. For example, an early numerical study suggests ˛ D 2=5 [17], while
some recent studies support ˛ D 1=3 [18–20].

In this section, we numerically study heat conduction in typical 1D nonlinear
lattices with the following Hamiltonian

H D
X

i

Œ
p2i
2

C V.ui � ui�1/�; (6.2)

where pi and ui denotes the momentum and displacement from equilibrium position
for i-th particle. For convenience, dimensionless units are applied and the mass of
all particles can be set as unity. The interaction potential energy between particles
i and i � 1 is Vi � V.ui � ui�1/. The interaction force is correspondingly obtained
as fi D �@Vi=@ui. The local energy belongs to the particle i is defined here as Ei D
Pp2i
2

C 1
2
.Vi CViC1/, i.e., neighboring particles share their interaction potential energy

equally. The instantaneous local heat flux is then defined as ji � 1
2
.Pui C PuiC1/fiC1

and the total heat flux is defined as J.t/ � P
i ji.t/.

The interaction potential takes the general FPU form as V.u/ D 1
2
k2u2C 1

3
k3u3C

1
4
k4u4. The following three types of lattices will be studied, i.e., (1) the FPU-˛ˇ

lattices with k2 D k4 D 1; k3 D 1 (in short as FPU-˛1ˇ lattice); and k2 D k4 D 1;

k3 D 2 (in short as FPU-˛2ˇ lattice); (2) the FPU-ˇ lattice with k2 D k4 D 1,
k3 D 0; and (3) the purely quartic or the qFPU-ˇ lattice with k2 D k3 D 0, k4 D 1.
The interactions in the FPU-˛ˇ lattices are asymmetric, i.e., V.u/ ¤ V.�u/, while
the interactions in other lattices are symmetric. In the former case, the temperature
pressure is nonvanishing, finite in the thermodynamic limit [21].

6.1.1.1 Non-equilibrium Heat Bath Method

Firstly, we calculate the thermal conductivity �NE according to the definition
Eq. (6.1) with the non-equilibrium heat bath method. The subscript ‘NE’ indicates
that the calculation is in non-equilibrium steady states. To this end, fixed boundary
conditions are applied, i.e., u0 D uN D 0, with N being the total number of particles.
Since the lattice constant a has been set as unity in the dimensionless units, the
lattice length L is simply equivalent to the particle number N as L D Na D N. Two
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Langevin heat baths with temperatures T D 0:5 and 1:5 are coupled to the two ends
of the lattice, respectively. The equation of motion of the particle coupled to the heat
bath is described by the following Langevin dynamics

Ru D f � �Pu C �; (6.3)

where f denotes the interaction force generated from other particles, � denotes a
Wiener process with zero mean and variance 2�kBT, and � denotes the relaxation
coefficient of the Langevin heat bath. Generally, the resulting heat flux approaches
zero in both limits � ! 0 and � ! 1 [4]. In practice, the � has been optimized to
be 0:2 so as to maximize the heat currents. In order to achieve better performance,
we usually put more than one particles into the heat bath in each end [22, 23].

To avoid the effect of possible slow convergence [24], the simulations have been
performed long enough time until the temperature profiles are well established and
the heat currents along the lattice become constant, see Fig. 6.1. The temperature
gradient rT � dT

dL is calculated by linear least squares fitting of the temperature
profile in the central region, aiming to greatly reduce the boundary effects.

Fig. 6.1 Temperature profiles for (a) the FPU-˛1ˇ, (b) the FPU-˛2ˇ, (c) the FPU-ˇ, and (d) the
purely quartic lattices with various length L. Only the temperature profiles in the central region
are taken into account in calculating the temperature gradient dT

dL , i.e., the left and right 1/4 of the
lattices are excluded in order to remove boundary effects
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Fig. 6.2 Thermal
conductivity �NE versus
lattice length L. The reversed
tendency can be roughly seen
in the rightmost part of the
figure

This so evaluated thermal conductivity �NE.L/ are plotted for different 1D
lattices in Fig. 6.2. For the lattices with asymmetric interactions, a very flat length-
dependence of thermal conductivity is observed with L ranging from several
hundreds to ten thousands sites. However, for even longer lengths, say, L > 1� 104,
the running slope of the thermal conductivity �NE.L/ as the function of L starts
to grow again. By comparing the results in the two FPU-˛ˇ lattices, we see that
the asymptotic tendency of curving up of �NE.L/ is not affected even for the case of
strong asymmetry (k3 D 2 is the maximum value that keeps the potential single well,
at the given k2 D k4 D 1). With the increase of asymmetry, the tendency of curving
up of �NE.L/ can only be postponed as shown in Fig. 6.2. Such a phenomenon can
also be observed in the FPU-ˇ lattice, although the effect is much more slight.
Because of this, the thermal conductivity in this lattice displays a little bit slower
divergence as L1=3 in a certain length regime [18]. This finite-size Fourier-like
behavior has been repeatedly observed recently in many 1D lattices [23, 25–29],
its physical reason is, however, still not clear.

6.1.1.2 Green-Kubo Scheme

The major drawback of the non-equilibrium heat bath method is the boundary effects
due to coupling with heat baths which are difficult to be sufficiently removed. In
addition, the temperature difference cannot be set as small values in this method,
otherwise the net heat currents can hardly be distinguished from the statistical
fluctuations. Therefore, the systems prepared in the non-equilibrium heat bath
method are far from ideal close-to-equilibrium states. Numerical difficulties also
prevent us from simulating even longer lattices. We thus turn to calculate the
equilibrium heat current autocorrelation functions with the Green-Kubo method,
which provides an alternative way of determining the divergency exponent ˛ [30].
No heat bath enters into the lattice dynamics.
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In a finite lattice with N particles, the heat current correlation function cN.�/ is
defined as

cN.�/ � 1

N
hJ.t/J.t C �/it: (6.4)

where h�i denotes the ensemble average, which is equivalent to the time average for
chaotic and ergodic systems considered here. Compared with cN.�/ for finite lattice,
its value in thermodynamic limit is much more meaningful, i.e.,

c.�/ � lim
N!1 cN.�/: (6.5)

According to the Green-Kubo formula [30], the thermal conductivity �GK is
integrated as

�GK � 1

kBT2

Z 1

0

c.�/d�: (6.6)

The Boltzmann constant kB is set to unity in the dimensionless units. But kB is kept in
formulas for the completeness of understanding. For anomalous heat conduction, the
above integral does not converge due to the slow time decay of c.�/ in asymptotic
limit. In common practice, the length-dependent thermal conductivity is calculated
by introducing a cutoff time ts D L=vs, instead of infinity, as the upper limit of the
integral, i.e.,

�GK.L/ � 1

kBT2

Z L=vs

0

c.�/d�; (6.7)

where the constant vs is the speed of sound and the subscript ‘GK’ denotes that the
calculation is based on the Green-Kubo formula. Since we are only interested in the
divergency exponent ˛ of �GK.L/, its exact value is not relevant to any conclusion
we made.

However, in numerical calculations, only lattices with finite N can possibly be
simulated. The cN.�/ generally depends on the lattice length N, and the finite-
size effects must be taken into consideration very carefully. We next present the
simulation with a very long lattice length of N D 20;000 followed by the discussion
of finite-size effects.

The simulations are carried out in lattices with periodic boundary conditions,
which is known to provide the best convergence to thermodynamic limit properties.
Microcanonical simulations are performed with zero total momentum and identical
energy density � which corresponds to the same temperature T D 1 for all lattices.
The energy density � equals to 0:864; 0:846; 0:867 and 0:75, for the 1D FPU-
˛1ˇ lattice, the FPU-˛2ˇ lattice, the FPU-ˇ lattice, and the purely quartic lattice,
respectively.
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Fig. 6.3 (a) The heat current correlation cN .�/ versus time lag � . Lines with slope �3=5 are drawn
for reference. Data for the FPU-ˇ and the purely quartic lattices fit them quite well in the long �
regime. (b) �GK.L/. Lines with slope 2=5 are drawn for reference. For the FPU-ˇ lattice, the slope
2=5 fits very well in the regime of L from 103 to 106. It fits for the purely quartic lattice in even
wider regime from 102 to 106

The time � dependence of cN.�/ are shown in Fig. 6.3a. In a very large window
of � , the cN.�/ for the FPU-ˇ lattice and the purely quartic lattice follows a power-
law decay of cN.�/ / �	 with 	 D �3=5 very well. It should be pointed out that
the decay exponent 	 is related to the divergency exponent ˛ as 	 D ˛ � 1 resulted
from Eq. (6.7). While for the FPU-˛ˇ lattices, the cN.�/ decays very fast before it
approaches an asymptotic power-law decay behavior.

