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Abstract. Strong anomalous diffusion is a recurring phenomenon in many fields, ranging from
the spreading of cold atoms in optical lattices to transport processes in living cells. For such
processes the scaling of the moments follows 〈|x(t)|q〉 ∼ tqν(q) and is characterized by a bi-
linear spectrum of the scaling exponents, qν(q). Here we analyze Lévy walks, with power law
distributed times of flight ψ(τ) ∼ τ−(1+α), demonstrating sharp bi-linear scaling. Previously
we showed that for α > 1 the asymptotic behavior is characterized by two complementary
densities corresponding to the bi-scaling of the moments of x(t). The first density is the expected
generalized central limit theorem which is responsible for the low-order moments 0 < q < α.
The second one, a non-normalizable density (also called infinite density) is formed by rare
fluctuations and determines the time evolution of higher-order moments. Here we use the Faà
di Bruno formalism to derive the moments of sub-ballistic super-diffusive Lévy walks and then
apply the Mellin transform technique to derive exact expressions for their infinite densities. We
find a uniform approximation for the density of particles using Lévy distribution for typical
fluctuations and the infinite density for the rare ones. For ballistic Lévy walks 0 < α < 1 we
obtain mono-scaling behavior which is quantified.
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strong anomalous diffusion, bi-fractal
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1. Introduction

Many theories have been devised and experiments done on particle diffusion in a medium, when all
particles start from the same origin. Typically, the corresponding dispersal process is characterized by
the time evolution of the mean square displacement (MSD) 〈x2〉 ∼ tξ, where for ξ > 1 it is termed
super-diffusion, and for ξ < 1, sub-diffusion. It is well known by now that the MSD gives only partial
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characterization of the underlying stochastic process, though of-course Gaussian processes with no-drift,
encountered frequently in the laboratory, e.g., Brownian motion, are an exception. For such processes a
knowledge of the MSD fully determines the spatial density of particles P (x, t), which also represents a
normalized probability density in the framework of probability theory.

A more sophisticated way to analyze a diffusive processes is to study the time evolution of a continuous
set of its moments, 〈|x|q(t)〉, q ≥ 0. The moments grow in time, and this growth can be characterized by
a spectrum of exponents,

〈|x|q(t)〉 ∼Mq t
qν(q), (1.1)

where q ≥ 0. For the normal Brownian motion ν(q) = 1/2. When ν(q) is not a constant, the process is
said to exhibit strong anomalous diffusion [15, 41, 42]. A nonlinear spectrum of exponents, qν(q), is an
indication that the asymptotic density of particles is not determined by a unique scaling exponent.

P (x, t) 6= 1

tν
g
( x
tν

)
, (1.2)

in the sense that mono-scaling predicts a constant ν(q). Thus if one finds (for example in an experiment)
a nonlinear spectrum, then certain popular fractional diffusion equations [37], the fractional Brownian
motion [35], and the central limit theorem, which are all mono-scaling theories, are either invalid or
insufficient to handle the long-time moment evolution. It therefore becomes clear that one should go
beyond the central limit theorem in order to understand the origin of the bi-scaling phenomena.

A particular type of strong anomalous diffusion, which has been detected in many natural dispersive
phenomena, is characterized by the piecewise linear exponent spectrum [15]

qν(q) =

{
d1q q < qc,

d2q + d3 q > qc.
(1.3)

The function qν(q) is continuous and increasing with q, and there is a breaking point qc, the solution of
the linear equation d1qc = d2qc + d3, d1, d2 > 0. For example, d1 = 1/2, d2 = 1, d3 = −1 and qc = 2. In
this example the low moments q < qc exhibit normal scaling, similar to Brownian motion, while the fact
that d2 = 1 indicates that high order moments exhibit ballistic scaling x ∼ t. d3 acts to maintain the
continuity of the spectrum, though the derivative of qν(q) is not continuous. For a particular Lévy walk
model the spectrum qν(q) is shown in Fig. 1.

Phenomena with a spectrum Eq. (1.3) are sometimes called bi-scaling or bi-fractal processes. They
are widely observed in a broad range of systems, for example Lagrangian motion in time-dependent
incompressible velocity fields [15], intermittent maps and other nonlinear systems [1, 30], Lorentz gas
with an infinite horizon [10, 44], sand pile models [14], systems with quenched disorder used to mimic
diffusion of light in a Lévy glass [3, 11, 12] and statistics of occupation times in renewal theory [25].
Piecewise bi-scaling behavior of qν(q) was found in experiments of particles diffusing in a live cell, the
strong anomalous diffusion being related to the active (i.e. non-thermal and non-Brownian) motion in the
cell [24]. Strong anomalous diffusion was very recently found in super-diffusion of membrane targeting
C2A domains on a lipid bilayer, and the relation to the Lévy walk model demonstrated experimentally
[31] (see also [13]). Lately, similar phenomena were also observed in models of diffusion of cold atoms
in optical lattices [28], in flows in porous media [18] and in the fluctuations around equilibrium laws in
continuous time random walks [45].

The bi-scaling of the moments implies (roughly speaking) bi-scaling of the packet of particles [41, 42].
This dual nature means, as we will show, a density profile describing diffusive bulk fluctuations, while
a quasi-ballistic scaling describes the tails of the cloud of spreading particles. In this paper we analyze
this behavior using a stochastic framework. Using the Lévy walk model [54] we show that the well
known piecewise bi-scaling is related to two spatial densities. The low order moments q < qc originate
from the Gauss-Lévy central limit theorem. The higher order moments q > qc are related to an infinite
density (ID), meaning, it is an unnormalized density. None the less, we show that this mathematical
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Figure 1. Bilinear spectrum of scaling exponents qν(q) versus q for a sub-ballistic super-
diffusive Lévy walk. Crosses present numerical simulation results for the two state model
with the waiting-time PDF given by Eq. (2.2), α = 3/2 and for time t = 105. Dashed
lines correspond to linear dependencies qν(q) = q/α and qν(q) = q + 1 − α. The two
lines intersect at the point qc = α, see equation (1.3).

object describes a large class of observables, i.e., observables that are integrable with respect to that
non-normalized density. Further more, the infinite density describes the packet of particles when scaled
properly, and hence it describes physical reality. The infinite density is thus a complementary tool to the
central limit theorem. We finally give a uniform approximation, based both on the central limit theorem
and the infinite density. The former describes the short scales of the problem and the latter the large
scales. Since qc < 2 (for super-diffusion see below) even the second moment, traditionally considered as
the defining moment of symmetric fluctuations, is an observable integrable with respect to the infinite
density, so not surprisingly for a system with power law statistics, characterization of the tail must be
made precise.

The Lévy walk model has gained recent new interest in the dynamics of cold atoms in optical lattices
[6, 28], and the spreading of heat in nonlinear lattices [20, 52, 53]. New work emerged on its stochastic
formalism in particular on the non-linear coupling between jump size and waiting times [2, 19]. Lévy
walks have a wide range of applications, at-least for a first approximation of a stochastic phenomenon.
This includes blinking quantum dots [36, 47], diffusion of tracer particles in turbulent flows [46], among
other examples (see review [54]). Here we use stochastic tools based on the renewal assumption without
attempting to justify the concept of infinite densities from a microscopical point of view. Considerable
mathematical work was devoted for the classification of Lévy walks and related processes, for example
the limit theorems and governing equations were investigated in [5,8,21,27,34,48]. However as far as we
know the concept of infinite densities was not promoted in the Lévy walk context within the mathematical
literature.

The density of particles, P (x, t), is normalized to unity for any fixed time, i.e.,
∫∞
−∞ P (x, t)dx = 1.

This is merely the reflection of conservation of matter, i.e., particles are not created neither annihilated in
our system. Since normalization is conserved, one tends to believe that a non-normalized density cannot
turn to a useful concept [43]. Maybe that is the reason why the statistics of the Lévy walk model were
not completely worked out so far (though much is known of-course). One of our aims is to remove the
mystery from the concept of infinite densities, at least within the context of the Lévy walk model. Infinite
invariant densities are used in infinite ergodic theory, though their application into statistical physics is
only recent, see, for example [28].
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Non-normalized densities for Lévy walks were introduced in our recent publications [41, 42]. Here
we provide a new method of calculating the infinite density using the Mellin transform technique, and
provide a detailed derivation of the moments of the process, needed for the full characterisation of the
anomalous statistics.

Bilinear scaling is not observed in the ballistic phase of the motion, namely, when the average flight
time diverges. For that case qν(q) = q and then a mono-scaling theory is valid. Here we provide an
expression for the density of of particles based on an integral representation. While this was the subject
of a recent research presented in Ref. [23], here we address some additional cases not considered so far;
for example, the cases of non-symmetric and biased ballistic walks.

2. The models

In this section we describe the Lévy walk models while observing the position of a particle, x(t), at time
t. Two models will be presented: the velocity and the jump models. These two models are treated using
the tools of renewal theory [25]. In order to distinguish between the models, we use ·̃ · · notation to mark
observables and functions for the jump model. Therefore, for example, x(t) refers to the velocity model
while x̃(t) relates to the jump model.

2.1. The velocity model

A particle, traveling with constant velocity, undergoes renewal events which alter its velocity. These
events, e.g., collisions, take place in the time interval (0, t). Between collisions, the particle travels
ballistically with velocity vj−1 for the duration of the sojourn time, τj . The {vj}j=0,1,... and {τj}j=1,2,...

are identically and independently distributed (iid) random variables with probability density functions
(PDF) F (v) and ψ(τ) respectively. We assume that F (v) is symmetric around v = 0, so all odd moments
are zero and all of its even moments finite. For example, the two state model

FTS(v) = [δ(v − vc) + δ(v + vc)] /2, (2.1)

where vc > 0. Most importantly, the PDF of the waiting time is given in the long time limit by

ψ(τ) ∼ A

|Γ (−α)|τ
−1−α, (2.2)

with A > 0 and α > 0. For the case 0 < α < 1 the mean waiting time diverges, where as for 1 < α < 2
there exists a finite mean, 〈τ〉 =

∫∞
0
τψ(τ) dτ , yet the second moment diverges. We will treat the case of

0 < α < 1 in Sec. 8 while now we focus on the latter. For applications in the next subsections, note the
expansion of the one sided Laplace transform in the small u limit for the 1 < α < 2 case [7,25,29,37,55]
which is

ψ̂(u) =

∫ ∞

0

e−uτψ(τ) dτ ∼ 1− 〈τ〉u+Auα . . . . (2.3)

We define x(t), the position of the particle at time t as

x(t) =

n∑

j=1

vj−1τj + vnτb, (2.4)

where n is a random non-negative integer referring to the number of renewal events during (0, t) (see
Fig. 2). Each event can be explained as a collision, such that the nth collision event occurs at time
tn =

∑n
j=1 τj and τb = t− tn is the backward recurrence time [25].

