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Quantum systems out of equilibrium are presently a subject of active research, both in theoretical and
experimental domains. In this work, we consider time-periodically modulated quantum systems that are in
contact with a stationary environment. Within the framework of a quantum master equation, the asymptotic states
of such systems are described by time-periodic density operators. Resolution of these operators constitutes a
nontrivial computational task. Approaches based on spectral and iterative methods are restricted to systems with
the dimension of the hosting Hilbert space dimH = N � 300, while the direct long-time numerical integration
of the master equation becomes increasingly problematic for N � 400, especially when the coupling to the
environment is weak. To go beyond this limit, we use the quantum trajectory method, which unravels the master
equation for the density operator into a set of stochastic processes for wave functions. The asymptotic density
matrix is calculated by performing a statistical sampling over the ensemble of quantum trajectories, preceded by a
long transient propagation. We follow the ideology of event-driven programming and construct a new algorithmic
realization of the method. The algorithm is computationally efficient, allowing for long “leaps” forward in time.
It is also numerically exact, in the sense that, being given the list of uniformly distributed (on the unit interval)
random numbers, {η1,η2,...,ηn}, one could propagate a quantum trajectory (with ηi’s as norm thresholds) in
a numerically exact way. By using a scalable N -particle quantum model, we demonstrate that the algorithm
allows us to resolve the asymptotic density operator of the model system with N = 2000 states on a regular-size
computer cluster, thus reaching the scale on which numerical studies of modulated Hamiltonian systems are
currently performed.
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I. INTRODUCTION

Most of in vivo quantum systems are interacting with an
environment. Although often weak, this interaction becomes
relevant when studying the evolution of a system over long
time scales. In particular, the asymptotic state of such an
open system depends both on the unitary action induced by
the system Hamiltonian, and the action of the environment,
conventionally termed “dissipation.” A recent concept of “en-
gineering by dissipation” [1–7], i.e., the creation of designated
pure and highly entangled states of many-body quantum
systems by using specially designed dissipative operators, has
promoted the role of quantum dissipation to the same level of
importance as unitary evolution.

The use of time-periodic modulations constitutes another
means to manipulate the states of a quantum system. In the
coherent limit, when the system is decoupled from the envi-
ronment, the modulations imply an explicit time-periodicity
of the system Hamiltonian, H (t + T ) = H (t). The dynamics
of the system are determined by the basis of time-periodic
Floquet eigenstates [8–10,12]. The properties of the Floquet
states depend on various modulation parameters. Modulations
being resonant with intrinsic system frequencies may create
a set of nonequilibrium eigenstates with properties drastically
different from those of time-independent Hamiltonians. Mod-
ulations enrich the physics occurring in fields such as quantum
optics, optomechanics, solid state, and ultra-cold atom physics
[10–13] and disclose a whole spectrum of new phenomena
[14–18].

What are the possible physical prospects of a synergy
between environment-induced decoherence and periodic mod-
ulations when both aspects impact a N -state quantum system?
Of course, this question should be rephrased more precisely,
depending on the context of the problem. However, we are
confident that a partial answer to this question, even in its
most general form, will be appreciated by several communities
working on many-body localization (MBL) [19–23], Floquet
topological insulators [15], and dissipative engineering [1,4,5].

There exist several approaches to address the evolution
of open quantum systems [24]. A popular (especially in the
context of quantum optics [25]) approach is based on the
quantum master equation with the generator L of the Lindblad
form [26,27] (we set h̄ = 1):

�̇ = L(�) = −i[H (t),�] +
K∑

k=1

γk(t) · Dk(�),

(1)

Dk(�) = Vk�V
†
k − 1

2
{V †

k Vk,�}.
Here, � denotes the system density matrix, while the set of
quantum jump operators, Vk , k = 1,...,K , capture the action
of the environment on the system. The jump operators act
on the coherent system dynamics via K “channels” with
time-dependent rates γk(t). Finally, [·,·] and {·,·} denote the
commutator and the anticommutator, respectively.

