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Work is one of the most basic notions in statistical mechanics, with work fluctuation theorems being one
central topic in nanoscale thermodynamics. With Hamiltonian chaos commonly thought to provide a foundation
for classical statistical mechanics, here we present general salient results regarding how (classical) Hamiltonian
chaos generically impacts on nonequilibrium work fluctuations. For isolated chaotic systems prepared with a
microcanonical distribution, work fluctuations are minimized and vanish altogether in adiabatic work protocols.
For isolated chaotic systems prepared at an initial canonical distribution at inverse temperature β, work fluctuations
depicted by the variance of e−βW are also minimized by adiabatic work protocols. This general result indicates
that, if the variance of e−βW diverges for an adiabatic work protocol, it diverges for all nonadiabatic work protocols
sharing the same initial and final Hamiltonians. Such divergence is hence not an isolated event and thus greatly
impacts on the efficiency of using Jarzynski’s equality to simulate free-energy differences. Theoretical results
are illustrated in a Sinai model. Our general insights shall boost studies in nanoscale thermodynamics and are of
fundamental importance in designing useful work protocols.
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I. INTRODUCTION

Within the realm of classical mechanics of closed many-
body systems, the ergodic hypothesis of equilibrium statistical
mechanics (SM) and related issues such as thermalization and
equilibration, as pioneered by Gibbs, Maxwell, Boltzmann,
Caratheodory, and others [1], is closely connected with an
underlying Hamiltonian chaotic dynamics. Indeed, chaos-
induced ergodicity renders equilibrium SM concepts appli-
cable to chaotic systems with few degrees of freedom [2–4].
Even more fundamental, chaos is crucial toward understanding
nonequilibrium SM (for systems large and small) [5], because
it offers a potential answer to the emergence of a time arrow [6]
and is essential also in understanding diffusion, conduction,
thermalization processes [7–10], etc.

Given the fundamental connection between chaos and
SM, here we aim to reveal a number of generic features
of classical work fluctuations in nonequilibrium processes
in chaotic systems, regardless of the number of degrees of
freedom. We note that work is one of the most basic notions in
SM and their fluctuation aspects have been the central topic in
seminal fluctuation theorems [11–14]. General understandings
of work fluctuations in chaotic systems can further boost
studies of nanoscale thermodynamics. They can also guide
future energy device designs such as heat engines operating
at the nanoscale [15–21], where work fluctuations should be
suppressed to achieve a more uniform work output and a higher
heat-to-work effciency [22].

We shall reveal that ergodicity arising from Hamiltonian
chaos in isolated systems has far-reaching statistical implica-
tions. For initial states prepared as a microcanonical distribu-
tion, work fluctuations vanish identically in the (mechanical)
adiabatic limit. For initial states prepared with a canonical
distribution at the inverse Boltzmann temperature β [23,24],
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the variance in e−βW as an exponential form of work W ,
namely, var(e−βW ) ≡ 〈e−2βW 〉 − 〈e−βW 〉2, is minimized by
adiabatic work protocols. This second result indicates that if
var(e−βW ) diverges for an adiabatic protocol, then it diverges
for any nonadiabatic work protocol sharing the same initial
and final Hamiltonians. As such, divergence in var(e−βW )
may occur systematically. In some previous studies the error
in free-energy simulations based on Jarzynski’s equality was
analyzed based on a finite var(e−βW ) [25,26]. A diverging
var(e−βW ) immediately suggests a challenge. As shown below,
the systematic divergence of var(e−βW ) greatly impacts on the
convergence of simulated averages of e−βW (over a statistical
sample of finite size) toward its theoretical mean value e−β�F

via Jarzynski’s equality [12] (where �F represents a free
energy difference). This implication for the efficiency of
Jarzynski’s equality shall stimulate immediate theoretical and
experimental interests.

II. WORK FLUCTUATIONS: ISOLATED SYSTEMS
PREPARED AT MICROCANONICAL EQUILIBRIUM

In our considerations below, a Hamiltonian system param-
eterized by an external control parameter λ is assumed to be
completely chaotic to induce ergodicity on the energy surface
(here we only need the ergodicity aspect of chaos). Let �(E; λ)
be the properly normalized (via division by symmetry factors)
and dimensionless (via division by the appropriate power of
Planck’s constant) phase space volume enclosed by the energy
surface at energy E, i.e.,

�(E; λ) =
∫

�

�(E − H (p,q; λ))dpdq, (1)

where � is the unit step function, (p,q) are a collection of phase
space variables, and H (p,q; λ) is the chaotic Hamiltonian.
In this form it equals the integral of the density of states
(DoS), i.e., �(E; λ) = ∫ E

Emin
ω(E; λ)dE with the DoS given by
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ω(E; λ) = ∂�(E; λ)/∂E. For a work protocol implemented
by time-varying λ(t), the energy change associated with
λ → λ + dλ is given by

dH = ∂H

∂t
dt = ∂H

∂λ
dλ. (2)