The PDF, P (x, t), of the particle’s position x at time t describes the system. We present simpler and
known expressions in the (k, u) space, with (k, x) as the Fourier conjugate pair and (u, t) as the Laplace
conjugate pair. The Fourier-Laplace transform is defined as

P (k, u) =

∫ ∞

0

dt

∫ ∞

−∞
dx eikx−utP (x, t). (2.5)
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In what follows we use the convention of indicating the space we are working in by the function’s variables
in the parenthesis.

The Montroll-Weiss equation [7, 29,55], describing the process in the (k, u) space, is given by

P (k, u) =

〈
1− ψ̂(u− ikv)

u− ikv

〉
1

1− 〈ψ̂(u− ikv)〉
. (2.6)

Here 〈·〉 indicates averaging with respect to v only. The full derivation is given in App. A.

2.2. The jump model

In the jump model the particle jumps only at the epoch of the next event, holding still during the sojourn
time (see Fig. 2). Mostly static, the jth jump is proportional to the sojourn time τj multiplied by a
factor vj−1 with velocity units. The position, x̃(t), differs from Eq. (2.4) by the omission of the backward
recurrence movement,

x̃(t) =

n∑

j=1

vj−1τj . (2.7)

With no movement in the backward recurrence time, one of our goals is to examine its effect on the
P (x, t), i.e., the differences between the two models. Clearly in normal processes this is negligible in the
long time limit. For a power law ψ(τ) the effects of movement during the backward recurrence time are
macroscopically noticeable [7, 23].

The Fourier-Laplace transform of the PDF, P̃ (x, t), is derived in App. B, termed the Montroll-Weiss
equation for the jump model,

P̃ (k, u) =
1− ψ̂(u)

u

1

1−
〈
ψ̂(u− ikv)

〉 . (2.8)

3. Integer moments for 1 < α < 2

In this section, we investigate the long time limit of the moments of the process for 1 < α < 2 using the
Montroll-Weiss equation. These moments will later be used to derive the infinite density.

3.1. The moments of the velocity model

The long time limit is investigated with the standard [37] small Laplace variable u behavior of Eq. (2.3)
inserted into Eq. (2.6)

P (k, u) ∼ 1−Aτ 〈[u− ikv]α−1〉
u−Aτ 〈[u− ikv]α〉 , (3.1)

where Aτ = A/〈τ〉.
The moments 〈xm(u)〉 are given by the general Leibniz rule of derivation:

〈xm(u)〉 = ∂mP (k, u)

∂(ik)m

∣∣∣∣
k=0

∼
m∑

j=0

(
m
j

)
∂m−j

∂(ik)m−j (1−Aτ 〈[u− ikv]α−1〉) ∂j

∂(ik)j
1

u−Aτ 〈[u− ikv]α〉

∣∣∣∣
k=0

=
∂m

∂(ik)m
1

u−Aτ 〈[u− ikv]α〉

∣∣∣∣
k=0

−Aτ

m∑

j=0

(
m
j

)
∂m−j

∂(ik)m−j 〈[u− ikv]α−1〉 ∂j

∂(ik)j
1

u−Aτ 〈[u− ikv]α〉

∣∣∣∣
k=0

.

(3.2)
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Figure 2. (color online) A sketch of trajectories for two Lévy walk models. For the two
state velocity model the particle’s velocity attains values ±1 with equal probabilities.
Hence for the velocity model (dotted line), the value of x(t) either increases or decreases
continuously in time, in the course of ballistic motion events. In the jump model (solid
line), x̃(t) is discontinuous and it is updated at the end of each waiting event. The
sequence of the collision times t1, t2, . . . is the same for both models.

The exact expression for the derivative of the denominator is given by the Faà di Bruno formula [33]

∂j

∂(ik)j
1

u−Aτ 〈[u− ikv]α〉

∣∣∣∣
k=0

=

j∑

z=1

(−1)zz!

(u−Aτuα)z+1
Bj,z(θ1, θ2, . . . , θj−z+1), (3.3)

where Bj,z(θ1, θ2, . . . θj−z+1) is the partial Bell polynomial [17]

Bj,z(θ1, θ2, . . . , θj−z+1) =
∑ j!

r1!r2! . . . rj−z+1!

(
θ1
1!

)r1 (θ2
2!

)r2
· · ·
(

θj−z+1

(j − z + 1)!

)rj−z+1

(3.4)

and the summation is taken over all the sequences of integers r1, r2, . . . ≥ 0 such that:

{
r1 + r2 + . . . rj−z+1 = z,

r1 + 2r2 + . . . (j − z + 1)rj−z+1 = j.
(3.5)

The {θz}z=1,2... in Eq. (3.3) are given by

θz =

{
−Aτ (−α)z〈vz〉uα−z even z,

0 odd z,
(3.6)

with (α)z = α(α+1) · · · (α+z−1), the Pochhammer polynomial. Non-zero valued partial Bell polynomials
are obtained by setting r1 = r3 = . . . = 0, meaning j must be even.

Using a partial Bell polynomials identity derived from Eqs. (3.4) and (3.5) we find

Bj,z(θ
a+b, θa+2b, . . . , θa+(j−z+1)b) = θza+jbBj,z(1, 1 . . .). (3.7)
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We simplify the partial Bell polynomial in Eq (3.3) using ϑz ≡ (−α)z〈vz〉,

Bj,z(θ1, θ2, . . .) = (−1)zAzτu
zα−jBj,z(0, ϑ2, 0, ϑ4, . . .). (3.8)

We now find the long time behavior of the moments, Eq. (3.2), which corresponds to the small u limit

〈xm(u)〉 ∼
m∑

j=1

Ajτ j!Bm,j(0, ϑ2, . . .)

u1+m−j(α−1)
−〈vm〉(1− α)mAτ

u2+m−α −
m∑

j=1

(
m
j

) j∑

z=1

〈vm−j〉(1− α)m−jAz+1
τ z!Bj,z(0, ϑ2, . . .)

u2+m−α−z(α−1)
,

(3.9)
It is clear from symmetry that for odd mth moments 〈xm(t)〉 = 0. For even m, the leading term of
Eq. (3.9), in the small u limit, is u−m−2+α. We perform the inverse Laplace transform, uα−m−2 ↔
tm+1−α/Γ (m+ 2− α), and find in the long time limit

〈xm(t)〉 ∼ B m〈vm〉
(m− α)(m− α+ 1)

tm+1−α, (3.10)

with m = 2, 4, 6, 8, . . . and

B = A/[〈τ〉 |Γ (1− α)|]. (3.11)

Eq. (3.10) relates the moments of 〈xm(t)〉 with the velocity moments of F (v) and with A/〈τ〉 and α, the
asymptotic parameters of ψ(τ), Eq. (2.3). For m = 2 we find super-diffusion 〈x2(t)〉 ∼ t3−α which is well
known. So far we did not detect strong anomalous diffusion, this is merely due the fact that as we show
below the critical moment qc = α < 2, while here we have considered integer moments m = 2, ....

3.2. The moments of the jump model

For the jump model we insert the expansion ψ̂(u), Eq. (2.3), to the Montroll-Weiss equation, Eq. (2.8),
yielding

P̃ (k, u) ∼ 1−Aτu
α−1

u−Aτ 〈[u− ikv]α〉 . (3.12)

We now turn to calculate the asymptotic moments 〈x̃m(u)〉. The nominator’s independence of k in Eq.
(3.12) simplifies the calculations. Using Eqs. (3.2) and (3.3) we find

〈x̃m(u)〉 = ∂mP̃ (k, u)

∂(ik)m

∣∣∣∣
k=0

∼ (1−Aτuα−1)
∂m

∂(ik)m
1

u−Aτ 〈[u− ikv]α〉

∣∣∣∣
k=0

= (1−Aτuα−1)

m∑

j=1

(−1)jj!Bm,j(0, θ2, . . .)

(u−Aτuα)j+1
.

(3.13)
Using Eq. (3.8), the expression is further simplified in the small u limit yielding

〈x̃m(u)〉 ∼
m∑

j=1

Ajτ j!Bm,j(0, ϑ2, . . .)

u1+m−j(α−1)
=
Aτ Bm,1(0, ϑ2, . . . , ϑm)

u2+m−α +O

(
1

u3+m−2α

)
, (3.14)

where Bm,1(ϑ1, . . . , ϑm) = ϑm with rm = 1 and its predecessors are zero according to Eqs. (3.4) and
(3.5). Applying the inverse Laplace transform, we find for even values of m,

〈x̃m(t)〉 ∼ B α〈vm〉
(m− α)(m− α+ 1)

tm+1−α. (3.15)

Notice that for every m the moments of the velocity and jump models uphold 〈xm(t)〉 ≥ 〈x̃m(t)〉. This
occurs since the velocity model includes the distance traveled during the backward recurrence time τb,
where as in the jump model the particle is grounded up until tn+1, the end of the nth event (see Fig. 2).
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4. The infinite density

In the last section we obtained two asymptotic expressions for the even moments. Using heuristics and
the inverse Mellin transform we plan to derive a matching density and examine its traits. As we shall
see, the density so derived is an infinite density (ID).

4.1. The inverse Mellin transform approach

The Mellin transform is related to the Laplace and Fourier transforms [38]. It maps a function B(v) on
the positive real axis v > 0, to a function M(q) defined on the complex plane, q,

M(q) =

∫ ∞

0

vq−1B(v)dv. (4.1)

M(q) is the Mellin transform of B(v) and is defined on the strip of definition, S, for every q ∈ S, for
which convergence of M(q) is guarantied [16, 38]. Clearly, if B(v) is a PDF with all its moments finite
then the strip of definition will include 1 ≤ Re(q) and M(q) = 〈vq−1〉. The inverse Mellin transform [38]
is given by

B(v) =
1

2πi

∫ c+i∞

c−i∞
M(q)

dq

vq
, (4.2)

where c ∈ S. These definitions are easily extended to the case of a symmetric PDF over v 6= 0 with
M(q + 1) = 〈|v|q〉/2 . In our case, since F (v) is symmetric so we can simply use Eq. (4.2) to write it in
terms of the inverse Mellin transform 〈|v|q〉/2,

F (v) =
1

4πi

∫ c+i∞

c−i∞

〈|v|q〉
|v|q+1

dq, (4.3)

where Re(q) = c ≥ 0 is included in the strip of definition [38], i.e., the domain for which 〈|v|q〉 is analytic.
In practice, we obtain 〈|v|q〉 for Re(q) ≥ 0 and now continue this function in the whole complex plane.
This procedure gives {qj}j=1...nq

as the poles of 〈|v|q〉 which are located at Re(q) < 0 (see details below).
A complementary example is the case where F (v) is composed of only Dirac delta functions such that
for the two state velocity model, where v = ±vc with equal probability, 〈|v|q〉 = |vc|q has no poles.