As an object of mathematical physics, Eq. (1) exhibits
a specifically tailored structure and possesses a variety of
important properties [27]. In the case of a time-independent,
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stationary Hamiltonian H (t) ≡ H , the generator L induces a
continuous set of completely positive quantum mapsPt = eLt .
Under some conditions, the system evolves from an initial
state �init toward a unique and time-independent asymptotic
state �eq, limt→∞ Pt�

init = �eq [27]. When time-periodic
modulations are present, Eq. (1) preserves the complete
positivity of the time evolution if all those coupling rates
are nonnegative at any instance of time, γk(t) � 0, ∀t

[27]. Under certain, experimentally relevant assumptions, an
approximation in terms of a “time-dependent Hamiltonian
and a time-independent dissipation” provides a suitable
approximation [27].

Here, we address the particular case of quenchlike, periodic
modulations of period T with the time-periodic dependence
of the Hamiltonian H (t), t ∈ [0,T ], consisting of a switch
between several constant Hamiltonians. A common choice is
a setup composed of two Hamiltonians,

H (t) =
{
H1, for 0 ≤ t mod T < τ

H2, for τ ≤ t mod T < T
, (2)

with τ ∈ [0,T ]. This minimal form has recently been used
to investigate the connection between integrability and ther-
malization [21,28,29] or, similarly, for disorder-induced lo-
calization [20] in coherent periodically modulated many-body
systems.

From a mathematical point of view, Eqs. (1) and (2)
define a linear equation with a time-periodic generator L(t).
Therefore, Floquet theory applies and asymptotic solutions
of the equation are time-periodic with temporal period T

[10,30]. L(t) is a dissipative operator and, in the absence of
relevant symmetries, the system evolution in the asymptotic
limit t → ∞ is determined by a unique “quantum attractor,”
i.e., by an asymptotic, time-periodic density operator obeying
�att(τ + nT ) = �att(τ ), τ ∈ [0,T ] and n ∈ Z+. The main
objective here consists in explicit numerical evaluation of the
matrix form of this operator.

To use spectral methods (complete or partial diagonal-
ization and different kinds of iterative algorithms [31]) to
calculate �att as an eigenelement of the corresponding Floquet
map P(T ) = eL2(T −τ )eL1τ would imply that one has to deal
with N2 computationally expensive operations. In the case of
periodically modulated systems it restricts the use of spectral
methods to N � 300 [32].

A direct propagation of Eq. (1) for a time span long enough
for �(t) to approach the quantum attractor is not feasible
for N � 400 for at least two reasons: Direct propagation
requires to numerically propagate N2 � 1.6 × 105 complex
differential equations with time-dependent coefficients, so that
the accuracy might become problematic for large evolution
times. Although the accuracy may be improved by imple-
menting high(er)-order integration schemes [33] or Faber
and Newton polynomial integrators [34], this approach is
hardly parallelizable so one could not benefit by propagating
equations on a cluster [35].

Systems containing N = 400 states may still be too small,
for example, to explore MBL effects in open periodically-
modulated systems. Is it possible to exceed this limit? If
so, to what extent is this feasible? We attempt to answer
these two questions by first unraveling of the quantum master
Eq. (1) into a set of stochastic realizations, by resorting to

the celebrated method of “quantum trajectories” [36–39]. This
method allows one to transform the problem of the numerical
solution of Eqs. (1) and (2) into a task of statistical sampling
over quantum trajectories which form vectors of the size
N . The price to be paid for the reduction from N2 to N

is that we now have to sample over many realizations. This
problem is very well suited for parallelization and we thus can
benefit from the use of a computer cluster. If the number of
realizations Mr becomes large, the sampling of the density
operator �(t) with the initial condition �init = |ψ init〉〈ψ init|
converges to the solution of Eq. (1) [36,37] provided that the
propagation of the trajectories was performed in a numeri-
cally exact way (we discuss the precise meaning of this in
Sec. III).

We address the generic system, specified by Eqs. (1) and
(2), with no conditions imposed on the operators H (t) and
Vk (for example, they need not be local [40,41] and with no a
priori knowledge of the attractor state. There are two important
issues. First is the time tp after which the trajectories are
sampled. To guarantee that the asymptotic regime is reached,
this time has to exceed the longest relaxation time scale of
the system. Practically, this means that the sampling over
trajectories started at time tp = ST , with integer S 
 1, does
converge to a density operator, which is close to the asymptotic
�att(τ = 0). Second, to minimize numerical errors due to long
propagation, we devise an integration scheme based on a set of
exponential propagators. For quenchlike periodic modulations
this implies a finite number of propagators, which can be
precalculated and stored locally on each cluster node, as we
discuss in the next section.