If the rate of change in λ is mechanically slow (adiabatic),
then the time it takes to realize the change of dλ is very long,
during which the trajectory manifests ergodicity; i.e., it visits
the entire energy surface with equal probability. We then obtain

dH =
〈
∂H

∂λ

〉
E

dλ, (3)

where 〈·〉E represents microcanonical average over an energy
surface at energy E. As seen from Eq. (3), the energy
change becomes independent of the initial condition on the
starting energy surface. Then, for a work protocol starting
out from λ(t = 0) = λ0 with initial conditions (p0,q0) and
ending with λ(t = τ ) = λτ with final states (pτ ,qτ ), the final
energy for mechanically adiabatic driving as a function of
initial conditions (p0,q0; λ0), i.e., Eτ (p0,q0; λ0), becomes
independent of the set of all possible initial conditions (p0,q0)
starting from the energy surface H (p0,q0; λ0) = E0. The
inclusive work [14,27],

W = H (pτ ,qτ ; λτ ) − H (p0,q0; λ0) = Eτ − E0, (4)

thus becomes fixed at the value Wad ≡ Eτ − E0.
Consequently, the work fluctuation vanishes identically if

we start with a microcanonical ensemble preparation. Indeed,
all the possible final states end up on a new energy surface
corresponding to a new microcanonical ensemble. By use of
a more rigorous analysis and in connection with Liouville’s
theorem, one recovers the salient result, derived earlier in the
literature [28–33], namely, the phase space volume �(Eτ ; λτ )
equals �(E0; λ0) if the protocol is mechanically adiabatic.
This should not be confused with the better-known Liouville
theorem, where phase space volume is always preserved but
there is no guarantee that the final states are on the same energy
surface. Thus, �(E; λ) in Eq. (1) is a thermodynamic adiabatic
invariant [23,24]. The remarkable result that work fluctuations
in chaotic systems vanish identically in the adiabatic limit is
seen to share the same physics behind the ergodic adiabatic
invariant �(E; λ).

Note in passing that the above finding supplements earlier
theorems for work fluctuations for a microcanonical prepara-
tion [34–37]. Those early theorems showed that the ratio of
two work distributions for forward and backward protocols,
independent of the time-variation of λ(t), equals the ratio
of two DoS, namely ω(E0 + W )/ω(E0). Now given that
�(E; λ) is an adiabatic invariant, i.e., �(Eτ ; λτ ) = �(E0; λ0),
this ratio reduces to that of corresponding two thermody-
namic Gibbs temperatures kBTG = �(·)/ω(·) [23,24] because
ω(Eτ ; λτ )/ω(E0; λ0) = TG(E0; λ0)/TG(Eτ ; λτ ).

As a computational example throughout this work, consider
a modified 2D Sinai billiard [38] depicted in Fig. 1. The
billiard has a moving wall as an analog of a piston. The ergodic
adiabatic invariant �(E; λ) is found to be �(E; λ) = 2πmEλ,
where λ in this case represents the area of the billiard, m is the
mass of the point particle inside the billiard. In the adiabatic
limit, all states starting from a microcanonical ensemble at

FIG. 1. The chaotic Sinai billiard with a moving piston (via
changing Lv). λ in the main text refers to the free area enclosed
by the billiard. For comparison, a rectangular billiard without the
circular structure of radius R is also considered as a nonchaotic test
case. We set Lh = 40 and R = 15, with Lv = 40 at the beginning of
all work protocols.

E = E0 have the same final energy Eτ = (λ0/λτ )E0, resulting
in vanishing work fluctuations. By contrast, in an analogous
setup but without the circular pillar (that is, just a rectangular
billiard), the system is integrable. Ergodicity then no longer
holds. Using that the piston moving direction decouples
from the transverse direction, one can theoretically obtain
that the variance in W is always above zero, even when
the piston moves adiabatically. Our numerical simulations
depicted in Fig. 2 confirm these insights. In particular
(throughout), we consider a work protocol λ(t) = λ0 + (λτ −
λ0)[1 − cos(πt/τ )]/2 of duration τ [39]. It is seen that the
variance for W decreases to 0 for the chaotic Sinai billiard;
in contrast it approaches a nonzero value (in agreement with
theory) for the integrable billiard.

FIG. 2. Variance of work fluctuations, denoted var(W ), vs. the
duration τ of the work protocol λ0 → λτ = 1.2λ0, obtained from
2.4 × 105 individual work realizations. Regimes with very large
τ refer to adiabatic situations. For the Sinai billiard case, var(W )
approaches 0 as τ goes to infinity; for the nonchaotic case (square
billiard) with the same λτ/λ0, var(W ) stays well above zero even for
large τ . Here and elsewhere of the main text, all plotted quantities are
scaled and hence dimensionless, with E0 = 50 and m = 1.

012106-2



MERITS AND QUALMS OF WORK FLUCTUATIONS IN . . . PHYSICAL REVIEW E 95, 012106 (2017)

III. WORK FLUCTUATIONS: ISOLATED SYSTEMS
PREPARED AT CANONICAL EQUILIBRIUM

Jarzynski’s equality 〈e−βW 〉 = e−β�F depicts nonequi-
librium work fluctuations in systems initially prepared as
Gibbs states at inverse Boltzmann temperature β. Here, 〈·〉
now denotes a statistical average over the initial canonical
distribution. Going beyond this, it is of interest to ask how
individual realizations of e−βW obtained in experiments or
simulations deviate from their mean value e−β�F .