The corresponding length dependence of the thermal conductivity �GK.L/ from
Eq. (6.7) is plotted in Fig. 6.3b. For the FPU-ˇ lattice, the best fit of the data from
L D 104 upward gives rise to a divergency exponent ˛ D 0:42, which strongly
prefers the theoretical prediction of ˛ D 2=5 to ˛ D 1=3. As for the purely
quartic lattice, the best fit of the data for L from 102 upward, covering four orders
of magnitude, yields ˛ D 0:41, which is even closer to the prediction of ˛ D 2=5.

Heat current correlation loss. To quantitatively evaluate the finite-size effects,
we plot the heat current correlation cN.�/ for the 1D purely quartic lattice with sizes
from N D 128 to N D 131;072 in Fig. 6.4a. We define a heat-current correlation
loss (CCL) �cN.�/ induced by the finite-size effects as

�cN.�/ � c.�/ � cN.�/: (6.8)

The relative loss �N.�/ is defined as

�N.�/ � �cN.�/

c.�/
D 1 � cN.�/

c.�/
: (6.9)

By setting a certain critical value 
 for the relative loss �N.�/, a characteristic time
lag, the cutoff time lag �c.N/ can be obtained for each length N by solving,

�N.�c.N// D 
: (6.10)
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Fig. 6.4 (a) The heat current
correlation cN .�/ for the
purely quartic lattice for
various lattice length N. Lines
with different slopes �2=3,
�3=5 and �1=2, respectively,
are drawn for reference. (b)
�N.�/ as a function of � for
various lattice length N.
Oblique solid lines from the
top down stand for the fittings
of �N.�/, 3N�1:16� 0:58, for N
ranging from 128 to 4096.
The horizontal dashed line
refers to �N.�/ D 0:1. �N.�/

cross this line at the cut off
time lag �c.N/. (c) The cutoff
time lag �c.N/ as a function
of the lattice length N. The
blue dashed line stands for
the expectation in Eq. (6.13),
2:84� 10�3N2

Since the asymptotic c.�/ can never be actually calculated, we thus need to
approximately replace c.�/ with cN.�/ for a finite long enough lattice instead.
Under any existing criterion [31], the length of N D 131;072 is long enough for
correlation times � � 5 � 104. Therefore, the asymptotic c.�/ refers to c131072.�/ in
the descriptions of our numerical simulations hereafter.

In Fig. 6.4b, the relative loss �N.�/ for the purely quartic lattice for various length
N is plotted . The �N.�/ is larger in shorter lattices as one should expect. Interesting
enough, all the data of �N.�/ as the correlation time � for various N fit the following
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universal relation quite well:

�N.�/ � 3N�1:16�0:58: (6.11)

This relation implies that the cutoff time lag �c.N/ should follow a square-law
dependence on the lattice length N:

�c.N/ � .



3
/

1
0:58 N2: (6.12)

For the critical value of 
 D 0:1, namely, the cN.�/ decreases to 90% of the value
of c.�/ at � D �c.N/. The cutoff time lag �c.N/ as the function of length N can be
obtained from Eq. (6.10) as

�c.N/ � 2:84 � 10�3N2: (6.13)

This is shown in Fig. 6.4c where good agreement with numerical data can be
observed.

It is reasonable to expect that Eq. (6.11) should also remain valid in larger N
regime. We are thus able to estimate the value of relative loss �N.�/ in Fig. 6.3a,
which is no more than 10%. Given the fact that cN.�/ / �	 was fitted over four
orders of magnitude of � , the underestimate of ı induced therefrom must not be
higher than j log10 0:9j=4 � 0:01. It is noticed that such an error is much smaller
than the difference between the three theoretical expectations 	 D �2=3, 	 D �3=5
and 	 D �1=2. The conclusion that c.�/ is best fitted as c.�/ / ��3=5 should not
be affected by this finite-size effect. We also expect that the cases in 2D [32] and
3D [33] purely quartic lattices are also similar.

In summary, we have numerically calculated the length-dependent thermal
conductivities � in a few typical 1D lattices by using both non-equilibrium heat bath
and equilibrium Green-Kubo methods. Consistent results are obtained for thermal
conductivity divergency exponent ˛. For the FPU-ˇ and the purely quartic lattices,
the thermal conductivities � follows a power-law length-dependence of � / L0:4

very well, for a wide regime of L. While for the asymmetric FPU-˛ˇ lattices, large
finite-size effects are observed. As a result, � increases with lattice length very
slowly in a wide range of L. Our numerical simulations indicate that � regains its
increase in yet longer length L [23, 26]. This is also consistent with some recent
studies [27, 28].

The studies of the heat current correlation loss in the purely quartic lattice
indicate that for a not-very-large N, cN.�/ is close enough to the asymptotic c.�/
within a very long correlation time � window. Therefore, we are able to extract
�GK.L/ from Eq. (6.7) with an effective very long L by performing simulations in a
lattice with relatively much smaller size N, i.e. L D vs�c >> N. The research area
of the investigation of heat transport applicable for the Green-Kubo method is thus
greatly broadened [34].
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6.1.2 Logarithmic Divergent Thermal Conductivity in 2D
Momentum-Conserving Nonlinear Lattices

For 2D and 3D momentum-conserving systems with higher dimensionality, con-
sistent predictions are achieved from different theoretical approaches. The linear
response approaches based on the renormalization group [6] and mode-coupling
theory [4, 35–37] both predict that the heat current autocorrelation function c.�/
decays with the correlation time � as c.�/ / �	 , where 	 D �1 and �3=2
for 2D and 3D, respectively. These predictions indicate that the resulted thermal
conductivity is logarithmically divergent as � / ln L in 2D systems and a finite
value in 3D systems.

In 2D momentum-conserving systems, a logarithmic divergence of thermal
conductivity of � / ln L is reported by numerical simulations in the FPU-ˇ lattice
with rectangle [38, 39] and disk [40] geometries where vector displacements are
considered. However, a power-law divergent thermal conductivity of � / L˛ is also
observed in the 2D FPU-ˇ lattices with scalar displacements [41].

In this subsection we systematically study the heat conduction in a few 2D square
lattices with a scalar displacement field ui;j, where the schematic 2D setup is plotted
in Fig. 6.5a. The scalar 2D Hamiltonian reads

H D
NXX

iD1

NYX

jD1
Œ
p2i;j
2

C V.ui;j � ui�1;j/C V.ui;j � ui;j�1/�; (6.14)

where NX and NY denotes the number of layers in X and Y directions. The
inter-particle potential takes the FPU form of V.u/ D 1

2
k2u2 C 1

3
k3u3 C 1

4
k4u4.

Dimensionless units is applied and all the particle masses has been set to unity. In
order to justify the logarithmic divergence and also study the influence of inter-
particle coupling, we choose three types of lattices, i.e., the FPU-˛2ˇ lattice:
k2 D k4 D 1, k3 D 2; the FPU-ˇ lattice: k2 D k4 D 1, k3 D 0; and the purely
quartic lattice: k2 D k3 D 0, k4 D 1.

The interaction forces between a particle labeled .i; j/ and its nearest right and up
neighbors are f X

i;j D �dV.ui;j � ui�1;j/=dui;j and f Y
i;j D �dV.ui;j � ui;j�1/=dui;j. The

local heat currents in the two directions are defined as jXi;j D 1
2
.Pui;j C PuiC1;j/f X

iC1;j and

jYi;j D 1
2
.Pui;j C Pui;jC1/f Y

i;jC1, respectively.

6.1.2.1 Non-equilibrium Heat Bath Method

We first calculate the thermal conductivity �NE in non-equilibrium stationary states.
The fixed boundary conditions are applied in the X-direction, while periodic
boundary conditions are applied in the Y-direction. The left- and right-most columns
are coupled to Langevin heat baths with temperatures TL D 1:5 and TR D 0:5,
respectively, see Fig. 6.5a. Heat currents through the X-direction along with the
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Fig. 6.5 (a) Scheme of a 2D square lattice. Heat current along the X axis is calculated.
(b) Temperature profiles of different lattices. Curve groups from down top correspond to the FPU-
˛2ˇ, FPU-ˇ, and purely quartic lattices, respectively. Only the data in the central region between
the two vertical dashed lines are taken into account in calculating the temperature gradient rT

direction of temperature gradient are measured. For each lattice with the largest size
(2048� 64), the average heat current is performed over time period of 2 � 4 � 107
in dimensionless units after long enough transient time. The temperature of each
column is defined as the average temperature of all the particles in that column, i.e.,

T.i/ � 1

NY

NYX

jD1
T.i; j/ D 1

NY

NYX

jD1
hPu2i;ji;

The temperature profiles of different lattices for various NX � NY are plotted in
Fig. 6.5b. Those profiles with different sizes for the same lattice are all overlapped
with each other, which indicates that the temperature gradient rT along the
X-direction can be well established. It is also confirmed that the temperature
profiles and the heat currents along the lattices approach constant values which
are independent of the overall time used here. The thermal conductivity � for 2D
systems is defined as:

�NE D � hJi
NYrT

;

where J stands for the total heat current, and the temperature gradient rT is along
the X direction. Since the lattice constant a is set to unity, the lattice length L is
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simply equivalent to the number of layers NX in X-direction. As shown in Fig. 6.5b,
the shapes of temperature profiles are obviously nonlinear. Such a nonlinearity
is caused by boundary effects rather than the intrinsic temperature dependence
of the thermal conductivity, as can be concluded by examining the temperature
dependence of �NE for different lattices in Fig. 6.6d. To reduce this boundary effect,
the temperature gradient rT is calculated by a linear least-squares fitting of the
temperature profiles in the central region where the left- and right- most 1/4 of the
lattices are excluded.