For a scalable model, a periodically rocked and dissipative
system of N − 1 interacting bosons, we find that the statistical
variance of the sampling does not grow infinitely with tp
but rather saturates to a limit-cycle evolution. Therefore, the
number of trajectories Mr (ε) needed to estimate elements of
�att with accuracy ε (defined with some matrix norm), remains
finite. Assuming that the propagation can be performed for an
arbitrary large time tp with required accuracy, we are left with
the only problem to sample over a sufficiently large number of
trajectories.

In addition, in the asymptotic limit, the sampling of �att(τ =
0) can be performed over individual trajectories stroboscop-
ically, after each period T . This increases the efficiency of
sampling via the use of the same trajectory without having to
initiate yet a new trajectory and then propagating it up to time
tp. Our results confirm that by implementing this approach
on a cluster, it is possible to resolve attractors of periodically
modulated open systems with several thousand quantum states,
thus increasing N by one order of magnitude.

The present work is organized as follows: In Sec. II we
outline the method of quantum trajectories and describe the
algorithmic realization of the method. Statistical aspects of
sampling are briefly discussed in Sec. III. In Sec. IV we
introduce a scalable model system, which serves as a test bed
for the algorithm. Section V is devoted to the implementation
of the algorithm on a cluster together with an analysis of
its performance and scalability. Section VI reports numerical
results obtained for the test case. The findings of the study are
summarized together with an outline of further perspectives in
Sec. VII.
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II. QUANTUM TRAJECTORY AS AN EVENT-DRIVEN
PROCESS

To sample the solution of Eqs. (1) and (2) up to some
time tp using quantum trajectories (also known under the
labels of quantum jump method [38] or the Monte Carlo wave
function method [37]) we first have to calculate the effective
non-Hermitian Hamiltonian,

H̃ (t) = H (t) − i

2

K∑
k=1

V
†
k Vk, (3)

and then proceed along the following path of instructions [36]:
(1) initiate the trajectory in a pure state |ψ init〉;
(2) draw a random number η which is uniformly distributed

on the unit interval;
(3) propagate the quantum state |ψ(t)〉 in time using the

effective Hamiltonian H̃ (t);
(4) the squared norm ‖|ψ(t)〉‖2 decays monotonically.

When the equality η = ‖|ψ(t)〉‖2 is reached, stop the propaga-
tion and normalize the state vector, |ψ(t)〉 → |ψ(t)〉/‖|ψ(t)〉‖;

(5) perform a quantum jump: select the jump operator Dk

with probability pk = γk‖Dk|ψ(t)〉‖2/
∑K

k=1 γk‖Dk|ψ(t)〉‖2

and apply the transformation |ψ(t)〉→Dk|ψ(t)〉/‖Dk|ψ(t)〉‖;
(6) repeat steps 2–5 until the desired time tp is reached.
The density matrix can then be sampled from a set

of Mr realizations as �(tp; Mr ) = 1
Mr

∑Mr

j=1 |ψj (tp〉〈ψj (tp)|.
Formally, in the limit Mr → ∞, the result �(tp; Mr ) converges
towards the solution of Eq. (1) at time tp for the given
initial density matrix �init = |ψ init〉〈ψ init| [24,36]. The density
matrix can also be sampled at any other instance of time
t ∈ [0,tp]. This does not affect the propagation of the trajectory
and only demands normalization of the state vector |ψ(t)〉
before updating �(t ; Mr ) → �(t ; Mr + 1). More specifically,
an element of the density matrix, �ls(t), should be sampled as

�ls(t ; Mr ) = 1

Mr

Mr∑
j=1

cj,l(t)c
∗
j,s(t), (4)

where cj,l(t) is the lth coefficient of the expansion (in
the same basis {|ψj (t)〉},k = 1, . . . ,N used to express the
density matrix) of the normalized wave-function, |ψj (t)〉 =∑N

l=1 cj,l(t)|k〉.
The recipe contains two key steps: (i) propagation (step

3) and (ii) determination of the time of the next jump (step
4). The waiting time, i.e., the time between two consecutive
jumps, cannot be obtained without actual propagation of the
trajectory (except in a few cases [24,36]). This time must
be obtained along with the numerical integration by using
the non-Hermitian Hamiltonian H̃ (t). One has to propagate
a trajectory, monitor the decaying squared norm of the wave
vector and determine the instant of time when the squared norm
equals the randomly chosen value η. In most of the existing
studies, this was realized with a step-by-step Euler method.
This approach, although having a physical interpretation [36],
is not suitable for our purpose because it corresponds to the
expansion of Eq. (1) to the first order in a time step δt ;
consequently, a reasonable accuracy of the sampling can be
achieved with extremely small values of δt only [42].