Once the initial and final Hamiltonians are specified by the
parameters λ0 and λτ , then �F as well as 〈e−βW 〉 become
fixed for all possible work protocols λ(t) that start with λ0

and end at λτ , yielding var(e−βW ) = 〈e−2βW 〉 − e−2β�F . We
next seek to minimize var(e−βW ) among all possible such
work protocols. Note that the mapping between the adiabatic
invariant �(E; λ) and the energy E is injective for any given
λ. We thus write E = E(�; λ) with the adiabatic invariant �

acting as the “indicator” for the corresponding energy surface.
For an arbitrary (nonadiabatic, in general) work protocol,
these relations between energy and phase space volume can
still be used, e.g., Ē0 = E(�̄0; λ0), Ēτ = E(�̄τ ; λτ ), with
�̄0 = �(Ē0; λ0), �̄τ = �(Ēτ ; λτ ), and the bar referring to
quantities associated with a general work protocol. We next
make use of a useful relation, reading for any phase space
integral of an arbitrary function f (H (p,q; λ)) with the energy
E(�; λ) not being bounded from above (see Appendix A):∫

�

f (H (p,q; λ))dpdq =
∫ ∞

0
f (E(�; λ))d�. (5)

Here, the lower boundary � = 0 corresponds to the vanishing
phase space volume, cf Eq. (1), at bounded lowest energy
H (p,q; λ) at fixed control parameter λ. Particularly, work
statistics over different initial states (p0,q0) and different final
states (pτ ,qτ ) can be now transferred to statistics over phase
space volumes. For a system initially at inverse temperature
β and subject to an arbitrary time-varying work protocol λ(t)
with λ0 → λτ , the quantity 〈e−2βW 〉 can be recast with Eq. (4)
as

〈e−2βW 〉 =
∫ ∞

0
d�̄τ

∫ ∞

0
d�̄0 e−2β[E(�̄τ ;λτ )−E(�̄0;λ0)]

× P (�̄τ |�̄0)ρ0(�̄0), (6)

where �̄0 represents the phase space volume enclosed by an
initial energy value Ē0 = E(�̄0; λ0), the factor ρ0(�̄0; λ0) =
e−βE(�̄0;λ0)/Z(β; λ0) arises from the initial canonical Gibbs
distribution, Z(β; λ0) is the partition function associated
with Hamiltonian H (p,q; λ0), �̄τ represents the phase space
volume enclosed by the final energy value Ēτ = E(�̄τ ; λτ ).
Notably, the part P (�̄τ |�̄0) in Eq. (6) is the conditional
probability describing the transition for the system to start
from �̄0 and to end up with �̄τ . As shown in Appendix B, this
conditional probability is bistochastic, obeying∫ ∞

0
P (�̄τ |�̄0)d�̄0 = 1 =

∫ ∞

0
P (�̄τ |�̄0)d�̄τ . (7)

Based on the above relation, we can prove (see Appendix C)
that 〈e−2βW 〉 or equivalently var(e−βW ) is minimized if
P (�̄τ |�̄0) = δ(�̄τ − �̄0). Put differently, minimization of
〈e−2βW 〉 is realized if the phase space volume enclosed by an

FIG. 3. Work fluctuations depicted by the variance of e−βW vs.
the duration τ of the work protocol λ0 → λτ = 1.2λ0, with 2.4 ×
105 individual work realizations and β = 0.01. In the chaotic case,
the variance of e−βW reaches its minimal values as τ becomes very
large (adiabatic regime), in agreement with theory. In the nonchaotic
case, the variance of e−βW oscillates violently vs. τ [40]. Remaining
parameters are as described in the caption of Fig. 2.

arbitrary initial energy surface at Ē0 = H (p0,q0; λ0) equals
the phase space volume enclosed by the energy surface at the
final energy Ēτ = H (pτ ,qτ ; λτ ). This salient condition can be
just achieved using an adiabatic work protocol, as detailed
above. In short, for all work protocols λ(t) with λ0 → λτ we
find the lower bound 〈e−2βWad〉 � 〈e−2βW 〉, which indicates

var(e−βWad ) � var(e−βW ). (8)

The above result extends a previous principle of minimal
exponential work fluctuations [41], established for strictly
integrable systems and in effect only applicable to one-
dimensional Hamiltonians (as a consequence of those limiting
prerequisites stated in Ref. [41]), to chaotic systems with an
arbitrary number of degrees of freedom. It is the feature of
underlying full chaos and hence ergodicity that makes this
extension possible. Specifically, phase space volume � serves
as an index for energy surfaces and ergodicity makes � an
adiabatic invariant even in multidimensional systems. This
leads to a preserved energy surface index and adiabatic work
protocols then stand out from all other work protocols.