In Fig. 6.6a–c, the thermal conductivities �NE versus L with different widths
of NY are plotted in linear-log scales. In the large lattice size region, the narrow
lattices with smaller NY posses higher values of thermal conductivities �NE. This is
not a surprise since the narrow 2D lattices are much closer to a 1D lattice where
high thermal conductivities are expected. The length dependence of �NE for the
2D FPU-˛2ˇ lattice (Fig. 6.6a) with NY D 64 becomes flat, indicating that �NE

increases much more slowly than a logarithmic growing. In contrast, the thermal
conductivities �NE for the 2D FPU-ˇ lattice diverges with length L more rapidly than
a logarithmic divergence, as can seen from Fig. 6.6b and its inset. This is actually a
power-law divergence of � / L˛ and the divergency exponent ˛ can be estimated
from the best fit of the last four points as ˛ D 0:27˙ 0:02. However, for 2D purely

Fig. 6.6 Thermal conductivity �NE in 2D (a) the FPU-˛ˇ, (b) the FPU-ˇ and (c) the purely quartic
lattices versus lattice length L for various NY . The dashed line that indicate logarithmic growth is
drown for reference. Inset of (b): data for the FPU-ˇ lattice in double logarithmic scale. Solid line
corresponds to the power-law divergence L0:27. (d) �NE versus temperature T in various lattices
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quartic lattices, the �NE displays a logarithmic growth as � / ln L over at least one
order of magnitude in length scale, as in Fig. 6.6c.

6.1.2.2 Green-Kubo Method

Similar to the situation in 1D lattices [23], finite-size and finite-temperature-gradient
effects from the non-equilibrium heat bath method are considerable and not easy
to be removed. We shall turn to the equilibrium Green-Kubo method [30] to seek
higher accuracy of numerical results.

In the Green-Kubo simulation, periodic boundary conditions are applied in both
the X- and Y-directions. The autocorrelation function of total heat current cX

NX ;NY
.�/

in the X direction is defined as

cX
NX ;NY

.�/ � 1

NXNY
hJX.t/JX.t C �/it; (6.15)

where JX.t/ � P
i;j jXi;j.t/ is the instantaneous total heat current in the X-direction.

For simplicity, the subscripts NX and NY of cX
NX ;NY

.�/ are omitted as cX.�/ hereafter
except in case of necessity. The length-dependent thermal conductivity �GK.L/ from
the Green-Kubo method can be defined as

�GK.L/ � 1

kBT2
lim

NX!1 lim
NY !1

Z L=vs

0

cX.�/d�; (6.16)

where vs is again the speed of sound. Microcanonical simulations are performed
with zero total momentum [4] and specified energy density � which corresponds
to the same temperature T D 1 for different lattices. The energy density � equals
0.887, 0.892 and 0.75 for the 2D FPU-˛2ˇ, FPU-ˇ, and purely quartic lattices,
respectively. A number of independent runs (64 for 1024 � 1024 and fewer for
smaller lattices) are carried out. Simulations of the largest lattices (1024�1024) are
performed for about total time of 107 in the dimensionless units.

The decays of cX.�/ with the correlation time � for different 2D lattices are
plotted in Fig. 6.7a–c. To eliminate the finite-size effects, we have performed
simulations by varying NX and NY and only consider the asymptotic behavior which
is the part of curves overlapping with each other. Within the range of standard error,
the satisfactory overlap with each other is clearly observed. In the specific cases
with NX D NY , the average of the autocorrelation function of ŒcX.�/ C cY.�/�=2

is plotted instead. This is equivalent to double the simulation time steps to achieve
higher accuracy without actually performing any more computation. And due to the
symmetry of the square lattice, it is obvious to find that cX

512;1024.�/ D cY
1024;512.�/,

where the simulations for the two lattices can be carried out in the same run.
It is observed that in Fig. 6.7a, the cX.�/ in the 2D FPU-˛2ˇ lattices decays

much faster than the theoretical prediction of cX.�/ / ��1 in a wide regime of
correlation time .�/. As a result, the integrated �GK displays a saturation behavior
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Fig. 6.7 (a)–(c), cX.�/ for in NX � NY lattices. Lines correspond to ��1 are drawn for reference.
(a) The FPU-˛2ˇ lattice. cX.�/ decays much faster than ��1 in short � regime. The decay tend to
slow down for � > 300. (b) The FPU-ˇ lattice. cX.�/ decays obviously slower than ��1 in a quite
wide regime of � . (c) The purely quartic lattice. cX.�/ follows ��1 very well in nearly three orders
of magnitude of � . (d)–(f), �GK.L/ in the X-direction in NX � NY lattices. (d) The FPU-˛2ˇ lattice.
A flat �GK is again observed for L < 2000. Thereafter � tend to rise up. It is easy to understand
that slow down of the decay of c.�/ cannot instantly induce a visible rise up of �GK, since c.�/
has already decayed to a too low value. (e) The FPU-ˇ lattice. In a wide regime of � , c� decays
obviously slower than ��1. Inset: data plotted in double logarithmic scale. Solid line corresponds
to L0:25. (f) The purely quartic lattice. �GK for 1024 � 1024 follows the straight line very well in
nearly three orders of magnitude of � , This strongly supports a logarithmically divergent thermal
conductivity. The slight rise for smaller lattices is due to the finite-size effect

with the length for large L in Fig. 6.7d. The rapid decay of cX.�/ tends to slow
down for yet longer time � . However, the asymptotic behavior cannot be numerically
confirmed due to large fluctuations. In Fig. 6.7b, the cX.�/ in the 2D FPU-ˇ lattice
decays evidently more slowly than ��1, which gives rise to a power-law divergence
of thermal conductivity of �GK / L˛ in Fig. 6.7e. The best fit of this divergency
exponent ˛ in the regime of L > 103 is obtained as ˛ D 0:25 ˙ 0:01. For the 2D
purely quartic lattice as seen in Fig. 6.7c, the cX.�/ decays as the predicted behavior
of cX.�/ / ��1 for nearly three orders of magnitudes of correlation time � . This
finding strongly supports a logarithmic diverging thermal conductivity of � / ln L,
which can be clearly observed in Fig. 6.7f. In all cases, the tendency of �GK from
Green-Kubo method (shown in the right column of Fig. 6.7) is in good agreement
with that of �NE from non-equilibrium heat bath method (shown in Fig. 6.6).
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In summary, we have extensively studied heat conduction in three 2D nonlinear
lattices with both non-equilibrium heat bath method and Green-Kubo method. The
roles of harmonic and asymmetric terms of the inter-particle coupling are clearly
observed by comparing the results for the purely quartic lattice and the other two
latices. In the 2D purely quartic lattice, the heat current autocorrelation function c.�/
is found to decay as ��1 in three orders of magnitude from 101 to 104. This strongly
supports a logarithmically divergent thermal conductivity of � / ln L consistent
with the theoretical predictions. For the 2D FPU-ˇ lattice, our non-equilibrium
and equilibrium calculations suggest a power-law divergence with a divergency
exponent˛ D 0:27˙0:02 and 0:25˙0:01, respectively. A very significant finite-size
effect which results a flat length dependence of �.L/ is observed in the 2D FPU-˛ˇ
lattice with asymmetric potential. Most existing numerical studies on 2D lattices
with asymmetric interaction terms suggest a logarithmically divergent behavior as
� / ln L, e.g., the Fermi-Pasta-Ulam (FPU)-ˇ lattice with rectangle [38, 39] and
disk [40] geometries. It might be due to that the effect of the harmonic term is largely
offset by that of the asymmetric term, thus yielding a logarithmic-like divergence of
thermal conductivity.

Similar to the findings of 1D lattices where � tends to diverge with length in the
same way in the thermodynamic limit for all kinds of lattices [23], it should also be
expected that � will diverge as log L in long enough 2D FPU-˛ˇ and FPU-ˇ lattices
as already observed for 2D purely quartic lattice. However, in order to see such
an asymptotic divergence, 2D lattices with much larger sizes have to be simulated
which is beyond the scope of our current studies.

We should emphasize that such numerical studies are not only of theoretical
importance. Progresses in nano-technology have made it possible to experimentally
measure the size dependence of thermal conductivities in some 1D [42] and 2D [43–
46] nano-scale materials.