Several improvements based on higher-order (with respect
to δt) unraveling schemes [45,46] have been put forward. The
accuracy of the sampling—for the same number of realizations
Mr and time step δt—can be improved substantially by
increasing the order of the integration scheme [45]. In QuTiP,
an open-source toolbox in Python to simulate dynamics of
open quantum systems [33], Adams method (up to 12th order)
and backward differentiation formula (up to fifth order) with
adaptive time step are implemented. In this respect, this is
presently the most advanced implementation, to the best of
our knowledge. In addition, QuTiP supports time-dependent
Hamiltonians and allows for multi-processor parallelization.
The original publication [33] addressed scalability and per-
formance of the QuTiP package and demonstrated that a
stationary model with N = 8000 states can be propagated.
However, the results remained restricted to averaging over
a few quantum trajectories and relatively short propagation
time tp. Also, the issues of accuracy and convergence to an
asymptotic state with the number of sampled trajectories were
not discussed.

In contrast, aside of reaching large N , we are concerned
about the following two issues. First, there is the accuracy of
propagation. As tp has to be extremely large in order to be
able to sample a state close to the attractor state �att (note
that up to now the method of quantum trajectories was used
mainly to analyze short-time relaxation and transient regimes
in terms of some observables; e.g., see in Refs. [23]), the
accumulating error due to the discrete approximation of the
continuous evolution with the effective Hamiltonian H̃ can
emerge sizable. These errors may cause serious problems,
for example, when dealing with the delicate issue of MBL
phenomena. Second, in the limit of weak dissipation, when
the coupling rates γk are small, jumps occur rarely. For most
of the time the evolution of the trajectory is deterministic and
propagation using a small δt will not be efficient. Increasing the
time step implies a decrease of the accuracy of determination of
the time of the jump. This constitutes yet another factor which
can blur the quality of the sampling scheme. On the other side,
we want to maximize the speed (in terms of computational
time) of the propagation. If these two problems are successfully
overcome, the only remaining problem left is to obtain a
sufficiently large number of realizations. Here, we handle
both issues with an approach presenting an alternative to the
schemes which rely on increasing the order of integration.

A quantum trajectory is an example of a so-called “event-
driven process” used in control theory [47] (where they are
also known as “Lebesgue sampling processes”) and likewise
also in computational neuroscience [48]. The question how to
integrate such processes numerically exact has been discussed
in those research areas already since the late 1990s. A
possible option consists in the combination of an exponential
propagation together with time-stepping techniques. We next
mainly follow the idea put forward with Ref. [48].

To start, let us first consider a time-independent Hamil-
tonian H (t) ≡ H . The propagation over any time interval
δt with the corresponding effective Hamiltonian H̃ can be
done by the propagating operator (propagator) Pδt = e−iH̃ δt .
Exponentiation of H̃ can be performed numerically with a
controllable accuracy [49]. To determine the time of the
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next jump, we use a time stepping technique [48]. We
choose the convenient and efficient bisection method [50],
cf. Sec. V for more details. The accuracy of the bisection
method is controlled by the maximal order of bisections S

which we call “maximal depth.” The time of the jump is
thus resolved with a precision 2−Sδt . A practical realization
of this method demands a set of S propagators, that is,
Pδts = e−iH̃ δts , δts = 2−sδt0, s = 0,...,S, that are complex
N × N matrices. These propagators have to be pre-calculated
and then stored. Generalization of this approach to the case
of quenchlike temporal modulations is straightforward. In the
bi-Hamiltonian case, Eq. (2), we have to double the number of
the stored propagators and then switch between the two sets
every half of the period T .

Our key objective here is to estimate the maximal system
size N for Eqs. (1) and (2), whose asymptotic density matrix
can be resolved with quantum trajectories implemented on
a computational cluster and validate the accuracy of the
sampling algorithm.