We intend to use the inverse Mellin transform to extract from the moments 〈|x(t)|q〉 a density, Id(x/t),
which will turn out to be the ID. The inverse Mellin transform is suited to extract a generic form of the
infinite density since it operates directly on the moments, unlike the inverse Fourier based method [42],
which includes two steps: a Taylor series summation of the integer moments and an inverse Fourier
integral applied to it. In order to continue we acknowledge that Eq. (3.10) can be analytically continued
as absolute value moments, i.e., Eq. (3.10), can be used to calculate the long time dependence of 〈|x(t)|q〉
for q > α,

〈|x(t)|q〉 ∼ B q〈|v|q〉
(q − α)(q − α+ 1)

tq+1−α. (4.4)

The analytic continuation assumption is validated later by theoretical arguments (e.g. the matching the
density tail and bulk solutions, see below) and simulations. The choice of q > α is inferred from the
strip of definition of 〈|v|q〉, Eq. (4.3) and the two poles: q = α − 1 and q = α, since we must have valid
moments from some critical order value and on.

We first define
〈|x(t)|q〉
2tq+1−α ∼

∫ ∞

0

v̄qId(v̄)dv̄, (4.5)

where

v̄ =
x

t
=

1

t

∫ t

0

v(t) dt (4.6)
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the time-averaged velocity. Note that in Eq. (4.5) we have exploited the symmetry of the problem,
writing the integral from 0 to ∞, the factor 1/2 on its left hand side stems from that same symmetry.
The inverse Mellin transform is given by

Id(v̄) ∼
1

4πi

∫ c+i∞

c−i∞

〈|x(t)|q〉
tq+1−α

dq

|v̄|q+1
. (4.7)

Inserting 〈|x(t)|q〉, Eq. (4.4), results in

Id(v̄) =
B
4πi

∫ c+i∞

c−i∞

q

(q − α)(q − α+ 1)

〈|v|q〉
|v̄|q+1

dq (4.8)

In both cases the strip of definition is c > α due to the verified analytic property of 〈|v|q〉, Eq. (4.3), in
that region and the poles at q = α− 1 and α.

We demonstrate the use of Eq. (4.8) to calculate Id(v̄). We solve the inverse Mellin transform integral
using the calculus of residues [4] for a specific case, the two state velocity model, Eq. (2.1). The ID,
ITS(v̄), is

ITS(v̄) =
B
4πi

∫ c+i∞

c−i∞

q

(q − α)(q − α+ 1)

|vc|q
|v̄|q+1

dq, (4.9)

with c > α. For |v̄| ≤ vc one notices that in order to solve the integral using the residues theorem,
we should use the closed contour plotted in Fig. 3A, since the other sections: the horizontal sections,
Im(q) → ±∞, and Re(q) → −∞ do not contribute,

ITS(v̄) =
B
2

[
q

(q − α+ 1)

|vc|q
|v̄|q+1

] ∣∣∣∣∣
q=α

+
B
2

[
q

(q − α)

|vc|q
|v̄|q+1

] ∣∣∣∣∣
q=α−1

=
αB
2vc

∣∣∣vc
v̄

∣∣∣
α+1

(
1− α− 1

α

∣∣∣∣
v̄

vc

∣∣∣∣
)
.

(4.10)
For |v̄| > vc, the vertical branch at Re(q) → −∞ gives a nonzero contribution and thus we change

contours to the one plotted in Fig. 3B. Without any residues inside the contour the result is ITS(v̄) = 0.
The two state model is the simplest case one can analyze. A general symmetric velocity PDF, F (v), which
yields poles on the left hand side of the plane, Re(q) < 0, allows retaining the same contour presented in
Fig. 3A for all values of v̄ 6= 0. Also, notice for further use the archetype function

IT S(ν̄) = vc ITS(vc ν̄), (4.11)

where ν̄ is unit-less.
Using Eq. (4.8) and assuming that q = α− 1 and q = α are 1st order poles and F (v) is not composed

of Dirac delta functions, we calculate the general case infinite density over the extended closed contour
plotted in Fig. 3A,

Id(v̄) = αB
2

〈|v|α〉
|v̄|α+1

(
1− (α−1)

α
〈|v|α−1〉
〈|v|α〉 |v̄|

)

+B
2

∑nq

j=1

[
qjRes(〈|v|q〉,qj)
(qj−α)(qj−α+1) |v̄|−qj−1

]
,

(4.12)

where Res(〈|v|q〉, qj) is given by

Res(〈|v|q〉, qj) =
1

2πi

∮

R→0

〈|v|qj+z〉 dz, (4.13)

and R, the radius of the circle which encircles the pole qj . We identify in the general expression, Eq.
(4.12) three parts: (i) the |v̄|−1−α term, (ii) the |v̄|−α term and (iii) a polynomial of |v̄|. The first two,
which stem from the poles α− 1 and α. In Sec. 4.3 we give an asymptotic integral expression replacing
the polynomial for large |v̄|.
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Figure 3. Contours for the calculation of the infinite density (ID) ITS(v̄), Eq. (4.9),
of the two-state model, for |v̄| < vc (left panel) and |v̄| > vc (right panel). The poles
q = α− 1 and q = α are found on Re(q) > 0 since α > 1. For general F (v) the contour
on the LHS panel may contain poles to the left of the Re(q) = 0 axis (if they exist).

For the two state model we obtain Eq. (4.10), where F (v) does not have any residues. This can

be extended to include a general discrete valued PDF F (v) =
∑N
j=1 [δ(v − vcj) + δ(v + vcj)]pj/2, where

{pj}j=1,...,N are probabilities,
∑N
j=1 pj = 1 and vcj > 0 for j = 1, . . . , N . Using Eqs. (4.8,4.9,4.11) one

finds the general form

Id(v̄) =
N∑

j=1

pj
vcj

IT S

(
v̄

vcj

)
. (4.14)

Now we find the ID for a Gaussian test-case, IG(v̄), using Eq. (4.12). The velocity PDF is

FG(v) =
1√

2πVG
e
− 1

2

(

v
VG

)2

, (4.15)

with

〈|vq|〉 = (
√
2VG)

q

√
π

Γ

(
1 + q

2

)
. (4.16)

Inserting the above to the upper left parenthesis of Eq. (4.12) we find

(α− 1)〈|v|α−1〉
α〈|v|α〉 =

(α− 1)2−
1
2Γ (α/2)

αΓ (1/2 + α/2)VG
=

2
1
2Γ (α/2)

αΓ ([α− 1]/2)VG
(4.17)

We now turn to calculate the last term on the right hand side of Eq. (4.12). The residues of 〈|v|q〉 are
determined by Γ [(1 + q)/2] [see Eq. (4.16)]. They are located at qj = −2j − 1 for j = 0, 1 . . ., which give
the familiar singularities of the Gamma function. The residue value, for this single pole [4], is well known
and easily evaluated by

Res(〈|v|q〉, qj) =
2(−1)j√

πΓ (1 + j)(
√
2VG)2j+1

. (4.18)
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Inserting this expression into the polynomial term in Eq. (4.12) yields

B
2

∑∞
j=0

[
qjRes(〈|v|q〉,qj)
(qj−α)(qj−α+1) |v̄|−qj−1

]
qj=−2j−1

= −B
2

∑∞
j=0

(2j+1)
(2j+1+α)(2j+α)

(
√
2VG)−2j−1

√
π

2(−1)j

Γ (1+j) |v̄|2j

= − B
2
√
2πVG

∑∞
j=0

(j+1/2)
(j+[1+α]/2)(j+α/2)Γ (1+j)

[
− v̄2

2(VG)2

]j

= − B
2
√
2πVG

∑∞
j=0

Γ (j+3/2)Γ (j+[1+α]/2)Γ (j+α/2)
Γ (j+1/2)Γ (j+[3+α]/2)Γ (j+1+α/2)

1
Γ (1+j)

[
− v̄2

2(VG)2

]j
.

(4.19)

Recalling the definition of the Pochhammer symbol [4]

− B
2
√
2πVG

Γ (3/2)Γ ([1+α]/2)Γ (α/2)
Γ (1/2)Γ ([3+α]/2)Γ (1+α/2)

∑∞
n=0

(3/2)n([1+α]/2)n(α/2)n
(1/2)n([3+α]/2)n(1+α/2)n

1
n!

∣∣∣− v̄2

2(VG)2

∣∣∣
n

= − 1√
2π

B
α(α+1)VG

3F3

(
3
2 ,

1+α
2 , α2 ;

1
2 , 1 +

α
2 ,

3+α
2 ;− v̄2

2(VG)2

)
,

(4.20)

where 3F3(·) is a Hypergeometric function [4]. Combining Eqs. (4.17) and (4.20) yields

IG(v̄) =
α(

√
2)αΓ

(
1+α
2

)
B

2
√
π

(VG)
α

|v̄|α+1

(
1− 2

1
2Γ
(
α
2

)

αΓ
(
α−1
2

) |v̄|
VG

)
− 1√

2π

B
α(α+ 1)VG

3F3

(
3

2
,
α

2
,
1 + α

2
; 1+

α

2
,
3 + α

2
,
1

2
;−1

2

∣∣∣∣
v̄

VG

∣∣∣∣
2)

.

(4.21)
The same result was found in [41] using a characteristic function method and plotted there.

As noted in [41, 42], the infinite density is non-normalizable and yields in the long time limit the
correct moments of order larger than α in accordance with its strip of definition. One may ask what is
the relation with the PDF P (x, t) which yields these moments exactly at all times. The answer is found
in Eq. (4.7). The right hand side of this equation is exactly tαP (x, t). Thus we find

Id
(x
t

)
∼ tαP (x, t), (4.22)

for t→ ∞ and x 6= 0. Obtaining the density P (x, t) as a measured result from an experiment allows the
extraction of the ID. The latter a physical reality containing information on the particles’ position and
the moments. Eq. (4.22) also makes it clear why the ID is non-normalizable at t→ ∞.