6.1.3 Normal Heat Conduction in a 3D
Momentum-Conserving Nonlinear Lattice

For 3D momentum-conserving systems, all the above-mentioned theories predict
that the heat current autocorrelation function decays with correlation time � as �	

with 	 D �3=2, which gives rise to a normal heat conduction. However, numerical
simulations are not so conclusive [47, 48]. It is only reported in 2008, by non-
equilibrium simulations, that the running divergency exponent ˛L � d ln �=d ln L
of the 3D FPU-ˇ lattice shows a power law decay in L, thus vanishes in the
thermodynamic limit [49]. Normal heat conduction in 3D systems is therefore
verified. However, according to the Green-Kubo formula, any power-law decay of
c.�/ / t	 with 	 < �1will yield a finite value of thermal conductivity signaturing a
normal heat conduction behavior [30]. In order to confirm the theoretical prediction
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of the specific value of 	 D �3=2, the heat current autocorrelation function c.�/
must be directly calculated by using the equilibrium Green-Kubo method.

We investigate the decay of the heat current autocorrelation function in a 3D
cubic lattice with a scalar displacement field ui;j;k. The 3D Hamiltonian reads

H D
NXX

iD1

NYX

jD1

NZX

kD1

"
p2i;j;k
2

C V.ui;j;k � ui�1;j;k/

CV.ui;j;k � ui;j�1;k/C V.ui;j;k � ui;j;k�1/
�
; (6.17)

where V.u/ D 1
4
u4 takes the purely quartic form. We choose this purely quartic

potential due to its simplicity and high nonlinearity, where close-to-asymptotic
behaviors can be achieved in shorter time and space scales. This model can also
be regarded as the high temperature limit of the FPU-ˇ model. Periodic boundary
conditions, which provide the best convergence to thermodynamic limits, are
applied in all three directions, i.e., uNX ;j;k D u0;j;k, ui;NY ;k D ui;0;k and ui;j;NZ D
ui;j;0. The interactions between a particle .i; j; k/ and its nearest neighbors are:
f X
i;j;k D �dV.ui;j;k � ui�1;j;k/=dui;j;k, f Y

i;j;k D �dV.ui;j;k � ui;j�1;k/=dui;j;k and f Z
i;j;k D

�dV.ui;j;k � ui;j;k�1/=dui;j;k. The local heat current in three directions are defined
as jXi;j;k D 1

2
.Pui;j;k C PuiC1;j;k/f X

iC1;j;k, jYi;j;k D 1
2
.Pui;j;k C Pui;jC1;k/f Y

i;jC1;k, and jZi;j;k D
1
2
.Pui;j;kCPui;j;kC1/f Z

i;j;kC1, respectively. For convenience and simplicity, NX D NY D W
is always chosen and the focus is on the heat conduction in the Z direction with
different cross section area of W2 and length of NZ .

The heat current autocorrelation function cZ.�/ in the Z direction for a given W
is defined as [30]

cZ.�/ � lim
NZ!1

1

W2NZ
hJZ.t/JZ.t C �/it; (6.18)

where JZ.t/ � P
i;j;k jZi;j;k.t/ is the instantaneous total heat current in Z direction.

The length-dependent thermal conductivity �Z
GK.L/ is defined as

�Z
GK.L/ � 1

kBT2

Z L=vs

0

cZ.�/d�; (6.19)

where the constant vs is the speed of sound [4, 5]. vs is of order 1 for the present
lattice. Microcanonical simulations are performed with zero total momentum[4, 50,
51] and fixed energy density � D 0:75which corresponds to the temperature T D 1.
Due to the presence of statistical fluctuations, the simulation must be carried out
long enough, otherwise the real decay exponents of the autocorrelation function
cannot be determined with good enough accuracy. We perform the calculations by
64-thread parallel computing. The simulation of the largest lattice (W D 64 and
NZ D 128) is performed for the total time of 5 � 106 in dimensionless units.
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Fig. 6.8 (a) cZ.�/ versus �
for various NZ and W D 4

and 8. Lines with slopes �0:6
and �1 are plotted for
reference. (b) cZ.�/ versus �
for various NZ and W D 16,
32, and 64. Lines with slopes
�1, �1:2, and �1:5 are
plotted for reference. The
larger the W, the longer the
curve follows the power law
decay ��1:2, which suggests
that c.�/ follows ��1:2 as W
is large enough.
(c) Dependence of the
running exponent
	.�/ � d ln cZ.�/=d ln � on
the time lag � . Lines for
	 D �0:6, �1, and �1:2 are
depicted for reference. One
can see that for W � 16, the
bottoms of the curves stop
decreasing and tend to
saturate at a W-independent
value �1:2. The curves stay
here for a longer time as W
increases

The decay of the autocorrelation function cZ.�/ with the correlation time � is
plotted in Fig. 6.8a, b. For a given width W, we perform simulations by varying the
lattice length NZ and consider only the asymptotic behavior shown in the part of
curves overlapping with each other to avoid finite-size effects. In the short-time
region, typically, for � < 101, all the curves of cZ.�/ are relatively flat. This
corresponds to the ballistic transport regime when � is shorter than or comparable
to the phonon mean lifetime. Except in this ballistic regime, the cZ.�/ for W D 4

always decays more slowly than ��1, implying that the cross-section is too small
to display a genuine 3D behavior. The cZ.�/ for W D 8 decays faster than ��1 in
the regime � 2 .10; 30/, showing a weak 3D behavior. In longer time, the decay
exponent 	 becomes less negative and reverts to the exponent similar to that for the
case W D 4. For W D 16, the curves show a 3D behavior longer and finally again
revert to the 1D-like behavior. For width W D 32 and 64 where the similar reversal
is expected, we fail to observe the 3D behavior in the asymptotic time limit due to
the presence of large statistical fluctuations. This picture indicates a crossover from
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3D to 1D behavior appearing at a W-dependent threshold for the correlation time
as �c.W/. Below this critical time �c, the system displays a 3D behavior, while a
1D behavior is recovered above �c. In a macroscopic system, where the width and
the length are comparable, only 3D behaviors can be observed. This might be a
consequence of the universality of Fourier’s law in the macroscopic world in nature.

Furthermore, one can see that, for W 	 8, the larger the width, the longer
the cZ.�/ shows a power-law decay of ��1:2. This suggests that the asymptotic
behavior of the autocorrelation function should be cZ.�/ / ��1:2 when W is
large enough. It should be emphasized that the decay exponent is different from
the traditional theoretical prediction of 	 D �3=2. Interestingly, the numerically
observed 	 D �1:2 agrees with the formula 	 D �2d=.2 C d/ (for d D 3) based
on the hydrodynamic equations for a normal fluid with an added thermal noise [6].
However, in that paper the authors limit the validity of this formula to d � 2. Our
result 	 D �1:2 is also compatible with the value 	 D �0:98 ˙ 0:25 for the 3D
FPU model reported in [47].

In order to illustrate the 3D-1D crossover more clearly, we plot the �-dependence
of the running decay exponent 	.�/ defined as

	.�/ � d ln cZ.�/

d ln �
(6.20)

in Fig. 6.8c. For W D 4, the bottom of the running decay exponent 	.�/ is at �0:8,
showing the absence of a 3D behavior. For W D 8, the bottom drops to about �1:1,
showing a weak 3D behavior. For W 	 16, the bottoms of the 	.�/ tend to saturate at
a W-independent value �1:2. As W increases, the 	.�/ stay at this value for a longer
time. This indicates that 	 D �1:2 is the asymptotic decay exponent for a “real” 3D
system. Since the decay exponent 	 D �1 in 2D lattices, the threshold time �c.W/
of the 3D-1D crossover can thus be reasonably defined as 	.�c.W// D �1. It can be
estimated that �c.8/ � 35 and �c.16/ � 90. For W 	 32, it is hard to estimate the
threshold time due to large statistical errors.

The length-dependent thermal conductivity �Z
GK.L/ for various W and NZ is

plotted in Fig. 6.9. similar to the 1D purely quartic lattice as shown in Fig. 6.8a,
b, the 3D quartic lattice c.�/ can be correctly calculated for quite large correlation
time � by simulating a not-very-long lattice NZ , i.e. L D vs� >> NZ . We are thus
able to evaluate �Z

GK.L/ for an effective length L, which is much longer than NZ . For
W D 4, the 3D behavior is nearly absent, similar to the picture shown in Fig. 6.8.
As a result, the �Z

GK approaches to a 1D power-law divergence as L0:4 directly. For
W D 8, beyond trivial ballistic regime, the �Z

GK increases slowly at first, indicating
the tendency to 3D behavior, and then inflects up to the 1D-like power-law behavior.
For W D 16, the inflection occurs at a larger length L. Finally for W D 32 and
W D 64, although the similar inflection is expected to occur at even larger length L,
we are not able to see it due to numerical difficulties.