III. STATISTICAL ERROR(S) OF SAMPLING

We next discuss the problem of statistical errors. We assume
that the integration of quantum trajectories is performed in
a numerically exact way, i.e., when the list of consequent
norm thresholds, η = {η1,η2,...,ηn}, and the initial state,
�init = |ψ init〉〈ψ init|, are given, the corresponding trajectory
can be calculated with any prescribed accuracy ε. More
precisely, it can be calculated such that ∀t < tp we have
‖|ψ(t)〉 − |ψexact(t)〉‖ � ε, where ‖.‖ is some suitable norm
and tp[η,|ψ init〉] is the propagation time.

Consider the sampling of a variable X(t) over an ensemble
of realizations {Xj (t)}, j = 1,...,Mr , with the aim to estimate
its mean X̃(t). Examples would be the expectation value of
an operator [36–39] or an element of the density matrix (as in
our case). In addition to the mean (average) of the variable,
X̃(t ; Mr ) = 1

Mr

∑Mr

j=1 Xj (t), we can also calculate its variance
[24,39],

var[X(t); Mr ] = 1

Mr

Mr∑
j=1

(Xj (t) − X̃(t ; Mr ))2, (5)

which here for systems possessing a finite Hilbert space
dimension N is assumed to converge to a generally time-
dependent value var [X(t)] in the limit Mr → ∞. Different
trajectories are statistically independent. Therefore, the central
limit theorem applies and, for large Mr , the probability density
function (pdf) of the mean X̄(t ; Mr ) can be approximated by
a Gaussian pdf centered at X̃(t) with the standard deviation

σ (t ; Mr ) = √
var(X; Mr )/Mr

Mr
1∝ M
− 1

2
r .

In the framework of local and global quantities [37],
elements of the density matrix correspond to the former. That
means that in order to resolve their values we need Mr 
 N

realizations. In addition, they are small for large N , �kl ∼
O(N−1), and the standard criterion of a trustful sampling,
σ (Mr )/�kl � 1, implies that Mr 
 N2. Such a massive
sampling is unfeasible if N � 103, even on a supercomputer.
However, this constitutes a sufficient condition which greatly
overestimates (hopefully) the number of realizations needed

for a reasonable resolution of the density matrix, as we
scrutinize for our test case below. This presents yet another
aspect of the sampling with quantum trajectories we aim to
gain more specific insight.

Another issue we like to mention is the time evolution
of the variance var[�kl(t)]. Evidently, it cannot grow to
infinity simply because the absolute values of the coefficients
cs(t) do not exceed one. Therefore, there is an upper limit
var[�kl(t)] � 1. On the other hand, for completely random
and uniformly distributed values of cs(t) we find var[�kl(t)] ∝
N−1. By using a scalable model we show that (i) the variances
saturate in course of propagation to time-periodic values,
var[�kl(t + T )] = var[�kl(t)], which in addition (ii) allow for
an accurate estimation of the density matrix elements with less
than N2 realizations.

IV. A MODEL

As a test bed for the algorithm we use an open physical
system made up of N − 1 indistinguishable interacting bosons
which hop between two sites, with on-site energies periodically
varied in time. The system Hamiltonian reads

H (t) = −J (b†1b2 + b
†
2b1) + U

2(N − 1)

∑
g=1,2

ng(ng − 1)

+ ε(t)(n2 − n1). (6)

Here, J denotes the tunneling amplitude, U is the interaction
strength, and ε(t) presents a periodically varying modulation
of the local potential in time. In particular, we choose ε(t) =
ε(t + T ) = μ0 + μ1Q(t), where μ0 and μ1 denote a static and
a dynamically varying, respectively, energy offset between
the two sites. Q(t) itself is a periodically varying, unbiased
two-valued quench-function within one full period T ; more
specifically, Q(τ ) = 1

2 within 0 < τ � T/2 and Q(τ ) = − 1
2

for the second half period T/2 < τ � T . The boson operators
bg and b

†
g are the annihilation and creation operators on site

g ∈ {1,2}, while ng = b
†
gbg is the particle number operator.

The system Hilbert space has dimension N and can be spanned
with the N Fock basis vectors, labeled by the number of
boson on the first site n, {|n + 1〉}, n = 0,...,N − 1. Thus,
the model size is controlled by the total number of bosons.
The Hamiltonian Eq. (6) has been used for theoretical studies
before in Refs. [51–55] and, as well, has been implemented in
recent experiments [56,57].