4.2. The Mellin convolution approach

The inverse Mellin form of the ID, Eq. (4.8), and the three components of Eq. (4.12), are complicated to
calculate. The first requires to perform complex integrals and the latter’s exact form requires calculating
all the residues. We present a more familiar and intuitive convolution form. The Mellin convolution is a
multiplicative convolution [38], also known in statistics as a method of calculating the PDF of a product
of two independent random variables.

We define for v̄ > 0 the functions B1(v̄) and B2(v̄) with the following Mellin transforms M1(q) and
M2(q) respectively. The strips of definitions are given by q ∈ S1 and q ∈ S2. The multiplicative
convolution is defined as

Bconv(v̄) =

∫ ∞

0

B1(y)B2

(
v̄

y

)
dy

y
, (4.23)

an associative operation [38]. One can show that the Mellin transform of the convolution is

∫ ∞

0

v̄qBconv(v̄)dv̄ =M1(q + 1)M2(q + 1), (4.24)

with the strip of definition q ∈ S1 ∩S2. Specifically, we set Bconv(v̄) = Id(v̄) and 〈|x(t)|q〉/(2tq−α+1), Eq.
(4.5), as the convolution’s product of Eq. (4.24). Expressing the latter as Eq. (4.4), we multiply and
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divide the by (vc)
q, where vc is an arbitrary velocity constant. The resulting function can be partitioned

into two components 



M1(q + 1) = B
2

q
(q−α)(q−α+1) (vc)

q,

M2(q + 1) =
〈∣∣∣ vvc

∣∣∣
q〉
.

(4.25)

The inverse Mellin transform of M1(q + 1) is B1(v̄) = ITS,vc(v̄) which by using Eq. (4.9) can also be
written as

B1(v̄) =
1

vc
IT S

(
v̄

vc

)
(4.26)

and for M2(q + 1)

B2(y) = 2vcF (vcy) , (4.27)

where y is a unit-less variable. Notice that ITS,1(·) is a unit-less function with a unit-less input variable.
Changing y to v = yvc and inserting both functions to Eq. (4.23) results in

Id(v̄) = 2

∫ ∞

0

F (v) IT S
( v̄
v

) dv

v
. (4.28)

This can be written with the aid of Eq. (4.10)

Id(v̄) = B
[
αFα(v̄)
|v̄|1+α − (α− 1)Fα−1(v̄)

|v̄|α
]
, (4.29)

where

Fα(v̄) =
∫ ∞

|v̄|
vαF (v) dv. (4.30)

Eq. (4.29) for the ID Id(v̄) is simpler than the expression in the previous section, merely including two
simple integrals, the integrand is a product of F (v) and vα or vα−1.

In [42] Eq. (4.29) was derived based on entirely different approach, and it was used to calculate the
ID for the Gaussian FG(v), Eq. (4.15).

IG(v̄) =
B

2
√
2πVG


αΓ

(
1 + α

2
,
1

2

∣∣∣∣
v̄

VG

∣∣∣∣
2
)∣∣∣∣∣

√
2VG
v̄

∣∣∣∣∣

1+α

− (α− 1)Γ

(
α

2
,
1

2

∣∣∣∣
v̄

VG

∣∣∣∣
2
)∣∣∣∣∣

√
2VG
v̄

∣∣∣∣∣

α

 , (4.31)

where Γ (α, y) =
∫∞
y
e−ttα−1 dt is the incomplete Gamma function. This expression is equivalent to Eq.

(4.21).
The Id(v̄), Eq. (4.28), can be attributed a statistical meaning as a product distribution [22]. Inter-

preting it probabilistically we find that IT S(ν̄) is the distribution of ν̄ = (T+ − T−)/t, where T± is the
total time the particle moved in the ± direction respectively. To see this simply note that in the two
state model with vc = 1 the time-averaged velocity is exactly (T+ − T−)/t. For a general process, the
velocity PDF F (v) must be taken into account yielding that v̄ = v (T+ − T−)/t, which describes the
extreme excursions of this regime’s ballistic nature.

4.3. The infinite density tail

The infinite density describes the density packet extremities at x ∼ t. We now show that in the limit of
large v̄

Id(v̄) ∼ B 1−Q(|v̄|)
|v̄| , (4.32)
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where Q(v̄) =
∫ v̄
−∞ F (v) dv is the velocity cumulative distribution function (CDF). To demonstrate Eq.

(4.32) we integrate Eq. (4.30) by parts yielding

Fα(v̄) = |v̄|α [1−Q(|v̄|)] + α

∫ ∞

|v̄|
vα−1 [1−Q(v)] dv, (4.33)

We use L’Hôpital’s rule to show that the first element in the RHS is the dominant one.

lim
v̄→∞

v̄α [1−Q(v̄)]

α
∫ v̄
0
vα−1 [1−Q(v)] dv

= lim
v̄→∞

αv̄α−1 [1−Q(v̄)]− v̄αF (v̄)

αv̄α−1 [1−Q(v̄)]
= 1− 1

α
lim
v̄→∞

v̄F (v̄)

1−Q(v̄)
. (4.34)

Applying L’Hôpital’s rule a second time,

1

α
lim
v̄→∞

−v̄F (v̄)
1−Q(v̄)

∝ lim
v̄→∞

v̄

F (v̄)

dF (v̄)

dv̄
→ ∞. (4.35)

Here we used the fact that all the positive ordered moments of F (v) are finite, meaning, limv̄→∞ v̄ζF (v) →
0 for ζ ≥ 0. Acknowledging that Fα(v̄) ∼ |v̄|α [1−Q(|v̄|)] for large |v̄| and applying to Eq. (4.29) we
find Eq. (4.32).

Calculating moments of order q ≫ α we can use Eq. (4.32) since the far tail’s contribution is more
dominant. Putting that to the test by inserting Eq. (4.32) into Eq. (4.5) one finds after integration by
parts

〈|x(t)|q〉 ∼ 2Btq+1−α
∫ ∞

0

1−Q(|v̄|)
|v̄| v̄q dv̄ = B 1

q
〈|v|q〉tq+1−α. (4.36)

This is the same as Eq. (4.4) in the limit q ≫ α

4.4. The relation between the velocity and jump models

The ID for the jump model can be derived using the same methods of Sec. (4.1) and 〈x̃m(t)〉, Eq. (3.15).
Probably the simplest way, though, is to notice the relation between Eqs. (3.10) and (3.15) in the long
time limit,

〈xm(t)〉 ∼ m

α
〈x̃m(t)〉, (4.37)

for even m = 2, 4, . . .. We assumed in Sec. 4.1 that 〈xm(t)〉 can be analytically continued as 〈|x(t)|q〉,
Eq. (4.4), for q > α. The same goes for the jump model as we extend the validation of Eq. (3.15) to the
absolute value moments of any order q > α,

〈|x̃q(t)|〉 ∼ B α〈|v|q〉
(q − α)(q − α+ 1)

tq+1−α. (4.38)

The relation between the two models is summarized as

〈|x(t)|q〉 ∼ q

α
〈|x̃q(t)|〉, (4.39)

Dividing by tq+1−α and inserting into Eq. (4.7) we find a relation between the IDs of the jump and the
velocity models

Id(v̄) = − 1

α

d

dv̄

[
v̄ Ĩd(v̄)

]
. (4.40)

Clearly Ĩd(v̄) is the corresponding ID of the jump model analyzed with the velocity PDF, F (v). Inte-
grating from |v̄| to ∞ we find

Ĩd(v̄) =
α

|v̄|

∫ ∞

|v̄|
Id(v) dv. (4.41)
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For the jump model we apply Eq. (4.41) to Eq. (4.8),

Ĩd(v̄) =
B
4πi

∫ c+i∞

c−i∞

α

(q − α)(q − α+ 1)

〈|v|q〉
|v̄|q+1

dq. (4.42)

The counterpart of Eq. (4.12) is given by

Ĩd(v̄) = αB
2

〈|v|α〉
|v̄|1+α

(
1− 〈|v|α−1〉

〈|v|α〉 |v̄|
)

+αB
2

∑nq

j=1

[
Res(〈|v|qj 〉,qj)

(qj−α)(qj−α+1) |v̄|−qj−1
]
.

(4.43)

Finally, the counterpart of Eq. (4.29) is found by inserting it into Eq. (4.41),

Ĩd(v̄) = αB
[Fα(v̄)
|v̄|1+α − Fα−1(v̄)

|v̄|α .

]
(4.44)

The simplest example is the two state process for the jump model, Eq. (4.10)

ĨTS(v̄) =
αB
2vc

∣∣∣vc
v̄

∣∣∣
α+1

(
1−

∣∣∣∣
v̄

vc

∣∣∣∣
)
, (4.45)

for 0 < |v̄| ≤ 1 otherwise ĨTS(v̄) = 0. As discussed earlier, the particle is static during the sojourn times
causing the ID to be zero at |v̄|/vc = 1 (unlike the two state velocity model).

5. The uniform approximation of P(x, t)

Our goal in this section is give an adequate approximation describing the Lévy walk propagator P (x, t).
Let us first discuss the typical fluctuations based on the central limit theorem arguments and Lévy
statistics following [42]. The center of the packet is known to be described by the Lévy stable distribution
function [41, 42]. The predominating phenomenon is weakly correlated small jumps at short scales of x,
more precisely when x ∼ t1/α which is smaller than the ballistic scaling x ∼ t. The result is the known
Lévy central limit result [10,32], which takes effect in both the velocity and jump models. As we showed
in [42]

Pcen(k, u) ∼
1

u+Kα|k|α
. (5.1)

This limit is found for the Montroll-Weiss equation assuming both k and u are both small and the ratio
kα/u is fixed. It thus describes x scaling like t1/α which is out side the domain of the ballistic scaling of
the tails. Inverse transforming the above in Fourier and Laplace yields

Pcen(x, t) =
1

[Kαt]
1
α

Lα

(
x

[Kαt]
1
α

)
, (5.2)

where Kα is the anomalous diffusion coefficient [42] (see below). Lα(·) is the symmetric Lévy stable PDF
defined through Eq. (5.1).