Let us next test these predictions via computational results
for the Sinai billiard, as compared with the integrable billiard
case. As depicted in Fig. 3, with the increase of the duration
τ of a work protocol λ0 → λτ , var(e−βW ) in the chaotic
Sinai billiard case decreases monotonically and minimization
of var(e−βW ) is achieved as τ → ∞, reaching the adiabatic
regime. By contrast, based on results from 2.4 × 105 non-
chaotic trajectories (integrable billiard), we detect no obvious
trend of a systematic decrease in var(e−βW ), no matter how
large τ becomes [40]. It is also of interest to construct a specific
example where var(e−βW ) actually increases as τ increases in
a nonergodic system. This is not possible for the integrable
billiard case here because the piston degree of freedom can
be completely decoupled from its transverse motion. Instead,
in Appendix D we offer one such specific example using
a nonlinear two-dimensional oscillator system with a mixed
classical phase space.
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IV. DIVERGENCE OF var(e−βW )

We now reach the key section of this study. Exploiting
the adiabatic invariant �(E; λ), one may also investigate if
an upper bound of var(e−βWad ) exists. Inverting the relation
�(E0; λ0) = �(Eτ ; λτ ), the final energy Eτ after an adiabatic
work protocol can be expressed solely as a function E0,λ0,λτ ,
denoted as Eτ = Y(E0; λ0,λτ ). One then has

〈e−2βWad〉 =
∫ ∞

0
e−β[2Y(E0;λ0,λτ )−E0] ω(E0; λ0)

Z(β; λ0)
dE0. (9)

As increasing values E0 are sampled from the initial Gibbs
state, there is no reason to expect that the integrand
e−β[2Y(E0,s0,λτ )−E0] should be always bounded from above.
This being the case, 〈e−2βWad〉 and hence the associated
var(e−βWad ) can diverge (no upper bound). This general
possibility of divergence in var(e−βWad ) goes beyond an earlier
observation for the adiabatic expansion of a one-dimensional
ideal gas [42] to chaotic systems with an arbitrary number of
degrees of freedom. More significantly, according to Eq. (8),
var(e−βW ) then diverges for all nonadiabatic work protocols
λ0 → λτ of arbitrary duration τ (that is, divergence may occur
systematically!)

For the Sinai billiard, �(E; λ) = 2πmEλ, Eτ =
Y(E0,λ0,λτ ) = λ0

λτ
E0, we obtain

〈e−2βWad〉 = 2πmλ0

Z(β; λ0)

∫ ∞

0
e−β( 2λ0

λτ
−1)E0dE0

= λτ

2λ0 − λτ

(if λτ < 2λ0). (10)

This main result Eq. (10) shows that if λτ � 2λ0, then the
positive-definite quantity 〈e−2βWad〉 diverges, resulting in the
divergence of var(e−βW ) for all nonadiabatic protocols with
λτ � 2λ0!

The efficiency of using Jarzynski’s equality to simulate
e−β�F from averaging over n realizations of e−βW is of great
practical interest [25,26,43,44]. For a diverging var(e−βW ), the
familiar central limit theorem (CLT) can no longer predict how
the simulation error scales with the sample size n. As such,
even an error analysis becomes a challenge. Here we use a
generalization of CLT [45,46] to arrive at a specific prediction,
which is the first such kind that we know of.

Let s ≡ λτ/λ0. For those cases with a diverging var(e−βWad )
we have s � 2. Consider the 95% confidence interval (CI)
width of the average

∑n
i=1 e−βWi /n over a statistical sample

of size n. The CI width (roughly called error below) is about
the spread of the distribution of

∑n
i=1 e−βWi /n, obtained

by repeating simulations or experiments based on n work
realizations. The smaller the CI width is, the more accurate
is the simulated e−β�F . With details presented in Appendix E,
we discover that the scaling law of the CI width with n is
given by ∼n− 1

s for s � 2, which is markedly different from
the familiar CLT scaling 1/

√
n (unless s = 2). For example,

if s = 3, then the error of
∑n

i=1 e−βWi /n scales as ∼n− 1
3 . That

is, if we hope to increase the accuracy by one decimal place,
the case of s = 3 with diverging var(e−βW ) would already
need to increase the sample size by 1000 times. By contrast,
in the normal situation one only needs to increase the sample
size by 100 times. Further, if λτ 	 λ0, then 1/s approaches

FIG. 4. The 95% confidence interval width of the simulated
average

∑n

i=1 e−βWi /n over 2.4 × 104 statistical samples, as a
function of the sample size n, with β = 0.01. For the bottom curve,
s = λτ/λ0 = 1/3 and so var(e−βW ) being finite, the error scaling is
in agreement with CLT. For the upper three curves, s = 3 and hence
var(e−βW ) diverges, with the error scaling given by ∼n− 1

3 in the
adiabatic case (τ = 104) or even slower scalings in the other two
cases.

zero, yielding an extremely slow error scaling. In these cases
Jarzynski’s equality would be impractical in simulating the
free-energy difference for both adiabatic and nonadiabatic
work protocols.

Computational results in Fig. 4 confirm our theoretical anal-
ysis. There we consider cases with s = 3, for both adiabatic
and nonadiabatic situations. The results are also compared with
a reversed adiabatic work protocol, namely, s = 1/3, for which
there is no divergence in var(e−βWad ). Several observations can
be made. First, for the adiabatic work protocol (τ = 104) with
s = 1/3, the statistical error represented by the bottom line
indeed scales with n− 1

2 , consistent with the common CLT.
Second, for the adiabatic work protocol (τ = 104) with s = 3,
the width of 95% CI of

∑n
i=1 e−βWi /n scales as n− 1

3 , in perfect
agreement with the prediction above. This also indicates that
they have totally different efficiency in simulating e−β�F .
Third, the upper two curves (red dots and black squares) in
Fig. 4 depict the scaling of the error for nonadiabatic situations
with s = 3 and hence diverging var(e−βW ). The error scaling
for the highly nonadiabatic case (τ = 100) is even slower
than n− 1

3 . Thus, in the presence of a diverging var(e−βW ),
the adiabatic work protocol is still much more beneficial over
using a highly nonadiabatic work protocol because the former
possesses advantageous error scaling.