For the single jump operator we use [58]

V = (b†1 + b
†
2)(b1 − b2), (7)

which attempts to “synchronize” the dynamics on the sites
by constantly recycling anti-symmetric out-phase modes into
symmetric in-phase ones. The dissipative coupling constant
γ = γ0/(N − 1) is taken to be time-independent. Since the
jump operator is non-Hermitian, the propagators Pt are not
unital and the attractor does not assume the maximally mixed
state, �att �= 1/N .

The Hamiltonian Eq. (6) is nonintegrable when U �= 0;
therefore, an analytical solution of the corresponding Lindblad
equation is not available. However, in the limit N → ∞
the dynamics can be approximated by mean-field equations
for the expectation values of the three pseudospin operators
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Sx = 1
2(N−1) (b

†
1b2 + b

†
2b1), Sy = − i

2(N−1) (b
†
1b2 − b

†
2b1), Sz =

1
2(N−1) (n1 − n2). For a large number of atoms, the commutator

[Sx,Sy] = [iSz/(N − 1)]
N→∞= 0 and similarly for other cyclic

permutations. Replacing operators with their expectation
values, 〈Sk〉 = tr[�Sk], and denoting 〈Sk〉 by Sk , we find the
semiclassical equations of motion [59],

dSx

dt
= 2ε(t)Sy − 2USzSy + 8γ0

(
S2

y + S2
z

)
,

dSy

dt
= −2ε(t)Sx + 2USxSz + 2JSz − 8γ0SxSy, (8)

dSz

dt
= −2JSy − 8γ0SxSz.

As S2 = S2
x + S2

y + S2
z = 1/4 is a constant of motion, we can

reduce the mean-field evolution to the surface of a Bloch
sphere, (Sx,Sy,Sz) = 1

2 [cos(ϕ) sin(ϑ), sin(ϕ) sin(ϑ), cos(ϑ)],
yielding the equations of motion,

ϕ̇ = 2J
cos(ϑ)

sin(ϑ)
cos(ϕ) − 2ε(t) + U cos(ϑ) − 4γ0

sin(ϕ)

sin(ϑ)
,

ϑ̇ = 2J sin(ϕ) + 4γ0 cos(ϕ) cos(ϑ). (9)

The density matrix � of the system with (N − 1) bosons
can be visualized on the same Bloch sphere by plotting
the Husimi distribution p(ϑ,ϕ), obtained by projecting
� on the set of the generalized SU(2) coherent states,

|θ,ϕ〉 = ∑N−1
j=0

√
(N−1

j
)[cos(θ/2)]j [eiφ sin(θ/2)]N−1−j |j 〉

[60,61]. The visual comparison of the Husimi distribution
with the mean-field solution, Eq. (9), will serve as a test of
the meaningfulness of the sampled density matrix �(tp; Mr ).

V. IMPLEMENTATION ON A CLUSTER
AND PERFORMANCE

Next we describe a high-performance implementation of
the algorithm on a supercomputer and analyze the scalability of
its implementation by using the model system Eqs. (6) and (7).
Numerical experiments were performed on the “Lobachevsky”
supercomputer [62] at the Lobachevsky State University
of Nizhny Novgorod. We employed up to 32 computing
nodes, with the following configuration per node: 2× Intel
Xeon E5-2660 CPU (8 cores, 2.2 GHz), 64 GB RAM, OS
CentOS 6.4. We use Intel Math Kernel Library (MKL), Intel
C/C + + Compiler, and Intel MPI from Intel Parallel Studio
XE [63].

Using Eq. (3), we start with two effective non-Hermitian
Hamiltonians, H̃1 and H̃2, describing the quenchlike modula-
tions, Eq. (2), as represented by a pair of complex double-
precision N × N matrices. An initial pure state |ψ init〉 is
represented by a complex-valued double-precision vector. The
propagation operator yields a wave function for a single
sample. We follow the straightforward approach to paral-
lelization with an independent random sampling. Namely, the
computational load is distributed among supercomputer nodes
by the standard Message Passing Interface (MPI). On each
node we employ the OpenMP threads to parallelize sampling.

Computationally intensive operations are implemented by
calling BLAS functions from Intel MKL in sequential mode.

The code consists of three main steps. First, the program
initializes MPI, allocates memory, and reads parameters and
the matrices of the precalculated exponential propagators
from configuration files. The propagators are calculated
independently on each cluster node. On the second step
all OpenMP threads in all MPI processes independently
propagate several quantum trajectories starting from the initial
state |ψ init〉 [64].