One can conclude that the 3D system should display normal heat conduction
behavior if the cross-section area W2 is large enough. Based on the threshold
correlation time �c.W/ defined earlier, a threshold length NZ

c .W/ can be defined
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Fig. 6.9 �Z
GK.L/ for various

W and NZ . For a given W,
results for different values of
NZ are plotted in order to
distinguish finite NZ effects.
For each W we plot error bars
only for the data for the
longest NZ . One can see the
tendency of the curves to
become flat as W increases,
indicating the presence of
normal heat conduction.
Dashed lines with slope 0.4
are drawn for reference

accordingly by requiring NZ
c .W/ � vs�c.W/. The threshold length NZ

c .W/ deter-
mined here is shorter than the estimation made by Saito and Dhar [49], in which
a lattice width W D 16 shows a 3D behavior up to L D 16384. In a recent
experimental study, an apparent 1D-like anomalous heat conduction behavior
appears in multiwall nanotubes with diameters around 10 nm and lengths of a few
�m [42]. It seems that our estimation agrees with the experimental result. However,
more detailed experimental measurements of heat conduction in shorter samples or
samples with larger cross-section of silicon nanowire [52, 53] or graphene [43], are
necessary to give an accurate estimation of the threshold length NZ

c .W/.
A running exponent ˛.L/ is defined as the local slope of �Z

GK.L/ as

˛.L/ � d ln �Z
GK.L/

d ln L
D L

�Z
GK.L/

cZ.�/: (6.21)

In the 3D regime, the cZ.�/ behaves as cZ.�/ � �	 as shown in Fig. 6.8. As L ! 1,
the �Z

GK.L/ approaches a constant � since 	 < �1. Then one can obtain

˛.L/ � L

�
L	 D 1

�
L	C1: (6.22)

where ˛.L/ decays asymptotically as L�0:2 for 	 D �1:2. This power-law decay
of the exponent ˛.L/ with the length L as ˛.L/ / L�0:2 quantitatively explains the
result previously found in [49].

In summary, we have numerically studied heat conduction in 3D momentum-
conserving nonlinear lattices by the Green-Kubo method. The main findings are:
(1) For a fixed width W 	 8, a 3D-1D crossover was found to occur at a W-
dependent threshold of a lattice size NZ

c .W/. Below NZ
c the system displays a 3D

behavior while it displays a 1D behavior above NZ
c . (2) In the 3D regime, the heat
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current autocorrelation function cZ.�/ decays asymptotically as �	 with 	 D �1:2.
This value being more negative than �1 indicates normal heat conduction, which
is consistent with the theoretical expectation. (3) The exponent 	 D �1:2 implies
that the running exponent ˛.L/ follows a power-law decay, ˛ / L�0:2, which also
agrees very well with that reported in [49]. (4) The detailed value 	 D �1:2 however
deviates significantly from the conventional theoretical expectation of 	 D �1:5.

6.2 Simulation of Heat Transport with the Diffusion Method

In the numerical studies of heat transport in nonlinear lattices, the most fre-
quently used methods are the direct non-equilibrium heat bath method [4] and the
equilibrium Green-Kubo method [30]. For the non-equilibrium heat bath method,
the system is connected with two heat baths in both ends and driven into a
stationary state. The averaged heat flux j is recorded which gives rise to the thermal
conductivity � through the relation of j D ��rT. For the equilibrium Green-Kubo
method, the system is prepared from microcanonical dynamics without heat bath.
The autocorrelation function CJJ.t/ of the total heat flux is recorded and the thermal
conductivity � can be obtained by integrating CJJ.t/ via the Green-Kubo formula.

Besides the non-equilibrium heat bath method and Green-Kubo method, a novel
diffusion method is recently proposed by Zhao in studying the anomalous heat
transport and diffusion processes of 1D nonlinear lattices [54]. This is also an
equilibrium method, while the statistics can be drawn from microcanonical or
canonical dynamics. In contrast to the Green-Kubo method, this diffusion method
relies on the information of the autocorrelation function of the local energy. In
Hamiltonian dynamics, the total energy is always a conserved quantity. Due to
this very property of energy conservation, it is then rigorously proved in a heat
diffusion theory recently developed by Liu et al, stating that the energy diffusion
method is equivalent to the Green-Kubo method in the sense of determining the
system’s thermal conductivity [55]. In particular, the energy diffusion method is
able to provide more information than that from the Green-Kubo method. The real-
time spatiotemporal excess energy density distribution �E.x; t/ plays the role of a
generating function which is essential for the analysis of underlying heat conduction
behavior.

In principle, the thermal conductivity � can be generally expressed in a length-
dependent form as � / L˛ with L the system length. For system with normal
heat conduction, the heat divergency exponent ˛ D 0 implies that � is length-
independent obeying the Fourier’s heat conduction law. The heat divergency
exponent ˛ D 1 represents a ballistic heat conduction behavior. For 0 < ˛ < 1,
the system displays the so-called anomalous heat conduction behavior. On the
other hand, the Mean Square Displacement (MSD) h�x2.t/iE of the excess energy
generally grows with time asymptotically as h�x2.t/iE / tˇ where the energy
diffusion exponent ˇ classifies the diffusion behaviors. The ˇ D 1 and 2 represent
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the normal and ballistic energy diffusion behaviors, respectively. For 1 < ˇ < 2,
the diffusion process is called superdiffusion.

In 1D nonlinear lattice systems, the heat conduction and energy diffusion
originating from the same energy transport process are closely related. What is the
relation between the heat conduction and energy diffusion processes? The relation
formula between heat divergency and energy diffusion exponents ˛ D ˇ � 1 is
proposed by Cipriani et al. by investigating single particle Levy walk diffusion
process [56]. This same formula is then formally derived as a natural result from
the heat diffusion theory [55]. This relation formula tells that: (1) Normal energy
diffusion with ˇ D 1 corresponds to normal heat conduction with ˛ D 0 and
vice versa. This is the case for 1D 4 lattice and Frenkel-Kontorova lattice [54].
(2) Ballistic energy diffusion with ˇ D 2 implies ballistic heat conduction with
˛ D 1 and vice versa. The 1D Harmonic lattice and Toda lattice fall into this
class [54]. (3) Superdiffusive energy diffusion with 1 < ˇ < 2 yields anomalous
heat conduction with 0 < ˛ < 1 and vice versa. The 1D FPU-ˇ lattice is verified to
posses energy superdiffusion with ˇ D 1:40 and anomalous heat conduction with
˛ D 0:40 [54, 57] belonging to this class.

Besides total energy, total momentum is another conserved quantity for 1D
nonlinear lattices without on-site potential, such as the FPU-ˇ lattice. It is com-
monly believed that the conservation of momentum is essential for the actual heat
conduction behavior. Predictions from mode coupling theory [4] and renormal-
ization group theory [6] claim that momentum conservation should give rise to
anomalous heat conduction in one dimensional systems. However, there is one
exception to these predictions: the 1D coupled rotator lattice, which displays normal
heat conduction behavior despite its momentum conserving nature [22, 58]. This
unusual phenomenon stimulates the efforts to explore the interplay between energy
transport and momentum transport. The transport coefficient corresponding to the
momentum transport is the bulk viscosity. For momentum conserving system, in
principle, there should also be a formal connection between the momentum transport
and the momentum diffusion. This very momentum diffusion theory has also been
developed for 1D momentum-conserving lattices [59]. Due to the complexity of
bulk viscosity, the momentum diffusion theory is more complicated than the heat
diffusion theory. Nevertheless, there seems to be a relation between the actual
behaviors of energy and momentum transport implied from extensive numerical
studies.

In the following, the energy diffusion method will be first introduced. The
heat diffusion theory will be derived in the framework of linear response theory.
Numerical simulations for two typical 1D nonlinear lattices will be used to verify
the validity of this heat diffusion theory. Some results from the energy diffusion
method will be shown for typical 1D lattices. The momentum diffusion method will
then be discussed. The momentum diffusion theory will be derived in the same sense
as heat diffusion theory for the 1D lattice systems. Some numerical results from the
momentum diffusion method will be displayed and potential connection between
momentum and heat transports will be discussed in the final part.
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6.2.1 Energy Diffusion

In this part, we first introduce the energy diffusion method in the investigation for
energy diffusion process of 1D lattices. The heat diffusion theory will be derived in
the linear response regime and verified by numerical simulations. Some numerical
results from this energy diffusion method will be presented to demonstrate the
advantages of this novel method.