For large |x|, Pcen(x, t) is approximated by

Pcen(x, t) ∼ Kαcαt|x|−1−α, (5.3)

where we used Lα(x) ∼ cα|x|−1−α and cα = Γ (1 + α) sin (πα/2)/π. We compare Pcen(x, t) for large x
with the IDs, Eqs. (4.12) and (4.43) at v̄ → 0,

Id(v̄) ∼ Ĩd(v̄) ∼
α〈|v|α〉B

2
|v̄|−1−α. (5.4)
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Using Eq. (4.22), we compare between Eqs. (5.3,5.4) and find an alternative form to Eq. (3.11),

B =
2Kαcα
α〈|v|α〉 . (5.5)

Thus Kα can be expressed as [42]

Kα =
A 〈|v|α〉

〈τ〉
∣∣∣cos πα

2

∣∣∣ . (5.6)

This matching between Pcen(x, t) and t
−αId(x/t), the center and outer regions of the PDF, in the region

t
1
α ≪ |x| ≪ t indicates that the two suffice to describe the process at the long time limit. See Fig. 4.

In [42] we established that the Lévy distribution, Eq. (5.2) and the infinite density Eq. (4.22) com-
plement each other in the long time limit. The first is the sole contributor to moments of order less
than α and the latter is used for calculation of those of order larger than α. Both must be used to
describe the particle density P (x, t). Using the fact that the power law form, Eq. (5.3), is shared by both
densities in the intermediate range we determine the uniform approximation of P (x, t), combining the
center, intermediate and outer regions. The approximation must be normalizable and gives the correct
moments at t→ ∞. Using Eqs. (4.22), (5.2) and (5.3) we find

P (x, t) ∼
1

(Kαt)1/α
Lα

(

x

(Kαt)1/α

)

t−αId( x
t )

Kαcαt|x|−1−α

= 1
cαtα

∣∣∣ x
(Kαt)1/α

∣∣∣
1+α

Lα

(
x

(Kαt)1/α

)
Id
(
x
t

)
.

(5.7)

App. C deals with the moment calculation. For a numerical example see Fig. 5. From Eqs. (4.4, 5.2) it
follows that for 1 < α < 2

qν(q) =

{
q/α for q < α,

q + 1− α for q > α,
(5.8)

a behavior demonstrated with simulations in Fig. 1.

6. Diffusive regimes: α > 2

How general is the description of the packet of particles in terms of the infinite density? Is this non-
normalised density related to the Lévy density as shown in previous section, or can it be found also for
models where the bulk PDFs are Gaussian? Above we addressed the sub-ballistic super diffusive regime
case, 1 < α < 2, meaning that the flight time τ has a finite mean 〈τ〉 but a diverging variance. We are
now going to consider the Lévy walk when with the distribution ψ(τ) with α > 2, for which the variance
is finite. Looking for its effect on Pcen(x, t) and the infinite density, we follow the steps made in Secs. 2.1
and 3.1.

6.1. The generating function P(k, u)

As mentioned, the flight time PDF ψ(τ), Eq. (2.2), has a power law tail and for α > 2 we have finite
first and second moments. This indicates an expected relation between P (x, t) and the Gaussian central
limit theorem. Let r ≡ ⌊α⌋ and r ≥ 2. According to a Tauberian theorem [51], the Laplace transform of
ψ̂(u) has an asymptotic form in accordance with Eq. (2.3),

ψ̂(u) ∼ 1 +

r∑

j=1

(−1)j

j!
〈τ j〉uj + (−1)r+1Auα . . . , (6.1)

with A > 0. Inserting this into the Montroll-Weiss equation, Eq. (2.6), and simplifying
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Figure 4. Two complementary densities of the jump model. For the central part of
the density, |x| . t1/α, the Lévy distribution (solid red line), Eq. (5.2), is a good
approximation. The infinite density (dashed blue line), Eq. (4.45), nicely matches the
tails of the packet of particles. The PDF of the process (thin black line) is barely visible
due to the perfect agreement with theoretical predictions. The Lévy distribution and
the ID curves overlap at the central region near x ≃ 4000. The PDF was sampled with
1010 realizations and measurement time was 2 ∗ 104.

P (k, u) ∼
∑r
j=1

(−1)j

j!
〈τj〉
〈τ〉 〈[u− ikv]j−1〉 − (−1)rAτ 〈[u− ikv]α−1〉

∑r
j=1

(−1)j

j!
〈τj〉
〈τ〉 〈[u− ikv]j〉 − (−1)rAτ 〈[u− ikv]α〉

, (6.2)

with Aτ = A/〈τ〉. For future purposes we classify the nominator and the denominator of Eq. (6.2) as
N (k, u) and D(k, u) respectively. To investigate P (x, t) in the bulk region |x| ∝ t1/2 and in the long time
limit, we expand Eq. (6.2) for |u| ≪ |kv| ≪ 1 using the symmetry of F (v). We find the Fourier-Laplace
transform of P (x, t) describing the center part of the packet of particles

Pcen(k, u) ∼
1

u+ 〈τ2〉
2〈τ〉 〈v2〉k2

. (6.3)

Its inverse Fourier-Laplace transform is a Gaussian PDF with zero mean and a variance

〈x2〉 = 〈v2〉〈τ2〉 t

〈τ〉 . (6.4)

The rest of the positive integer moments are derived in the following Section.

6.2. Derivation of the integer moments

We present the derivation of the moments for r = ⌊α⌋, r ≥ 2. The derivation is in accordance with the
one presented in Sec. 2.1 for the velocity model. For the final result turn to Eq. (6.18). The derivatives
of the nominator, N (k, u), and denominator, D(k, u), are given for later use:
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Figure 5. (color online) Uniform approximations (lines), Eq. (5.7), of the PDF for Lévy
walks versus the numerically sampled PDFs for t = 2.5 · 105 (symbols). We use the two
state velocity model (solid red line) and the jump (dashed-dotted blue line) model, Eq.
(2.1), with vc = 1. The parameters are α = 1.5, A = |Γ (1−α)|. The PDFs were sampled
over 108 realizations.





∂m

∂(ik)mN (k, u)
∣∣
k=0

=
∑r
j=1

(−1)j−m

j
〈τj〉
〈τ〉 〈vm〉 1

Γ (j−m)u
j−m−1 − (−1)m+rAτ 〈vm〉 Γ (α)

Γ (α−m)u
α−m−1,

∂m

∂(ik)mD(k, u)
∣∣
k=0

=
∑r
j=1 (−1)j−m 〈τj〉

〈τ〉 〈vm〉 1
Γ (j−m+1)u

j−m − (−1)m+rAτ 〈vm〉 Γ (α+1)
Γ (α+1−m)u

α−m.

(6.5)
The moments 〈xm(u)〉 are given by the general Leibniz rule of derivation:

〈xm(u)〉 = ∂m

∂(ik)m
P (k, u)

∣∣∣∣
k=0

=
m∑

j=0

(
m
j

)
∂m−j

∂(ik)m−jN (k, u)
∂j

∂(ik)j
1

D(k, u)

∣∣∣∣
k=0

. (6.6)

The exact expression for the derivative of the denominator is given by the Faà di Bruno formula [33]

∂j

∂(ik)j
1

D(k, u)

∣∣∣∣
k=0

=

j∑

z=1

(−1)zz!

D(k = 0, u)z+1
Bj,z(ω1, ω2, . . . , ωj−z+1), (6.7)

where Bj,z(ω1, ω2, . . . , ωj−z+1) is the partial Bell polynomial, Eq. (3.4), and the summation is taken over
all the sequences of integers r1, r2, . . . ≥ 0 such that :

{
r2 + r4 + . . . = z,
2r2 + 4r4 . . . = j.

(6.8)

The odd indices are rj = 0 due to the symmetry of velocity PDF, F (v). Thus j must be even, meaning

{
r2 + r4 + . . . = z,
r2 + 2r4 . . . = j/2,

(6.9)
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where the maximum possible value which z and r2 attain is j/2. In the small u limit, the inputs
{ωz}z=1,2,... of Bj,z(·) are

ωz ∼





0 odd z

− 〈τz〉
〈τ〉 〈vz〉 z ≤ r

−Aτ (−α)z〈vz〉uα−z r < z.

(6.10)

We now find the long time behavior of the moments, Eq. (6.6), corresponding to the small u limit.
For m, an even order of the moment, we differentiate between m < α and α < m for convenience. The
first case is 0 < m < α :

〈xm(u)〉 = 1
D(k,u)

∂mN (k,u)
∂(ik)m

∣∣∣∣
k=0

+
∑m
j=1

(
m
j

)
∂m−jN (k,u)
∂(ik)m−j

∣∣∣∣
k=0

∂j

∂(ik)j
1

D(k,u)

∣∣∣∣
k=0

∼ 1
u

[
〈τm+1〉〈vm〉
〈τ〉(m+1) I(m < r) + (−1)r+mAτ 〈vr〉 Γ (α)

Γ (α−r)u
α−1−rδr,m

]

+
∑m
j=1

(
m
j

)[
〈τm−j+1〉〈vm−j〉

〈τ〉(m−j+1) I(m− j < r) + (−1)r+m−jAτ 〈vr〉 Γ (α)
Γ (α−r)u

α−1−rδr,m−j
]∑j

z=1
(−1)zz!
uz+1 Bj,z(ω1, . . .

(6.11)
where I(· · · ) = 1 if the statement in the parenthesis is true and zero otherwise while δr,m = 1 if r = m
otherwise it is 0. Since j ≤ m ≤ r then Eq. (6.10) yields Bj,z a constant independent of u. Hence the
minimum exponent of u−1−zBj,z in the last term in Eq. (6.14) is given for r2 = z = j/2, where

Bj,j/2(0, ω2, 0, . . .) =
j!

(j/2)!

(ω2

2

) j
2

. (6.12)

In the long time limit the asymptotic form of the moment is given by

〈xm(u)〉 ∼
( 〈v2〉〈τ2〉

2〈τ〉

)m
2 m!

u1+
m
2
+

Γ (α)

Γ (α− r)

Aτ 〈vr〉
ur+2−α δr,m. (6.13)

Performing the inverse Laplace transform on the latter we find for the dominant order

〈xm(t)〉 ∼ Γ (m+ 1)

Γ (m2 + 1)

( 〈v2〉〈τ2〉
2〈τ〉 t

)m
2

. (6.14)

These are the moments of the Gaussian distribution in accordance with Pcen(k, u), Eq. (6.3).
Turning our attention to even moments of order m > α, they are expressed by

〈xm(u)〉 = 1
D(k,u)

∂mN (k,u)
∂(ik)m

∣∣∣∣
k=0

+
[∑r∗

j=1 +
∑m
j=r∗+1

](
m
j

)
∂m−jN (k,u)
∂(ik)m−j

∂j

∂(ik)j
1

D(k,u)

∣∣∣∣
k=0

∼ 1
u (−1)r+mAτ 〈vm〉 Γ (α)

Γ (α−m)u
α−1−m +

∑r∗

j=1[. . .] +
∑m
j=r∗+1

(
m
j

)
〈τm−j+1〉〈vm−j〉

〈τ〉(m−j+1)

∑j
z=1

(−1)zz!
uz+1 Bj,z(ω1, . . .).