V. CONCLUDING REMARKS

Aspects of work fluctuations continue to be of fundamental
interest [47–50]. Deep insights into work fluctuations are also
relevant to designs of energy devices. Our general results
would not be possible were the system under consideration
not chaotic (systems with only one degree of freedom can
be exceptions [23] because they are typically ergodic). This
study shows that, when suppression of work fluctuations is
of interest, the underlying chaotic dynamics affords general
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predictions and hence may be of expedient value in designing
work protocols. Though derived in the classical domain, our
results may invigorate the community to research new aspects
of work fluctuations and chaos in the quantum domain. In
particular, it is now urgent to revisit Jarzynski’s equality in
both classical and quantum domains to arrive at some general
system characteristics and work protocol guidelines to best
avoid the divergence of the second moment of exponential
work. We also call for next-generation strategies to simulate
free-energy differences via nonequilibrium work protocols.
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APPENDIX

This Appendix contains five sections. In Appendix A, we
prove a most useful, general equality involving an integration
over the whole phase space. In Appendix B we prove the
bistochastic property of the conditional probability P (�̄τ |�̄0)
for Hamiltonians that are not bounded from above. Appendix C
shows that an adiabatic work protocol (applied to ergodic
systems) minimizes 〈e−2βW 〉 and hence minimizes var(e−βW )
among all work protocols sharing the same initial and final
Hamiltonian. In Appendix D, we discuss the behavior of
var(e−βW ) in a nonergodic system. In Appendix E, we discuss
in greater detail the implications of a diverging var(e−βW ) by
use of a generalized central limit theorem.

APPENDIX A: USEFUL RELATION INVOLVING
INTEGRATION OVER WHOLE PHASE SPACE

For a Hamiltonian system H (p,q; λ) with generally mul-
tidimensional phase space degrees of freedom (p,q) and a
control parameter λ, the corresponding phase space volume

up to an energy E is defined as

�(E; λ) =
∫

�

�(E − H (p,q; λ))dpdq, (A1)

where � is the step function. Next, we can use �(H (p,q; λ); λ)
to determine the energy shell in phase space which contains the
set of all phase space points at given energy E; i.e., the surface
of phase points {(p,q)} obeying E = H (p,q; λ). In addition,
because � monotonically increases with E, we obtain the bi-
jective relation that E = E(�; λ) as a function of � at fixed λ.

For systems with a lower energy bound Emin and unbounded
energy, we can write∫

�

f (H (p,q; λ))dpdq

=
∫ ∞

Emin

dE

∫
�

f (H (p,q; λ))δ(E − H (p,q; λ))dpdq (A2)

=
∫ ∞

Emin

dEf (E)
∫

�

δ(E − H (p,q; λ))dpdq (A3)

=
∫ ∞

Emin

dEf (E)ω(E; λ), (A4)

where ω(E; λ) = ∂�/∂E equals the density of states, obeying
ω(E; λ)dE = d�. Notice that the phase space volume �(E; λ)
at fixed λ corresponding to Emin ≡ Emin(λ) is vanishing;
therefore, we recast Eq. (A4) as∫

�

f (H (p,q; λ))dpdq =
∫ ∞

0
f (E(�; λ))d�. (A5)

This useful relation is proven mathematically rigorously in
Ref. [30].

APPENDIX B: BISTOCHASTIC NATURE OF P(�̄τ |�̄0)

To determine the conditional probability for �̄τ given the
initial condition �̄0, i.e., P (�̄τ |�̄0), under the application of
the protocol λ0 → λτ , we consider first all the set of all phase
space points (p0,q0) that start with �(H (p0,q0; λ0); λ0) = �̄0

and analyze the final phase space volume �(H (pτ ,qτ ; λτ ); λτ ),
where (pτ ,qτ ) denote the time evolved Hamiltonian solutions
starting at (p0,q0) with λ0 → λτ . The cumulative probability
of P (�̄τ |�̄0) is the conditional probability given �̄0 at λ0

to end up with �(H (pτ ,qτ ; λτ ); λτ ) � �̄τ . This cumulative
conditional probability reads

∫ �̄τ

0
P (�|�̄0)d� =

∫
�

�(�̄τ − �(H (pτ ,qτ ; λτ ); λτ ))
δ(E(�̄0; λ0) − H (p0,q0; λ0))

ω(E(�̄0; λ0); λ0)
dp0dq0, (B1)

where the δ function stems from the normalized initial probability on the phase space shell � = �̄0,

∫
�

δ(E(�; λ) − H (p,q; λ))

ω(E(�; λ); λ)
dpdq = 1. (B2)

Upon taking the derivative of Eq. (B1), we obtain

P (�̄τ |�̄0) =
∫

�

δ[�̄τ − �(H (pτ ,qτ ; λτ ); λτ )]
δ(E(�̄0; λ0) − H (p0,q0; λ0))

ω(E(�̄0; λ0); λ0)
dp0dq0, (B3)
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which consistently obeys P (�̄τ |�̄0) = δ(�̄τ − �̄0), as τ → 0+. We readily observe the normalization condition for P (�̄τ |�̄0),
namely ∫ ∞