6.2.1.1 Heat Diffusion Theory

The heat diffusion theory [55, 59] unifies energy diffusion and heat conduction in a
rigorous way. The central result reads

d2h�x2.t/iE

dt2
D 2CJJ.t/

kBT2cv
; (6.23)

where kB is the Boltzmann constant and cv is the volumetric specific heat. The
autocorrelation of total heat flux CJJ.t/ on the right hand side is the term entering the
Green-Kubo formula from which thermal conductivity can be calculated. The MSD
h�x2.t/iE of energy diffusion describes the relaxation process in which an initially
nonequilibrium energy distribution evolves towards equilibrium:

h�x2.t/iE �
Z
.x � hxiE/

2�E.x; t/dx D hx2.t/iE � hxi2E : (6.24)

This normalized fraction of excess energy �E.x; t/ at a certain position x at time t
reads

�E.x; t/ D ıhh.x; t/ineq

ıE
D ıhh.x; t/ineqR

ıhh.x; 0/ineqdx
: (6.25)

Here the excess energy distribution is proportional to the deviation ıhh.x; t/ineq �
hh.x; t/ineq � hh.x/ieq, where h�ineq denotes the expectation value in the nonequi-
librium diffusion process, h�ieq denotes the equilibrium average, and h.x; t/ denotes
the local Hamiltonian density. For isolated energy-conserving systems, this total
excess energy, ıE D R

ıhh.x; t/ineqdx remains conserved. Therefore, the normalized
condition

R
�E.x; t/dx D 1 is fulfilled during the time evolution as a result of energy

conservation.
In the linear response regime, the deviation of local excess energy can be

explicitly derived in terms of equilibrium spatiotemporal correlation Chh.x; tI x0; 0/
of local Hamiltonian density h.x; t/ as

ıhh.x; t/ineq D 1

kBT

Z
Chh.x; tI x0; 0/
.x0/dx0; (6.26)
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where Chh.x; tI x0; t0/ � h�h.x; t/�h.x0; t0/ieq, with �h.x; t/ D h.x; t/ � hh.x/ieq,
and the �
.x/h.x/ represents a small perturbation switched off suddenly at time
t D 0, with 
.x/ 
 1.

Therefore, the normalized excess energy distribution can be derived from
Eqs. (6.25) and (6.26) as

�E.x; t/ D 1

N

Z
Chh.x � x0; t/
.x0/dx0; (6.27)

where N D kBT2cv
R

.x/dx is the normalization constant.

The key point which connects energy diffusion and heat conduction is the local
energy continuity equation due to energy conservation

@h.x; t/

@t
C @j.x; t/

@x
D 0; (6.28)

where j.x; t/ is the local heat flux density. One can then obtain

@2Chh.x; t/

@t2
D @2Cjj.x; t/

@x2
; (6.29)

By defining the total heat flux JL D R L=2
�L=2 j.x; t/dx and the autocorrelation function

of total heat flux CJJ.t/ � limL!1hJL.t/JL.0/ieq=L D R 1
�1 Cjj.x; t/dx, the central

result (6.23) of the heat diffusion theory can be derived.
As a result of energy conservation, the heat diffusion theory of Eq. (6.23) gives

the general relation between energy diffusion and heat conduction. The actual
behavior of energy diffusion or heat conduction can be normal or anomalous while
the relation (6.23) remains to be the same:

1. For normal energy diffusion, the MSD increases asymptotically linearly with
time, i.e.

h�x2.t/iE Š 2DEt; (6.30)

in the infinite time limit t ! 1. Here DE is the so-called thermal diffusivity.
According to Eq. (6.23), the corresponding thermal conductivity � can be
obtained as

� D
Z 1

0

CJJ.t/

kBT2
dt D cv

2
lim

t!1
dh�x2.t/iE

dt
D cvDE: (6.31)

This is nothing but the Green-Kubo expression for normal heat conduction.
2. For ballistic energy diffusion, the MSD is asymptotically proportional to the

square of time as

h�x2.t/iE / t2: (6.32)
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Substituting this expression into Eq. (6.23), one can deduce that CJJ.t/ is a non-
decaying constant, reflecting the ballistic nature of heat conduction as well.

3. For superdiffusive energy diffusion, the MSD obeys

h�x2.t/iE / tˇ; 1 < ˇ < 2: (6.33)

From Eq. (6.23), the decay of CJJ.t/ is a slow process as CJJ.t/ / tˇ�2 and
the integral of CJJ.t/ diverges. In this situation, no finite superdiffusive thermal
conductivity exists. The typical way in practice is to introduce an upper cutoff
time ts � L=vs with vs the speed of sound due to renormalized phonons [60].
A length-dependent superdiffusive thermal conductivity can be obtained through
Eq. (6.23):

� � 1

kBT2

Z L=vs

0

CJJ.t/dt D cv

2

dh�x2.t/iE

dt

ˇ̌
ˇ̌
t�L=vs

/ Lˇ�1: (6.34)

The length-dependent anomalous thermal conductivity is usually expressed as
� / L˛ . One can immediately obtain the scaling relation between energy
diffusion and heat conduction

˛ D ˇ � 1; (6.35)

which is a general relation and not limited to superdiffusive energy diffusion
only.

4. For subdiffusive energy diffusion, the MSD follows asymptotically

h�x2.t/iE / tˇ; 0 < ˇ < 1: (6.36)

From the relation in (6.23), the autocorrelation function of total heat flux reads
asymptotically

CJJ.t/ / ˇ.ˇ � 1/tˇ�2: (6.37)

The CJJ.t/ remains integrable and the thermal conductivity can be derived as

� D
Z 1

0

CJJ.t/

kBT2
dt D cv

2
lim

t!1
dh�x2.t/iE

dt
� lim

t!1 tˇ�1 D 0: (6.38)

This vanishing integral of CJJ.t/ is not surprising, if one notices that the
asymptotic prefactor of CJJ.t/ in (6.37) is a negative value due to ˇ � 1 < 0.
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6.2.1.2 Numerical Verification of the Heat Diffusion Theory

The heat diffusion theory of Eq. (6.23) developed for continuous system is general
and applicable also for discrete system. We choose two typical 1D nonlinear lattices
to demonstrate the validity of this heat diffusion theory. One is the purely quartic
FPU-ˇ (qFPU-ˇ) lattice which is the high temperature limit of FPU-ˇ lattice, where
energy diffusion is superdiffusive and heat conduction is anomalous or length-
dependent [18, 23]. The dimensionless Hamiltonian with finite N D 2M C 1 atoms
reads

H D
X

i

Hi D
X

i

�
1

2
p2i C 1

4
.uiC1 � ui/

4

�
; (6.39)

where pi and ui denote momentum and displacement from equilibrium position for
i-th atom, respectively. The index i is numerated from �M to M.

The other one is the 4 lattice which shows normal energy diffusion as well as
normal heat conduction [54, 61, 62]. The dimensionless Hamiltonian reads

H D
X

i

Hi D
X

i

�
1

2
p2i C 1

2
.uiC1 � ui/

2 C 1

4
u4i

�
: (6.40)

In the numerical simulations, we adopt the microcanonical dynamics where
energy density E per atom is set as the input parameter. Algorithm with higher
accuracy of fourth-order symplectic method [63, 64] can be used to integrate the
equations of motions. Periodic boundary conditions ui D uiCN and pi D piCN are
applied and the equilibrium temperature T can be calculated from the definition T D
Ti D hp2i i, where h�i denotes time average which equals to the ensemble average
due to the chaotic and ergodic nature of these two nonlinear lattices. The volumetric
specific heat need to be calculated via the relation cv D .hH2

i i � hHii2/=T2 which
is independent of the choice of index i. For qFPU-ˇ lattice, the volumetric specific
heat cv D 0:75 is a temperature-independent constant.

In order to define the discrete expression of excess energy density distribution
�E.i; t/, we first introduce the energy-energy correlation function, reading:

CE.i; tI j; t D 0/ � h�Hi.t/�Hj.0/i
kBT2cv

; (6.41)

where �Hi.t/ � Hi.t/ � hHi.t/i. Applying a localized, small initial excess energy
perturbation at the central site, 
.i/ D "ıi;0 in Eq. (6.27), the discrete excess energy
distribution can be obtained:

�E.i; t/ D
X

j

CE.i; tI j; 0/
. j/=" D CE.i; t W j D 0; t D 0/; �M � i � M: (6.42)
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The MSD h�x2.t/iE of energy diffusion of Eq. (6.24) for discrete lattice can be
defined as

h�x2.t/iE �
X

i

i2�E.i; t/ D
X

i

i2CE.i; tI j D 0; t D 0/; �M � i � M; (6.43)

by noticing that hx.t/iE D 0.
The second derivative of h�x2.t/iE can be numerically obtained as

d2h�x2.t/iE

dt2
� h�x2.t C�t/iE � 2h�x2.t/iE C h�x2.t ��t/iE

.�t/2
(6.44)

where �t is the time difference between two consecutive recorded h�x2.t/iE. The
autocorrelation function of total heat flux CJJ.t/ for discrete lattice system is defined
as CJJ.t/ D h�J.t/�J.0/i=N, with J.t/ D P

i ji.t/. The local heat flux ji.t/ D
�Pui@V.ui � ui�1/=@ui is derived from local energy continuity equation where V.x/
denotes the form of potential energy in Hamiltonian.