The propagation is realized by using the step-decimation
technique [65]. This pseudocode is presented in Algorithm
1. The maximal depth S, the time steps δts = 2−sdt , and the
exponential propagators Pδts , s = 0,...,S are preloaded. The
program is initiated with s = 0, but later on s is taken from the
previous propagation loop step. This step is fully parallel;
it contains a matrix-vector multiplication that is the most
computationally intensive part of the algorithm. This operation
is performed with the zgemv MKL subroutine. During the third
step all samples on each node are accumulated into the density
matrix. Next, these matrices are collected in the rank 0 MPI
process. Finally, one evaluates the resulting density matrix.
This matrix is written to the output file, the dynamic memory
is deallocated and the MPI is finalized.

The efficient utilization of a supercomputer requires a
reasonable scaling on the distributed memory. In this regard,
quantum trajectories possess an ideal parallelization potential.
The method realizes the general Monte Carlo paradigm
with independent simulations and without substantial load
imbalance. The transfer of the resulting data is the only data
interchange between nodes. We ran numerical simulations
utilizing up to 32 nodes of the supercomputer and found that
the implementation scales almost linearly with the number
of nodes. Next, we consider the performance and the scaling
efficiency of the implementation on 16 CPU cores with shared
memory. To start, the number of MPI processes and OpenMP
threads have to be chosen. We tried several different configura-
tions; namely, 1 process × 16 threads, 2 processes × 8 threads,
4 processes × 4 threads, 8 processes × 2 threads, and 16
processes × 1 thread. We did not find a substantial difference
in performance and chose the option 1 MPI process with 16
OpenMP threads mode for illustration. It is known that setting
a relevant affinity mask to pin threads to CPU cores usually
affects performance and scalability. In this regard, we used
the following settings: KMP_AFFINITY= granulatiny=
fine, scatter. For all performance measurements in this
section we considered the model setup, Eqs. (6) and (7),
with 63 bosons (i.e., with dimension N = 26 = 64) and 640
trajectories. The results of our computational experiments are
summarized in Table I. Upon inspection this shows that our
implementation allows 87% scaling efficiency on 16 CPU
cores with shared memory.

Then, we ran the Intel VTune Amplifier XE profiler to
find main time-consuming parts of our implementation. As a
result we found that the high-performance implementation of
the dense matrix-vector multiplication with zgemv takes more
than 99% of the total computation time. This in turn means
that there is no potential for further optimization of the code.

Finally, we estimate the computation time to propagate a
single trajectory on a single-core as a function of system size
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TABLE I. Scaling efficiency on shared memory.

Time of computations, Efficiency,
Number of threads in seconds percent

1 2170 100
2 1114 97
4 557 97
8 292 93
16 156 87

N ; see Table II. For the model specified by Eqs. (6) and (7)
this time scales as N3; this is due to the multiplication of the
quadratic scaling of a dense matrix-vector multiplication and
a linear scaling of the jump frequency. The latter scaling is,
however, model specific and may differ for other models. Thus,
the overall computation time may vary substantially with the
type of Hamiltonian or/and dissipators under study. On top,
the values we present in Table I depend on the values of the
coupling constant γ0 and the period of modulations T . This
is so because these parameters control the rate of the jumps.
Therefore, these obtained estimates should not be taken as
invariant quantifiers.

VI. APPLICATIONS

We now report the results of our simulations obtained for the
model given by Eqs. (6) and (7). We start with the performance
of the algorithm, Table I. The idea of the algorithm mimics
a float: The algorithm constantly attempts to “float to the
surface,” i.e., to increase the time step of integration toward its
maximal value δt0, while every next jump pulls it downwards
to δtS ; see Fig. 1. The average time between two consequent
jumps is the mean of the local maxima in the depicted sawlike
time sequence of δt . There is no problem in overestimating δt0,
simply because the time step will rarely reach its maximum.
The shortest time step, δtS , or, equivalently, the depth S, is
tuned to the values needed to reach the desired accuracy.

Next we turn to the averages �̄att
kl (t) over realizations and

the corresponding statistical variances var[�att
kl (t)] of the matrix

elements. Both quantifiers converge to “limit cycles” if the
propagation time tp = nT + τ , n ∈ Z+, τ ∈ [0,T ), is much
larger than all relaxation times. This means that for n 
 1

TABLE II. Single-core computation time to propagate a trajectory
over one period T as a function of N . The parameters are J = 1,
μ0 = 1.5, μ1 = 1, U = 3, γ0 = 0.1, and S = 20.