0
P (�|�̄0)d� = lim

�̄τ →∞

∫
�

�[�̄τ − �(H (pτ ,qτ ; λτ ); λτ )]
δ(E(�̄0; λ0) − H (p0,q0; λ0))

ω(E(�̄0; λ0); λ0)
dp0dq0

=
∫

�

δ(E(�̄0; λ0) − H (p0,q0; λ0))

ω(E(�̄0; λ0); λ0)
dp0dq0 = 1. (B4)

We next demonstrate the bistochastic property by integrating over �̄0 in Eq. (B3); i.e.,∫ ∞

0
P (�̄τ |�̄0)d�̄0 =

∫ ∞

0
d�̄0

∫
�

δ[�̄τ − �(H (pτ ,qτ ; λτ ); λτ )]
δ(E(�̄0; λ0) − H (p0,q0; λ0))

ω(E(�̄0; λ0); λ0)
dp0dq0

=
∫

�

δ[�̄τ − �(H (pτ ,qτ ; λτ ); λτ )]dp0dq0

∫ ∞

0

δ(E(�̄0; λ0) − H (p0,q0; λ0))

ω(E(�̄0; λ0); λ0)
d�̄0. (B5)

Observing that d�̄0 = d�(Ē0; λ0) = ω(Ē0; λ0)dĒ0, and writing E(�̄0; λ0) = Ē0, Eq. (B5) assumes the form∫ ∞

0
P (�̄τ |�̄0)d�̄0 =

∫
�

δ[�̄τ − �(H (pτ ,qτ ; λτ ); λτ )]dp0dq0

∫ ∞

0
δ(Ē0 − H (p0,q0; λ0))dĒ0 (B6)

=
∫

�

δ[�̄τ − �(H (pτ ,qτ ; λτ ); λτ )]dp0dq0. (B7)

The Jacobian of (p0,q0) → (pτ ,qτ ) equals unity, and making use of the relation in Eq. (A5) we find∫ ∞

0
P (�̄τ |�̄0)d�̄0 =

∫
�

δ[�̄τ − �(H (pτ ,qτ ; λτ ); λτ )]dp0dq0 (B8)

=
∫

�

δ[�̄τ − �(H (pτ ,qτ ; λτ ); λτ )]dpτdqτ (B9)

=
∫ ∞

0
δ(�̄τ − �)d� = 1, (B10)

Thus, this shows that the bistochastic property,∫ ∞

0
P (�̄τ |�̄0)d�̄0 = 1 =

∫ ∞

0
P (�̄τ |�̄0)d�̄τ , (B11)

indeed holds true for arbitrary work processes.

APPENDIX C: MINIMIZATION OF 〈e−2βW 〉 BY ADIABATIC WORK PROTOCOLS

As mentioned in the main text, the quantity 〈e−2βW 〉 can be written as

〈e−2βW 〉 =
∫ ∞

0
d�̄0

∫ ∞

0
d�̄τ e

−2β[E(�̄τ ;λτ )−E(�̄0;λ0)]P (�̄τ |�̄0)ρ0(�̄0), (C1)

where ρ0 = e−βE(�̄0;λ0)/Z(β; λ0) denotes the initial canonical distribution in �̄0 space. Here, P (�̄τ |�̄0) is the conditional
probability to reach �̄τ , given initially �̄0. Inspired by a result obtained for ergodic one-dimensional systems obtained in
Ref. [41], we show here that the expression in Eq. (C1) becomes minimized by any mechanical adiabatic process operating on
an arbitrary chaotic Hamiltonian system.

Let us assume first that 〈e−2βW 〉 < ∞. We now make use of an integration by parts applied to Eq. (C1), by rewriting P (�̄τ |�̄0)
as a derivative. This yields

〈e−2βW 〉 =
∫ ∞

0
d�̄0e

2βE(�̄0;λ0)ρ0(�̄0)

{∫ ∞

0
d�̄τ e

−2βE(�̄τ ;λτ )

[
d

d�̄τ

∫ �̄τ

0
d�P (�|�̄0)

]}
(C2)

=
∫ ∞

0
d�̄0e

2βE(�̄0;λ0)ρ0(�̄0)

{[
e−2βE(�̄τ ;λτ )

∫ �̄τ

0
d�P (�|�̄0)

]∣∣∣∣
∞

�̄τ =0

−
∫ ∞

0
d�̄τ (de−2βE(�̄τ ;λτ )/d�̄τ )

∫ �̄τ

0
d�P (�|�̄0)

}
. (C3)
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Observing that the boundary terms at �̄τ = 0 or �̄τ = ∞ are vanishing, we end up with

〈e−2βW 〉 = −
∫ ∞

0
d�̄τ (de−2βE(�̄τ ;λτ )/d�̄τ )

[ ∫ ∞

0
d�̄0e

2βE(�̄0;λ0)ρ0(�̄0)
∫ �̄τ

0
d�P (�|�̄0)

]
. (C4)

Next, let A(�̄τ ) denote the integral part inside the big square brackets in Eq. (C4). Because E(�; λ) monotonically increases
with �, one has eβE(�̄0;λ0) > eβE(�̄τ ;λ0) if �̄0 > �̄τ . Exploiting this fact, we can write

A(�̄τ ) =
∫ �̄τ

0
d�

∫ �̄τ

0
d�̄0

eβE(�̄0;λ0)