In Fig. 6.10, we verify the main relation (6.23) for 1D qFPU-ˇ lattice. The MSD
of energy diffusion h�x2.t/iE as the function of time is plotted in Fig. 6.10a. Its

Fig. 6.10 Numerical verification of the main relation of Eq. (6.23) of heat diffusion theory for
1D qFPU-ˇ lattice. (a) The MSD h�x2.t/iE of energy diffusion as the function of time t in log-
log scale. (b) The second derivative of MSD d2h�x2.t/iE=dt2 (hollow circles) and the rescaled
autocorrelation function of total heat flux 2CJJ.t/=.T2cv/ (solid line) as the function of time t in
log-log scale. The perfect agreement between them demonstrates the validity of the main relation
of Eq. (6.23). The Boltzmann constant kB has been set as unity when applying dimensionless units
in numerical simulations. The simulations are performed for a qFPU-ˇ lattice with the average
energy density per atom E D 0:015 and the number of atoms N D 601
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Fig. 6.11 Numerical verification of the main relation of Eq. (6.23) of heat diffusion theory for
1D 4 lattice. (a) and (b): the MSD h�x2.t/iE of energy diffusion as the function of time t
for 0 < t < 10 and 10 < t < 200, respectively. (c) and (d): the second derivative of
MSD d2h�x2.t/iE=dt2 (hollow circles) and the rescaled autocorrelation function of total heat flux
2CJJ.t/=.T2cv/ (solid line) as the function of time t in linear-linear scale for 0 < t < 10 and log-
linear scale for 10 < t < 200, respectively. The perfect agreement between them demonstrates the
validity of the main relation of Eq. (6.23). The simulations are performed for a 4 lattice with the
average energy density per atom E D 0:4 and the number of atoms N D 501

second derivative d2h�x2.t/iE=dt2 is extracted out and directly compared with the
rescaled autocorrelation function of total heat flux 2CJJ.t/=.kBT2cv/ in Fig. 6.10b.
The perfect agreement between them justifies the validity of the main relation (6.23)
predicted from heat diffusion theory. The numerical results for 1D 4 lattice
are also plotted in Fig. 6.11 and same conclusion can be obtained. It should be
pointed out that the 1D qFPU-ˇ lattice displays superdiffusive energy diffusion and
anomalous heat conduction, while 1D 4 lattice shows normal energy diffusion and
heat conduction. These facts can be observed by noticing that the autocorrelation
function CJJ.t/ eventually follows a power law decay as CJJ.t/ / t�0:60 for qFPU-ˇ
lattice and an exponential decay as CJJ.t/ / e�t=� for 4 lattice where � represents
a characteristic relaxation time.

6.2.1.3 Energy Diffusion Properties for Typical 1D Lattices

The heat diffusion theory formally connects the energy diffusion and heat con-
duction as described in Eq. (6.23). It enables us to use energy diffusion method
to investigate the heat conduction process. More importantly, the energy diffusion
method is able to provide more information about the heat transport process than
the Green-Kubo method or the direct non-equilibrium heat bath method.
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The key information from the energy diffusion method is the spatiotemporal
distribution of excess energy �E.i; t/, from which the MSD of energy diffusion
h�x2.t/iE can be generated. The second derivative of h�x2.t/iE gives rise to the
autocorrelation function of total heat flux CJJ.t/ which finally yields the thermal
conductivity via Green-Kubo formula. With the knowledge of �E.i; t/, one can
resolve the expression of h�x2.t/iE or CJJ.t/, but not vice versa. Therefore, in
determining the actual heat conduction behavior, the excess energy distribution
�E.i; t/ plays the essential role of a generating function.

To illustrate the importance [59]: the coupled rotator lattice

H D
X

i

�
1

2
p2i C .1 � cos .uiC1 � ui//

�
; (6.45)

and the amended coupled rotator lattice

H D
X

i

�
1

2
p2i C .1 � cos .uiC1 � ui//C K

2
.uiC1 � ui/

2

�
; (6.46)

where an additional quadratic interaction potential term is added.
The excess energy distributions �E.i; t/ for coupled rotator lattice are plotted in

Fig. 6.12a. For sufficiently large times, the excess energy distribution �E.i; t/ evolves

Fig. 6.12 Energy diffusion processes in the 1D coupled rotator lattice. (a) Spatial distribution of
the energy autocorrelation �E.i; t/ D CE.i; tI j D 0; t D 0/. The correlation times are t D 200; 400

and 600 from top to the bottom in the central part, respectively. The distribution of �E.i; t/ follows

the Gaussian normal distribution as �E.i; t/ � 1
p

4�DE t
e�

i2
4DE t . (b) The MSD of the energy diffusion

h�x2.t/iE as the function of time. The solid straight line is the best fit for the MSD h�x2.t/iE

implying a normal diffusion process. The simulations are performed for a coupled rotator lattice
with the average energy density per atom E D 0:45 and the number of atoms N D 1501
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very closely into a Gaussian distribution function with its profile perfectly given by

�E.i; t/ � 1p
4�DEt

e� i2
4DEt ; (6.47)

where DE denotes the diffusion constant for energy diffusion. As a result, the MSD
of energy diffusion h�x2.t/iE depicts at a linear time dependence

h�x2.t/iE �
X

i

i2�E.i; t/ D
X

i

i2
1p
4�DEt

e� i2
4DEt D 2DEt; (6.48)

for sufficiently long time as can be seen in Fig. 6.12b, being the hall mark for normal
diffusion. Accordingly, heat diffusion theory for normal energy diffusion implies
that the heat conduction behavior is normal as well, with the thermal conductivity
given by � D cvDE.

This normal energy diffusion behavior also occurs for other 1D lattice systems
with normal heat conduction, such as 4 lattice and Frenkel-Kontorova lattice [54].

For the 1D amended coupled rotator lattice described in Eq. (6.46), the excess
energy distributions �E.i; t/ are plotted in Fig. 6.13a. Besides the central peak, there
are also two side peaks moving outside with a constant sound velocity vs. It is
amazing that this excess energy distribution �E.i; t/ of 1D nonlinear lattice closely

Fig. 6.13 Energy diffusion processes in the 1D amended coupled rotator lattice. (a) Spatial
distribution of the energy autocorrelation �E.i; t/ D CE.i; tI j D 0; t D 0/. The correlation times
are t D 200; 600 and 1000 from top to the bottom in the central part, respectively. Besides the
central peak, there are two side peaks moving outside with the constant sound velocity. This is
the Levy walk distribution giving rise to a superdiffusive energy diffusion. (b) The MSD of the
energy diffusion h�x2.t/iE as the function of time. The solid straight line is the best fit for the
superdiffusive MSD as h�x2.t/iE / t1:40. The simulations are performed for an amended coupled
rotator lattice with the average energy density per atom E D 1. The number of atoms N D 2501

and K D 0:5
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resembles to the single particle Levy walk distribution �LW.x; t/ [56]

�LW.x; t/ /

8
ˆ̂̂
<

ˆ̂̂
:

t�1=� exp .�ax2

t2=�
/; jxj . t1=�

tx���1; t1=� < jxj < vt
t1��; jxj D vt
0; jxj > vt

(6.49)

where a is an unknown constant and v is the particle velocity. This Levy walk dis-
tribution �LW.x; t/ is a result of a particle moving ballistically between consecutive
collisions with a waiting time distribution  .t/ / t���1 and a velocity distribution
f .u/ D Œı.u � v/C ı.u C v/�=2.

The MSD for the Levy walk distribution �LW.x; t/ follows a time dependence
of h�x2.t/iLW / tˇ with ˇ D 3 � �. In Fig. 6.13b, the time dependence of MSD
h�x2.t/iE of energy diffusion for the 1D amended coupled rotator lattice is plotted
where the best fit indicates that ˇ D 1:40. This will in turn correspond to a� D 1:60

in the Levy walk scenario. According to the relation formula of Eq. (6.35) of heat
diffusion theory, the corresponding heat conduction should be anomalous with a
divergent length dependent thermal conductivity of � / L˛ with ˛ D 0:40 [23].

It is very interesting to notice that there is a characteristic � for the Levy walk
distribution. By requiring that the heights of the central peak and side peaks decay
with a same rate in the Levy walk distribution (6.49), one can obtain �1=� D 1��
which gives rise to the golden ratio � D .

p
5 C 1/=2 � 1:618. As a result, the

corresponding characteristic energy superdiffusion exponent ˇ D .5 � p
5/=2 �

1:382 and the anomalous heat conduction exponent ˛ D .3 � p
5/=2 � 0:382 can

be derived. Interesting enough, Lee-Dadswell et al. derived the same exponent ˛ D
.3 � p

5/=2 as the converging value of a Fibonacci sequence in a toy model within
the framework of hydrodynamical theory in 2005 [65]. Actually, this exponent is
not far from the existing numerical results [18, 23, 66].