(6.15)
where r∗ is large enough such that m − r∗ < r and the leading order of the nominator’s derivative is a
constant u0. After careful analysis one finds that the dominant contributions are brought by the first
term from the left and the sum,

∑m
j=r∗+1. The latter contains the denominator’s derivative whose leading

term varies between
j∑

z=1

(−1)zz!

uz+1
Bj,z(ω1, . . .) =





u0

uz+1 if z is large as j/2
. . .

uzα−j

uz+1 if z is small as 1

(6.16)
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Performing the calculations we find the leading contributions corresponding to j = m with z = 1 and j/2.

〈xm(u)〉 ∼ m!

( 〈v2〉〈τ2〉
2〈τ〉

)m
2 1

u
m
2 +1

+

[
Γ (α)

Γ (α−m)
− Γ (α+ 1)

Γ (α+ 1−m)

]
(−1)n+mAτ 〈vm〉

um+2−α . (6.17)

Using the inverse Laplace transform and Gamma function identities [4] we find the expression for moments
of even order m > α

〈xm(t)〉 ≃ Γ (m+ 1)

Γ (m2 + 1)

( 〈v2〉〈τ2〉
2〈τ〉 t

)m
2

+ B m〈vm〉
(m− α)(m− α+ 1)

tm+1−α. (6.18)

Thus we find two terms the first grows like tm/2 and it describes Gaussian statistics, i.e. moments of the
normal distribution, and a second term proportional to tm+1−α, which originates from the tail of P (x, t).
Importantly the latter is similar to the expression in Eq. (3.10) for 1 < α < 2. This means that the
ID for α > 2 is the same as that found for 1 < α < 2, since the ID must generate the moments of the
process. To see this notice that the second term in Eq. (6.18) is larger than the first, in the long time
limit, when m > 2(α − 1). So the q moments larger than the critical value 2(α − 1) behave as for the
super-diffusive phase 1 < α < 2 and the ID description of the tails of the PDF is valid for α > 1. Thus
the critical value of q after which the infinite density dominates is

qc(α) =




α if 1 < α < 2,

2(α− 1) if 2 < α.
(6.19)

We note that it is difficult to either measure or simulate the rare events for 2 < α if compared with the
case α ≃ 3/2.

There is a difference between the Gaussian 2 < α and Lévy 1 < α < 2 phases specified next. The Lévy
density and the ID match for intermediate x as we have shown in the previous section. In contrast the
Gaussian cannot be matched to the ID for intermediate values of x. To make the matching, one needs
to find the correction to the central limit theorem, for example using the fractional Edgeworth expansion
[26]. This could yield a power law correction term to the Gaussian which could in principle match the ID.
This non universal correction leads to a non-universal behavior of the moments when α < m < 2(α− 1)
namely moments are not determined exclusively by either the Gaussian central limit theorem or the ID.
We leave these issues to future rigorous work. The q − α phase diagram of the Lévy walk model is
summarised in Fig. 6. It contains in it a stripe of non-universal features which is beyond the scope of
this paper.

The above principles are true for the jump model as well. The infinite density is derived through the
moments in the same manner as in Sec. 4, yielding the same results, Eqs.(4.8) and (4.42). All the former
expressions found for the ID for 1 < α < 2 are valid for α > 2 such as Eqs. (4.10,4.12,4.28).

7. Biased dynamics

We mentioned in the Sec. 2 that the velocity PDF, F (v) is symmetric and assumed 〈v〉 = 0. We will
now introduce bias by shifting the distribution

F〈v〉(v) = F (v − 〈v〉). (7.1)

This ensures that the moments 〈[v − 〈v〉]q〉 = 0 for odd q. We introduce the PDF, P〈v〉(k, u), for the
velocity model with the velocity PDF, F〈v〉(v), while for the unbiased case the PDF P (k, u) was given by
Eq. (2.6), the Montroll-Weiss equation. By inserting Eq. (7.1) to the latter and changing the variables
we find

P〈v〉(k, u) = P (k, u− ik〈v〉). (7.2)
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Figure 6. (color online) Phase diagram of the Lévy walk process on the parameter
space (q, α). For 0 < α < 1 we find mono-scaling and ballistic transport, Eq. (8.3). For
qc(α) < q, Eq. (6.19), the statistics is described by the infinite density (the region above
the dot dashed line). Region 1 < α and q < α is governed by the Lévy-Gauss central
limit theorem. The fourth region, marked grey, is not yet fully explored, since it requires
non-trivial matching conditions between the ID and the Gauss central limit theorem.

This relation suits the jump model as well. We first perform the inverse Laplace transform and then
inverse Fourier transform which yield

P〈v〉(x, t) = P (x− 〈v〉t, t). (7.3)

When a velocity bias is present in the system, one should measure 〈x〉 = 〈v〉t. Then, one can use the
same tools discussed earlier including the infinite density after transforming to the rest frame, xt − 〈v〉.
Then the relation between the biased case ID and the unbiased one is

Id,〈v〉(v̄) = Id(v̄ − 〈v〉). (7.4)

In Sec. 5, Pcen(x, t) was found to be a Lévy stable distribution for the case of 〈v〉 = 0. In the general
case, the whole packet shifts to x ∼ 〈v〉t where the weakly correlated small jumps at relatively short
times are dominant. Applying Eq. (7.2) to Eq. (5.1), followed by Fourier-Laplace transformation for
1 < α < 2 produces,

Pcen,〈v〉(x, t) =
1

[Kαt]
1
α

Lα

(
x− 〈v〉t
[Kαt]

1
α

)
. (7.5)

8. Ballistic regime: 0 < α < 1

For 0 < α < 1 the motion becomes ballistic, namely, x ∼ t. The propagators for the symmetric case
were considered in Ref. [23] using methods from Refs. [25] and [39,40]. Below we obtain the PDF of the
scaled variable x/t. We call this regime the ballistic Arcsine-Lamperti regime since as we show below the
limit theorems describing the packet of particles are related to the work of Lamperti and the Arcsine law
found by P. Lévy in the context of occupation times of Brownian motion (see Fig. 6). The problem at

hand is related to the problem of ergodicity. To see this note that x =
∫ t
0
v(t) dt and hence the scaling

variable x/t is the time-average of the velocity. Since 0 < α < 1 the problem is related to weak ergodicity
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breaking [39, 40]. To start the analysis we recall the Laplace transform of the flight times PDF in the
small u limit

ψ̂(u) ∼ 1−Auα . . . . (8.1)

8.1. The ballistic PDF

For the remaining of the section we relax our constraints on F (v), the velocity PDF, and allow any general
form with all of its integer moments finite. For the velocity model we approximate the Montroll-Weiss
equation, Eq. (2.6), in the small k and u limits such that k/u is finite using Eq. (8.1),

P (k, u) ∼ 〈(u− ikv)α−1〉
〈(u− ikv)α〉 =

1

u

〈(1− ik
u v)

α−1〉
〈(1− ik

u v)
α〉 . (8.2)

Seeking P (x, t) in the long time limit we apply the tools discussed in [40], which refers to a Fourier-
Laplace transform. The entire process is ballistic and dependent on the time-averaged velocity, v̄, Eq.
(4.6) [23]

P(v̄) = limt→∞ tP (x, t)

= − 1
π limǫ→0 Im

∫ ∞
−∞ dvF (v)(v̄−v+iǫ)α−1

∫ ∞
−∞ dvF (v)(v̄−v+iǫ)α .

(8.3)

Using the identities limǫ→0(v̄ − v + iǫ)α = |v̄ − v|eiα φ(v) and φ(v) = πI(v̄ < v) we define

H<
α (v̄) =

∫ ∞

v̄

dvF (v)|v̄ − v|α (8.4)

and

H>
α (v̄) =

∫ v̄

−∞
dvF (v)|v̄ − v|α. (8.5)

Inserting these into Eq. (8.3) gives the main result of this subsection,

Pα(v̄) =
sin (πα)

π

H<
α−1(v̄)H

>
α (v̄) +H<

α (v̄)H
>
α−1(v̄)

[H<
α (v̄)]

2 + [H>
α (v̄)]

2 + 2 cos (πα)H>
α (v̄)H

<
α (v̄)

. (8.6)

For the jump model, we apply the long time limit approximation, Eq. (8.1), to the Montroll-Weiss
equation, Eq. (2.8),

P̃(k, u) ∼ uα−1

〈(u− ikv)α〉 =
1

u

1

〈(1− ik
u v)

α〉 . (8.7)

Similarly, using [40] and the methods depicted above we find

P̃(v̄) = lim
t→∞

tP̃ (x, t) = −|v̄|α−1

π
lim
ǫ→0

Im
I(v̄ > 0)− eiπαI(v̄ < 0)∫∞
−∞ dvF (v)(v̄ − v + iǫ)α

, (8.8)

or the second key function of this subsection,

P̃(v̄) =
sin (πα)

π
|v̄|α−1 H<

α (v̄)I(v̄ > 0) +H>
α (v̄)I(v̄ < 0)

[H<
α (v̄)]

2 + [H>
α (v̄)]

2 + 2 cos (πα)H>
α (v̄)H

<
α (v̄)

. (8.9)

P(v̄) and P̃(v̄), the PDFs of the Lévy walk system for 0 < α < 1 , are presented in their general form.
The two PDFs also show some similarities. As α → 1, both equate and give a Dirac delta function (see
appendix of [25]),

lim
α→1

P(v̄) = lim
α→1

P̃(v̄) = − 1

π
lim
ǫ→0

Im

[∫ ∞

−∞
dvF (v)(v̄ − v + iǫ)

]−1

= δ(v̄ − 〈v〉). (8.10)
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In the opposite limit, α→ 0, the particle is stuck in one state most of the time since the sojourn time
has a very fat tail. For the jump model, the particle is stranded for almost the entire measurement time
causing x(t)/t → 0 in the long time limit. Indeed applying inverse Laplace and Fourier transforms on
Eq. (8.7) and inserting to Eq. (8.8) we find

lim
α→0

P̃(v̄) = δ(v̄). (8.11)