Z(β; λ0)
P (�|�̄0) +

∫ �̄τ

0
d�

∫ ∞

�̄τ

d�̄0
eβE(�̄0;λ0)

Z(β; λ0)
P (�|�̄0) (C5)

�
∫ �̄τ

0
d�

∫ �̄τ

0
d�̄0

eβE(�̄0;λ0)

Z(β; λ0)
P (�|�̄0) + eβE(�̄τ ;λ0)

Z(β; λ0)

∫ �̄τ

0
d�

∫ ∞

�̄τ

d�̄0P (�|�̄0) (C6)

=
∫ �̄τ

0
d�

∫ �̄τ

0
d�̄0

eβE(�̄0;λ0)

Z(β; λ0)
P (�|�̄0) + eβE(�̄τ ;λ0)

Z(β; λ0)

[ ∫ �̄τ

0
d�

∫ ∞

0
d�̄0P (�|�̄0) −

∫ �̄τ

0
d�

∫ �̄τ

0
d�̄0P (�|�̄0)

]
.

(C7)

Using Eq. (B11), this equation can be reformed further by writing

A(�̄τ ) �
∫ �̄τ

0
d�

∫ �̄τ

0
d�̄0

eβE(�̄0;λ0)

Z(β; λ0)
P (�|�̄0) + eβE(�̄τ ;λ0)

Z(β; λ0)

[
�̄τ −

∫ �̄τ

0
d�

∫ �̄τ

0
d�̄0P (�|�̄0)

]
(C8)

=
∫ �̄τ

0
d�

∫ �̄τ

0
d�̄0

eβE(�̄0;λ0)

Z(β; λ0)
P (�|�̄0) + eβE(�̄τ ;λ0)

Z(β; λ0)

[ ∫ ∞

0
d�

∫ �̄τ

0
d�̄0P (�|�̄0) −

∫ �̄τ

0
d�

∫ �̄τ

0
d�̄0P (�|�̄0)

]
(C9)

�
∫ �̄τ

0
d�

∫ �̄τ

0
d�̄0

eβE(�̄0;λ0)

Z(β; λ0)
P (�|�̄0) +

∫ ∞

�̄τ

d�

∫ �̄τ

0
d�̄0

eβE(�̄0;λ0)

Z(β; λ0)
P (�|�̄0) (C10)

=
∫ �̄τ

0
d�̄0

eβE(�̄0;λ0)

Z(β; λ0)

∫ ∞

0
d�P (�|�̄0) (C11)

=
∫ �̄τ

0
d�̄0

eβE(�̄0;λ0)

Z(β; λ0)
. (C12)

Inserting this partial finding into Eq. (C4) and using once again an integration by parts, we obtain

〈e−2βW 〉 = −
∫ ∞

0
d�̄τ (de−2βE(�̄τ ;λτ )/d�̄τ )A(�̄τ ) (C13)

� −
∫ ∞

0
d�̄τ (de−2βE(�̄τ ;λτ )/d�̄τ )

∫ �̄τ

0
d�̄0

eβE(�̄0;λ0)

Z(β; λ0)
(C14)

= −
{[

e−2βE(�̄τ ;λτ )
∫ �̄τ

0
d�̄0

eβE(�̄0;λ0)

Z(β; λ0)

]∣∣∣∣
∞

�̄τ =0

−
∫ ∞

0
d�̄τ e

−2βE(�̄τ ;λτ )

[
d

d�̄τ

∫ �̄τ

0
d�̄0

eβE(�̄0;λ0)

Z(β; λ0)

]}
(C15)

=
∫ ∞

0
d�̄τ e

−2βE(�̄τ ;λτ ) e
βE(�̄τ ;λ0)

Z(β; λ0)
(C16)

=
∫ ∞

0
d�̄τ

∫ ∞

0
d�̄0e

−2β[E(�̄τ ;λτ )−E(�̄0;λ0)]ρ0(�̄0)δ(�̄τ − �̄0) (C17)

≡ 〈e−2βWad〉. (C18)

This shows that among all work protocols the minimal
value of 〈e−2βW 〉 is assumed for P (�̄τ |�̄0) becoming the δ

function δ(�̄τ − �̄0). This precisely refers to a situation arising
from using mechanically adiabatic work protocols in chaotic
systems; only then we have that the associated total phase
space volume �(E; λ) is an adiabatic invariant.

APPENDIX D: BEHAVIOR OF var(e−βW )
IN A NONERGODIC SYSTEM

In order to see if var(e−βW ) may increase as the duration
of a work protocol increases in nonergodic systems, we have
also considered a two-dimensional nonlinear oscillator system
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FIG. 5. Variance of exponential work, denoted var(e−βW ), vs. the
duration τ of the work protocol mentioned under Eq. (D1), for a
classical system of mixed phase space structure. Note the logarithmic
scale used for both τ and var(e−βW ).

in dimensionless units. The Hamiltonian is given by

H (t) = p2
x

2m
+ p2

y

2m
+ 1

2
mω2

x(t)x2 + 1

2
mω2

yy
2 + λx2y2, (D1)

with m = 1, ωy = 1.07, and λ = 0.05. The work protocol
is given by ωx = (ωτ − ω0) sin(π t

τ
) + ω0, with ω0 = 1.0,

ωτ = 1.1. Simulation is done based on 150 000 trajectories for
each τ , with β = 0.1. Results are presented in Fig. 5 below. It
is seen from Fig. 5 that, for a nonergodic system, var(e−βW )
associated with a fast work protocol may be much smaller
than that for a very slow protocol. In particular, for τ = 0.01,
var(e−βW ) ∼ 1.4 × 10−6; for τ = 1000, var(e−βW ) ∼ 8.9 ×
10−4, namely, the variance in the exponential work is a few
hundred times larger as τ increases. This observation is in
contrast to our general theoretical prediction exclusively for
ergodic systems.