6.2.2 Momentum Diffusion

In the following part, the momentum diffusion method will be introduced for
momentum conserving systems. A momentum diffusion theory will be derived
in the same sense as heat diffusion theory. The numerical results reflecting the
momentum diffusion properties will then be presented for several 1D nonlinear
lattices. Based on the numerical results, the possible connection between momentum
and energy transports will be discussed in the final part.
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6.2.2.1 Momentum Diffusion Theory

In analogy to the heat diffusion, one can also construct a momentum diffusion
theory [59] for lattice systems which reads:

d2h�x2.t/iP

dt2
D 2

kBT
CJP.t/; (6.50)

where h�x2.t/iP denotes the momentum diffusion and CJP.t/ is the centered
autocorrelation function of total momentum flux.

The MSD of excess momentum h�x2.t/iP can be defined as

h�x2.t/iP D
X

i

i2�P.i; t/; �M � i � M: (6.51)

The excess momentum distribution �P.i; t/ describes the nonequilibrium relaxation
process of momentum due to a small kick of short duration to the j-th atom. The
kick occurs with a constant impulse I, yielding a force kick at site j as fj.t/ D Iı.t/.
The normalized �P.i; t/ is given by

�P.i; t/ D hpi.t/ireP
ihpi.t/ire

; (6.52)

where hpi.t/ire represents the response of momentum of i-th atom to the small
perturbation of �fj.t/uj. In the linear response regime, it can be obtained that
hpi.t/ire D ICP.i; tI j; 0/, where

CP.i; tI j; 0/ D h�pi.t/�pj.0/i
kBT

(6.53)

is the autocorrelation function for the excess momentum fluctuation. The sumP
i CP.i; tI j; 0/ D 1 at time t D 0 and remains normalized due to the conservation

of momentum. As a result, the excess momentum distribution �P.i; t/ assumes the
form

�P.i; t/ D CP.i; tI j D 0; t D 0/; (6.54)

if the kick is put at the atom with index j D 0.
The centered autocorrelation function of momentum flux CJP.t/ in Eq. (6.50) is

given by

CJP.t/ D 1

N
h�JP.t/�JP.0/i; JP D

X

i

jPi ; (6.55)
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where the local momentum flux jPi D �@V.ui � ui�1/=@ui with V.x/ the form of
interaction potential is obtained from the discrete momentum continuity relation

dpi

dt
� jPi C jPiC1 D 0: (6.56)

It should be emphasized that here the momentum flux �JP.t/, unlike for energy
flux, cannot be replaced with JP.t/ itself. This is so because the equilibrium average
is typically non-vanishing with hJP.t/i D N�, where � denotes a possibly non-
vanishing internal equilibrium pressure in cases where the interaction potential is
not symmetric.

The transport coefficient of momentum conduction related to the momentum
diffusion is the bulk viscosity 
. However, the presence of a finite, isothermal sound
speed vs implies that here the momentum spread contains a ballistic component
which should be subtracted [67, 68] to yield the effective bulk viscosity 
:


 � 1

kBT

Z 1

0

CJP.t/dt � 1

2
v2s t: (6.57)

In case that the momentum diffusion occurs normal, one can invoke the concept of
a finite momentum diffusivity

DP � 1

2
lim

t!1

�
dh�x2.t/iP

dt
� v2s t

�
: (6.58)

Therefore, for the discrete lattices, this effective bulk viscosity 
 precisely equals
the momentum diffusivity times the atom mass m (set to unity in the dimensionless
units), namely


 D DP: (6.59)

If the excess momentum density spreads not normally, the limit in Eq. (6.58) no
longer exits. The integration in Eq. (6.57) formally diverges, thus leading to an
infinite effective bulk viscosity.

In the practice, it is found that the finite effective bulk viscosity and normal heat
conduction always emerge in pair, so does the infinite effective bulk viscosity and
anomalous heat conduction. This constitutes an alternative implementation of the
investigation of heat conduction behavior in lattice systems.

6.2.2.2 Momentum Diffusion Properties for Typical 1D Lattices

The momentum diffusion theory connects the momentum diffusion and momentum
transport via Eqs. (6.50) and (6.57). Similar to what we have discussed for the
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Fig. 6.14 Momentum diffusion processes in the 1D coupled rotator lattice. (a) Spatial distribution
of the energy autocorrelation �P.i; t/ D CP.i; tI j D 0; t D 0/. The correlation times are
t D 200; 400 and 600 from top to the bottom in the central part, respectively. The distribution

of �P.i; t/ follows the Gaussian normal distribution as �P.i; t/ � 1
p

4�DPt
e�

i2
4DPt . (b) The MSD of

the momentum diffusion h�x2.t/iP as the function of time. The solid straight line is the best fit
for the MSD h�x2.t/iP implying a normal diffusion process. The simulations are performed for
a coupled rotator lattice with the average energy density per atom E D 0:45 and the number of
atoms N D 1501

energy diffusion, the excess momentum distribution �P.i; t/ is the most important
information we need to gather for momentum diffusion method.

We still consider the 1D coupled rotator lattice of Eq. (6.45) and amended
coupled rotator lattice of Eq. (6.46) [59]. In Fig. 6.14a, the excess momentum
distributions �P.i; t/ for different correlation times t D 200; 400 and 600 are plotted.
At sufficiently large times, the distributions �P.i; t/ follow the Gaussian distribution
as

�P.i; t/ � 1p
4�DPt

e� i2
4DPt ; (6.60)

where DP represents the momentum diffusion constant. The MSD h�x2.t/iP of
momentum diffusion thus grows linearly with time at large times, i.e. h�x2.t/iP �
2DPt, as can be seen from Fig. 6.14. There is no ballistic component for the
distributions �P.i; t/ in 1D coupled rotator lattice. Accordingly, the finite effective
bulk viscosity 
 can be simply obtained as 
 D DP. This result is consistent with the
fact that the 1D coupled rotator lattice displays normal heat conduction behavior.

For the 1D amended coupled rotator lattice, the energy diffusion is superdiffusive
and its heat conduction is anomalous. The excess momentum distributions �P.i; t/
for different correlation times at t D 200; 600 and 1000 are plotted in Fig. 6.15a.
In contrast to the coupled rotator lattice, here only two side peaks moving outside
with a constant sound velocity vs exist. To evaluate the true behavior of momentum
conduction, this ballistic component within the momentum diffusion should be
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Fig. 6.15 Momentum diffusion processes in the 1D amended coupled rotator lattice. (a) Spatial
distribution of the energy autocorrelation �P.i; t/ D CP.i; tI j D 0; t D 0/. The correlation times
are t D 200; 600 and 1000 from top to the bottom, respectively. There is no central peak and two
side peaks moves outside with the constant sound velocity vs. (b) The self-diffusion of the side peak
of the momentum spreading. The rescaled side peaks tı�P.i; t/ of four different correlation times
at t D 400; 600; 800 and 1000 all collapse into the same curve in the center of the rescaled moving
frame .i�vst/=tı with a scaling exponent ı D 0:55. The scaling exponent ı D 0:55 > 0:50 implies
the self-diffusion is superdiffusive and the effective bulk viscosity 
 is infinite. The simulations are
performed for an amended coupled rotator lattice with the average energy density per atom E D 1.
The number of atoms N D 2501 and K D 0:5

subtracted. One should instead analyze the self-diffusion behavior of the side peaks
of the distributions �P.i; t/. In Fig. 6.15b, the rescaled side peaks tı�P.i; t/ as the
function of rescaled position of the peak center .i � vst/=tı are plotted for four
different correlation times at t D 400; 600; 800 and 1000. With the choice of
ı D 0:55, the rescaled distributions collapse into a single curve all together. This
rescaling behavior with ı D 0:55 implies a superdiffusive self-diffusion for the side
peaks, while normal self-diffusion would require for ı D 0:50.

The integration of Eq. (6.57) is then divergent, giving rise to an infinite effective
bulk viscosity 
. This infinite 
 is consistent with the finding that the heat conduction
is anomalous, since the energy diffusion is superdiffusive as can be observed in
Fig. 6.13b. From our perspective and our own numerical results, the infinite bulk
viscosity 
 and divergent length-dependent thermal conductivity always emerge in
pair. However, there are some other numerical results and approximate theories
indicating that finite bulk viscosity and anomalous heat conduction might coexist
for symmetric lattices such as FPU-ˇ lattice [65, 69]. This is still an open issue and
deserves more investigation in the future.

In summary, a novel diffusion method is introduced to investigate the heat
transport in 1D nonlinear lattices. The heat and momentum diffusion theories
formally relate the diffusion processes to their corresponding conduction processes.
The properties of energy and momentum diffusions for typical 1D lattices are
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presented and more fundamental information about transport processes can be
provided from this novel method.
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