In the velocity model, and in the α → 0 limit, the particle travels most the observation time with a
constant velocity v whose value is drawn from F (v). By applying the same inverse transforms on Eq.
(8.2) as above and inserting into Eq. (8.3) we find

lim
α→0

P(v̄) = F (v̄). (8.12)

The two PDFs, Eqs. (8.6) and (8.9), have a striking difference at the origin, where the jump model PDF
diverges. For a special case of a symmetric PDF F (v) = F (−v), notice that H<

α (0) = H>
α (0) = 〈|v|α〉/2

and H<
α−1(0) = H>

α−1(0) = 〈|v|α−1〉/2 ,which we assume exists. The PDF P(v̄ = 0) is calculated in the
leading order, using Eq. (8.6),

P(v̄ = 0) =
tan (πα2 )

π

〈|v|α−1〉
〈|v|α〉 , (8.13)

where 0 < α < 1. For the jump model we use Eq. (8.9) to find

P̃(v̄) ∼ tan (πα2 )

π

1

〈|v|α〉 |v̄|
α−1. (8.14)

We now turn to the statistical mean and the variance. They are calculated by applying the method of
[40] to Eqs. (8.2) and (8.7). We define ξ = −ik/u and

〈xq〉
tq

=





(−1)q

q!
dq

dξq
〈[1+ξv]α−1〉
〈[1+ξv]α〉

∣∣
ξ=0

velocity model,

(−1)q

q!
dq

dξq
1

〈[1+ξv]α〉
∣∣
ξ=0

jump model.

(8.15)

The first cumulant is calculated

〈x〉 =
{

〈v〉t velocity model,
α〈v〉t jump model.

(8.16)

The second cumulant, i.e., the variance, is

〈x2〉 − 〈x〉2 =





(1− α)
[
〈v2〉 − 〈v〉2

]
t2 velocity model,

α(1− α) 〈v
2〉
2 t2 jump model.

(8.17)

The abrupt displacement events of the jump model affect the mean and the variance due to the particle’s
stickiness in contrast to the velocity model. This is especially noticeable near α = 0.

8.2. Numerical examples

Some example cases will now be discussed. The first case is the symmetric two state model given by the
velocity PDF FTS(v), Eq. (2.1). Using Eqs. (8.4) and (8.5) in (8.6) we find Lamperti’s PDF [40]

PTS(v̄) =





sin (πα)
π

2
vc

[

1−( v̄
vc
)
2
]α−1

[1+ v̄
vc
]
2α

+[1− v̄
vc
]
2α

+2 cos (πα)
[

1−( v̄
vc
)
2
]α for |v̄| ≤ vc,

0 for |v̄| > vc,

(8.18)
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Figure 7. (color online) Simulations (symbols) versus theory (lines) for the two state
model with α = 0.4. The velocity attains values ±1 with equal probability. Simulation
results are given for the velocity (+) and jump (◦) models are compared with the the-
oretical results (8.18,8.19) respectively. Numerically obtained PDFs found by sampling
over 105 realizations.

and by Eq. (8.9)

P̃TS(v̄) =





sin (πα)
π

2
vc
| v̄
vc
|α−1

[1−| v̄
vc
|]α

[1+ v̄
vc
]
2α

+[1− v̄
vc
]
2α

+2 cos (πα)
[

1−( v̄
vc
)
2
]α for |v̄| ≤ vc,

0 for |v̄| > vc.

(8.19)

The second case is a system with a biased two state PDF

F (v) =
1

1 +R
δ(v + vc) +

R

1 +R
δ(v − vc), (8.20)

where R > 0 is the asymmetry parameter. Specifically, in the previous example we set R = 1. Straight-
forward calculations yield

PbiasTS(v̄) =
sin (πα)

π

2R
vc

[
1−

(
v̄
vc

)2]α−1

[
1 + v̄

vc

]2α
+R2

[
1− v̄

vc

]2α
+ 2R cos (πα)

[
1−

(
v̄
vc

)2]α , (8.21)

and

P̃biasTS(v̄) =
sin (πα)

π

1+R
vc

∣∣∣ v̄vc
∣∣∣
α−1 [

1−
∣∣∣ v̄vc
∣∣∣
]α

[1 + (R− 1)I(v̄ > 0)]

[
1 + v̄

vc

]2α
+R2

[
1− v̄

vc

]2α
+ 2R cos (πα)

[
1−

(
v̄
vc

)2]α . (8.22)
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Figure 8. (color online) Simulations (symbols) and theory (lines) for the two state
system with α = 0.4 and vc = 1. The velocity attains values v = 1 and v = −1 with
probability 0.7 and 0.3, respectively [i.e. R = 7/3 in Eq. (8.20)]. Simulation results
are presented for the velocity (+) and jump (◦) models. The lines are the theoretical
PDFs, Eqs. (8.21) and (8.22), respectively. The velocity model exhibits ballistic peaks
diverging on v̄ = ±vc while for the jump model, divergence is found at the origin v̄ = 0.
Numerically obtained PDFs found by sampling over 105 realizations.

Eqs. (8.18) and (8.21) are the Lamperti distribution [9, 25,40].

The third case is a system with an exponential PDF

Fexp(v) = exp (−
√
2|v̄|/vc)/[

√
2vc], (8.23)

where vc > 0. A straight forward calculation of Eqs. (8.4) and (8.5) for v̄ > 0 yields

H<
α,exp(v̄) =

(vc)
αe−

√
2v̄

vc

21+
α
2

Γ (1 + α), (8.24)

and

H>
α,exp(v̄) =

(vc)
αe−

iπα
2

21+
α
2

[
Γ

(
1 + α,

√
2v̄

vc

)
e

√
2v̄

vc
+ iπα

2 − γ

(
1 + α,−

√
2v̄

vc

)
e−

√
2v̄

vc
− iπα

2

]
, (8.25)

where Γ (α, x) =
∫∞
x
dye−yyα−1 and γ(α, x) = Γ (α) − Γ (α, x) are the incomplete gamma functions [4].

Using the symmetric properties of the exponential PDF we can calculate Pexp(v̄) and P̃exp(v̄) on the
RHS using Eqs. (8.6) and (8.9). The asymptotic expressions of the PDFs is obtained via approximations.
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Figure 9. (color online) Simulations (symbols) and theory (lines) for the model with
the symmetrical exponential velocity PDF, Eq. (8.23) with α = 0.4. Simulation results
are presented for the velocity (+) and jump (◦) models. The lines are the theoretical
PDFs. Numerically obtained PDFs found by sampling over 105 realizations.

Using integration by parts one proves that leading terms are Γ (α, x)|x≫1 ∼ xα−1e−x + O(xα−2) and
γ(α,−x)|x≫1 ∼ eiπαxα−1ex. The auxiliary function, Eq. (8.25), is expressed by

H>
α,exp(|v̄|)||v̄|≫1 = |v̄|α (8.26)

for v̄ > 0. Thus

Pexp(|v̄|)||v̄|≫v0 ∼ sin (πα)

π

Γ (α)(vc)
α−1

2
α+1
2

e−
√

2|v̄|
vc

|v̄|α , (8.27)

and

P̃exp(|v̄|)||v̄|≫v0 ∼ sin (πα)

π

Γ (α+ 1)(vc)
α

21+
α
2

e−
√

2|v̄|
vc

|v̄|α+1
. (8.28)

The fourth case is a system with a constant velocity vc. Its PDF is F (v) = δ(v − vc), vc > 0. In the
velocity model the particle moves constantly with that velocity, turning the time averaged velocity to a
constant independent of α. The PDF, Eq. (8.3) is simplified using Eq. (8.10)

Pvc(v̄) = − 1

π
lim
ǫ→0

Im (v̄ − vc + iǫ)−1 = δ(v̄ − vc). (8.29)

In the jump model the particle jumps only at the end of each event, causing the position is proportional
to the sum of the waiting times, x̃(t) = vctn for n events. The PDF, Eq. (8.8) for positive v̄ is

P̃vc(v̄) = −|v̄|α−1

π
lim
ǫ→0

Im (v̄ − vc + iǫ)−α, (8.30)
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where the zero order in ǫ is

Im (v̄ − vc + iǫ)−α ∼ |v̄ − vc|α Im

{
e−iπα for v̄ < vc,

1 for v̄ > vc,

=

{
−|v̄ − vc|α sin (πα) for v̄ < vc,

0 for v̄ > vc.
(8.31)

yielding

P̃vc(v̄) =
sin (πα)

π
|v̄|α−1|vc − v̄|−α, (8.32)

for 0 < v̄ < vc otherwise P̃(v̄) = 0. This Beta distribution function corresponds to the statistics of the
backward recurrence time in [25] since v̄ ∝ tn/t.

9. Summary

We have analyzed two complementary densities of the Lévy walk. When the average flight time is finite
α > 1 we find dual scaling. In the super diffusive phase, 1 < α < 2, the bulk fluctuations are described
by Lévy’s central limit theorem. Naively, this implies the blow up of the mean square displacement
〈x2〉 = ∞, since the variance of the Lévy distribution is infinite. This is clearly unphysical for any model
with a typical finite velocity. The infinite density is complementary to the Lévy central limit theorem and
it exhibits ballistic scaling. This non-normalised density correctly describes moments, or more generally
observables, which are integrable. For example |x|q with q > α is integrable (non-integrable) with respect
to the infinite (Lévy) density respectively. Hence the moments 〈|x|q〉 with q > α (or 0 < q < α) are
obtained from the infinite (Lévy) density, respectively. In that sense the infinite and Lévy densities
are complementary. Both of them together yield the description of the packet of particles, and the
phenomenon of strong anomalous diffusion.

The Mellin transform technique, developed in this article, yields an explicit equation for the infinite
density. In many applications the analysis of rare fluctuations is made with the theory of large deviations,
however that theory does not apply in our case [49,50]. The technique developed here, was used to analyse
two models. In the velocity model the particle moves with a constant velocity between collision events,
while in the jump model the particle is static most of the time, performing sudden jumps at renewal
events. Both models yield an infinite density indicating that the Mellin transform approach is general.