APPENDIX E: IMPLICATIONS OF A DIVERGING
SECOND MOMENT 〈e−2βWad〉

A generalization of the central limit theorem (CLT) [45,46]
states the following: suppose X1, X2, . . . are independent
identical distributed (i.i.d.) random variables. Let X represent
any such random variable which is assumed to obey the two
conditions:

(1) limx→∞ P (X > x)/P (|X| > x) = γ ∈ [0,1];
(2) P (|X| > x) = x−αL(x), where 0 < α < 2 and L(x)

being slowly varying; i.e., limx→∞ L(tx)/L(x) = 1, for all
t > 0.

Here, P (A) denotes the probability of the event A. It then
follows that as n → ∞,

Sn − bn

an

⇒ Y, (E1)

where Y possesses a nondegenerate distribution, wherein

Sn =
n∑

i=1

Xi, (E2)

an = inf{x : P (|X| > x) � n−1}, (E3)

bn = n〈X�(an − |X|)〉, (E4)

with 〈·〉 denoting the statistical expectation value, and �

denoting the unit step function. That is, 〈X�(an − |X|)〉
represents the expectation value of X truncated at ±an.

It is worth noting that the above generalized CLT-theorem
should reduce to the commonly known CLT if α > 2,
with limn→∞ an → n1/2 and limn→∞ bn → n〈X〉, while the
random variable Y becomes a Gaussian distributed random
variable with a vanishing average and sharing the same finite
variance var(Y ) = var(Xi) as Xi .

To connect the above theorem with exponential work
fluctuations, we set Xi = e−βWi . Here Wi is the random work
from an ith measurement with initial condition randomly
picked from the canonically distributed phase space; i.e., Wi

are i.i.d. random variables just as the set Xi above. It readily fol-
lows that limx→∞ P (X > x)/P (|X| > x) = γ ∈ [0,1] with
γ = 1, because X = e−βW is positive definite. For the Sinai
billiard systems considered in the main text undergoing an
adiabatic protocol, W ≡ Wad = Ē0(λ0 − λτ )/λτ = �̄0(λ0 −
λτ )/(2πmλ0λτ ) (see the main text for the notation), where Ē0

and �̄0 denote the energy and phase space volume of the initial
state, respectively. We use here that �̄0 = 2πmλ0Ē0 for the
Sinai billiard model. In the regime under our consideration
here we have that λτ > 2λ0; thus Wad is always negative,
because λ > 0 denotes the free area, being strictly positive.

Let x = e−β( λ0
λτ

−1)r/(2πmλ0). Then the probability P (|X| > x) is
given by the probability of finding �̄0 > r; i.e., it is given
by the tail of the initial canonical probability distribution.
Explicitly,

P (|X| > x) =
∫

|X|>x

e−βH (p0,q0;λ0)

Z(β; λ0)
dp0dq0 (E5)

=
∫ +∞

r

β

2πmλ0
e−β�̄0/(2πmλ0)d�̄0 (E6)

= e−βr/(2πmλ0) (E7)

= x−λτ /(λτ −λ0) (E8)

= x−s/(s−1). (E9)

Here, s = λτ/λ0 and we made use of the relation in Eq. (A5)
and, as well, that Z(β; λ0) = 2πmλ0/β for those two-
dimensional Sinai billiards.

With λτ > 2λ0 (i.e., s > 2), yielding α = s/(s − 1) < 2,
the above-mentioned condition in Eq. (2) for the generalized
CLT is satisfied with L(x) ≡ 1. Referring to Eq. (E3) we obtain

an = inf{x : |x|−α � n−1} (E10)

= n1/α. (E11)

Moreover, bn → n〈X〉 as n → ∞. With these intermediate
findings, Eq. (E1) becomes

lim
n→∞

(∑n
i=1 e−βWi

) − n〈X〉
n1/α

⇒ Y. (E12)

Upon dividing both sides of Eq. (E12) by n1− 1
α and with α =

s/(s − 1) we arrive at

lim
n→∞

(
n∑

i=1

e−βWi

n

)
− 〈e−βWad〉 ⇒ Y

n1/s
, (E13)
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wherein Y denotes the limiting (n → ∞) random variable
for exponential adiabatic work. Equation (E13) describes how
the error between the statistical estimate for the average of
adiabatic random work values, i.e.,

∑n
i=1 e−βWi /n, and the

measure-theoretic average itself, i.e., 〈e−βWad〉, scales with n

in the limit n → ∞. Put differently, the coefficient n1/s on the
right hand side of Eq. (E13) indicates how the error scales with
increasing n. Note that this error scaling law n−1/s depends
strongly on s = λτ/λ0. This latter dependence describes an
intriguing protocol-dependent feature.
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