We have found three behaviors corresponding to the three phases of the Lévy walk model:
(i) For 0 < α < 1 we have mono-scaling and the density is described by tools borrowed from the theory of
weak ergodicity breaking. The limit theorems for the density are related to the arcsine law and Lamperti’s
distribution.
(ii) For 1 < α < 2 the Lévy density describes the central part of the packet of particle and it matches the
infinite density describing the tail of the density. Here we get a uniform approximation describing both
the rare and typical fluctuations.
(iii) When 2 < α the diffusion is normal in the mean square displacement sense. The central part of the
density is described by the Gaussian central limit theorem, while the outer part by the infinite density.
The two solutions do not match in the central region. Hence as suggested in the text, further work is
needed to obtain a uniform approximation.

The perspective ways for further research are many even with a stochastic framework. For example,
we have considered a process that started at time t = 0. If the process has been initiated at time t = −∞,
the system reaches a steady state at time t = 0 when the observation begins. Such an equilibrium state is
found only when α > 1. What is the infinite density in that case? (if it exists). Another interesting case
is to investigate a model where the increments of displacement grows like time to the power of β 6= 1. A
partial answer to this case can be found in Ref. [19].
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A. The Montroll-Weiss equation for the velocity model

The Montroll-Weiss equation describes the CTRW in the (k, u) space. We wish to calculate the PDF,
P (x, t). To do so, we work in the Fourier-Laplace space, where the expression is easier to determine. The
PDF of x(t) is composed of mutually exclusive cases of different number of events, n ,[25]

P (x, t) =
∞∑

n=0

〈I(tn < t < tn+1)δ[x− x(t)]〉, (A.1)

where I(·) = 1 if the argument in the parenthesis is true or 0 if it is false, δ(·) is the Dirac delta and
〈·〉 represents statistical averaging over the sojourn times and the velocities. In what follows we use a
convention of indicating the space we are working in by the function’s variables in the parenthesis, where
(k, x) is the Fourier conjugate pair and (u, t) is the Laplace conjugate pair.

As a first step, we determine the characteristic function, P (k, u), using Eqs. (A.1) and (2.5),

P (k, u) =
〈
eikx−ut

〉
=

∫ ∞

0

dt e−ut
∫ ∞

−∞
dx eikxP (x, t) =

∞∑

n=0

〈∫ tn+1

tn

dt eikx(t)−ut
〉
. (A.2)

Inserting Eq. (2.4) we perform the integral on the RHS of Eq. (A.2) using tn+1 − tn = τn+1

P (k, u) =
∑∞
n=0

〈
1−e−(u−ikvn)τn+1

u−ikvn e−
∑n

j=1 (u−ikvj−1)τj
〉
=〈

1−e−(u−ikv0)τ1

u−ikv0

〉
+
∑∞
n=1

〈
1−e−(u−ikvn)τn+1

u−ikvn
∏n
j=1 e

−(u−ikvj−1)τj
〉
.

(A.3)

The iid trait and the definition ψ̂(u) = 〈e−uτ 〉 enable transforming Eq. (A.3) to

〈
1− e−(u−ikv)τ

u− ikv

〉 ∞∑

n=0

〈
e−(u−ikv)τ

〉n
=

〈
1− ψ̂(u− ikv)

u− ikv

〉 ∞∑

n=0

〈
ψ̂(u− ikv)

〉n
. (A.4)

This geometric series sum is convergent and yields the known Montroll-Weiss equation [7, 29, 55] and
〈·〉 indicates here averaging with respect to {vj}j=0,1,... only.

An alternate form is derived by recalling the Laplace transform identity found using integration by
parts, ∫ ∞

0

dτ e−uτ
∫ ∞

τ

dy ψ(y) =
1− ψ̂(u)

u
, (A.5)

which expresses the probability to stay in a state until time t. Inserting this identity into Eq. (2.6) yields

P (k, u) =

∫∞
0
dτ
∫∞
−∞ dv e−(u−ikv)τF (v)

∫∞
τ
dy ψ(y)

1−
∫∞
0
dτ
∫∞
−∞ dv e−(u−ikv)τF (v)ψ(τ)

, (A.6)

a more common form.

B. The Montroll-Weiss equation for the jump model

The jump model is simpler than the velocity model. The dynamics takes place at discrete times
{tn}n=1,2,..., i.e., the transition times between the renewal events (see Fig. 2). Following Sec. 2.1
we derive P̃ (x, t), the PDF of x at time t,

P̃ (x, t) =
∞∑

n=0

〈I(tn < t < tn+1)δ[x− x̃(t)]〉, (B.1)
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Figure 10. Asymptotic moment amplitudes, Eq. (C.4), for the two-state model (dashed
lines) are compared with the results of the statistical sampling for t = 106 (squares).
Theory predicts a singularity at the point q = α, corresponding to a first order pole.
The parameters of the model are α = 1.5, A = |Γ (1 − α)|, vc = ±1. The number of
realizations is 106.

where x̃(t) is taken from Eq. (2.7). The Fourier-Laplace transform of P̃ (x, t) is

P̃ (k, u) =
∑∞
n=0

〈
1−e−uτn+1

u e−
∑n

j=1 (u−ikvj−1)τj
〉

= 1−ψ̂(u)
u

1

1−〈ψ̂(u−ikv)〉 ,
(B.2)

as in Eq. (2.8).

C. The complementing densities

Up to now we were focusing on the long time limit, and thus concentrating on the characteristic function
P (k, u), Eq. (3.1). This is not enough to attain a comprehensive analytical expression for the full PDF in
the (x, t) phase space. Later, we delved into long time limit solutions and partitioned the PDF to a central
region function, Pcen(x, t), a Lévy stable distribution, Eq. (5.2), and an outer region function, t−αId(x/t),
which approximates P (x, t) in the exterior region |x| ∼ t. The results indicate that in the large t limit
Pcen(x, t) depends on 〈|vα|〉 and the asymptotic form of ψ(τ), while the external region depends on the
latter and the entire velocity PDF, F (v). Both densities are independent of initial conditions in the long
time limit as expected. Between the central and the outer distributions there is a power law dependence,
Eq. (5.3), which is the tail of the Lévy function and the near-origin divergence of the infinite density.
This matching indicates that the two distributions complement each other in extracting the statistical
properties of the PDF, P (x, t). We will show how the two distributions are mutually exclusive in the
following cases of moment calculations.

The behavior of the P (x, t) in the long time limit can be divided to three from the center, x ∼ 0,
outward: (i) Pcen(x, t), (ii) the matched intermediate power law region and (iii) t−αId(x/t). We can
establish two crossover velocities which delimit the matched power law region, vc1t < |x| < vc2t. We will
calculate half the moments value for the sake of simplicity (owing to the symmetry of the system)

∫ ∞

0

xqP (x, t)dx =

∫ vc1t

0

xqPcen(x, t)dx

︸ ︷︷ ︸
center region

+Kαcαt

∫ vc2t

vc1t

xqdx

x1+α︸ ︷︷ ︸
intermediate region

+ t−α
∫ ∞

vc2t

xqId(x/t)dx
︸ ︷︷ ︸

ballistic outer region

. (C.1)
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The crossover velocities vc1 and vc2 can be estimated. The key issue is their time dependence which
indicates which region dominantly dictates the moment calculation. The first, vc1, is the shift from in-
ner Lévy distribution to asymptotic power law, was approximated in [41] as the intersection between
Pcenter(x = 0, t) = Lα(0)/[Kαt]

1/α = Γ (1 + α−1)/[Kαt]
1/α and the intermediate power law region

t−αKαcαv
−1−α
c1 , meaning vc1t ∼ (Kαt)

1/α. The second crossover velocity, vc2, is the end of the near-
origin divergence of the ID. It is derived by equating the first two terms in the expansion of the series,
Eq. (4.12), which yields vc2 ∼ 〈|v|α〉/〈|v|α−1〉. Inserting our estimations yields

∫∞
0
xqP (x, t)dx =

∫ (Kαt)
1/α

0
xqPcen(x, t)dx+Kαcαt

∫ 〈|v|α〉
〈|v|α−1〉 t

(Kαt)1/α
xqdx
x1+α + t−α

∫∞
〈|v|α〉

〈|v|α−1〉 t
xqId(x/t)dx

= (Kαt)
q/α
∫ 1

0
ζqLα(ζ)dζ +Kαcαt

∫ 〈|v|α〉
〈|v|α−1〉 t

(Kαt)1/α
xqdx
x1+α + tq+1−α ∫∞

〈|v|α〉
〈|v|α−1〉

v̄qId(v̄)dv̄,
(C.2)

where ζ = (Kαt)
−1/αx. The intermediate power law region can be written in two ways:

Kαcαt

∫ 〈|v|α〉
〈|v|α−1〉 t

(Kαt)1/α

xqdx

x1+α
= cα(Kαt)

q/α

∫ 〈|v|α〉
K

1/α
α 〈|v|α−1〉

t1−1/α

1

ζqdζ

ζ1+α
= Kαcαt

q+1−α
∫ 〈|v|α〉

〈|v|α−1〉

K
1/α
α t1/α−1

v̄qdv̄

v̄1+α
. (C.3)

In the long time, the moment’s order q determines both the time dependence of the moment and the
integral’s limits. At t→ ∞ the integral’s limits become (1,∞) for q < α with a time dependence of tq/α,
meaning the Lévy phase determines the moment’s calculation. For q > α the limits are (0, 〈|v|α〉/〈|v|α−1〉)
with a tq+1−α dependence. Thus, in the latter case the infinite density determines alone the moment’s
calculation. At q = α, we have a critical value, where the intermediate region integral converges to one
form. This integrand is the matching curve, Eq. (5.3), of both the central limit theorem and the ID. It
contributes to either distributions as a fat tail or a power law divergence at the origin (see Fig. 4). The
moment amplitudes are defined using Eqs. (4.4) and a calculation using the Lévy PDF, Eq. (5.2),

M<
α = 〈|xq(t)|〉

tq/α
∼ (Kα)

q
α Γ (1−q/α)

Γ (1−q) cos (πq/2) for 0 ≤ q < α

M>
α = 〈|x(t)|q〉

tq+1−α ∼ 2Kαcα
α 〈|v|α〉

q 〈|v|m〉
(q−α)(q−α+1) for α < q

(C.4)

Notice that both amplitudes have a 1st order pole at q = α (see Fig. 10). Only the moments of order
q > α reflect uniquely the velocity PDF, F (v). For q < α, the central limit theorem obscures F (v)
as it only contains partial information, Kα ∝ 〈|v|α〉. Now we can assign values characterizing strong
anomalous diffusion to Eq. (1.3) with d1 = 1/α, d2 = 1, d3 = 1− α and qc = α [See Fig. 1].
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