Number of states, Time of computations,
N in seconds

64 0.37
128 2.3
256 16
512 153
1024 1153
2048 8642
4096a 64 785

aExtrapolation

Algorithm 1: Propagation of a quantum trajectory with exponen-
tial operators and bisection method

1: set δt = δt0 & s = 0
2: While ‖|ψ(t)〉‖2 > η do
3: calculate |ψ̃(t)〉 = Pδt |ψ(t)〉
4: if ‖|ψ̃(t)〉‖2 < η & s < S then
5: s = s + 1; δt = δt/2
6: else
7: |ψ(t)〉 = |ψ̃(t)〉
8: t = t + δt

9: While s > 0 & δt = n · δts−1, n ∈ Z+do
10: s = s − 1; δt = δts
11: end while
12: end if
13: end while

the density matrix converges to a time-periodic quantum
attractor, i.e., �̄att(t + T ) = �̄att(t) [see Fig. 2(a)] and the
variances also become time-periodic functions, var[�att

kl (t +
T )] = var[�att

kl (t)] [see Fig. 2(b)]. The crumpled causticlike
shapes of the limit cycles is a result of the projection of a
limit-cycle living in a high-dimensional space on a plane.
These limit cycles are not topological products of N2 two-
dimensional limit cycles; elements of the density matrix do
not evolve independently and their means and variances are
correlated.

For relatively small system sizes, N � 100, we can obtain
a numerically exact asymptotic solution, calculated as the
kernel of the Floquet map minus identity, (PT − 1)�ex(0) =
0. It allows us to quantify convergence of the sampled
density matrix—with the increase of the number of sampled
trajectories, Mr—to the asymptotic state. The error is defined
as the spectral norm [66] of the difference matrix, ε =
‖�̄att(mT ) − �∗(τ = 0)‖. We find that, for the chosen set of
parameters, the sampled solution converges to an attractor

FIG. 1. Floatlike performance of Algorithm II during the propa-
gation of a quantum trajectory. Every local maximum in the depen-
dence δt vs. number of steps (minimum in the depth s dependence)
indicates an occurrence of a jump after which the algorithm performs
a chain of bisections to reach the maximal depth S = 20. After
every step during which no jump occurred, the algorithm doubles
the step size. The average time between two consecutive jumps (red
line) is the average height of the local maximum minus 1. The two
sequences were monitored during the sampling of the asymptotic
state.
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FIG. 2. (a) Structure of the sampled stroboscopic density matrix �att(0) (N = 1024) and (b) time evolution of the mean �̄11(t) (thick
blue line) and variance var[�11(t)] (thin red line) for t ∈ [40T ,50T ]. The system size is N = 256 and the sampling was performed over 105

independent trajectories initiated at the state |ψ init〉 = |1〉 and then propagated to the time tp = 50T . The inset depicts the limit-cycle evolution
of the means and variances for two diagonal elements, �1,1 and �128,128, during one period of modulations, t ∈ [1000T ,1001T ]. Curves for later
periods are indistinguishable from the presented ones. The parameters are the same as in Fig. 1.

already after tp � 50T , such that for t > tp the observed
error remains essentially time-independent. The resulting plot
demonstrates that the sampling error scales as 1/

√
Mr (as

expected for an independent Monte Carlo sampling) with no
signatures of saturation; see Fig. 3.

In the asymptotic regime, the sampling can be performed
stroboscopically, i.e., after every period T . In our simulations
we used tp = 1000T as the transient time and then performed
the stroboscopic sampling of �att(τ = 0). The attractor density
matrix at any other instant of time τ ∈ [0,T ] can be sampled by
shifting the starting time of the sampling, tp → tp + τ , or also
by performing an extra-sampling at all needed intermediate
points.

With 4000 samples per trajectory (that amounts to an addi-
tional propagation over the time 4000T ) it became possible to
collect Mr = 105 samples for the model system of the
dimension N = 1024 (i.e., N − 1 = 1023 indistinguishable
bosons) by running the program on 32 cores during three
days. The Husimi distribution of the sampled density matrix
is depicted in Fig. 4. There is an intriguing similarity between
the distribution of the quantum attractor and the phase-space

FIG. 3. Spectral norm of the difference between the den-
sity matrix stroboscopically sampled with quantum trajec-
tory algorithm and numerically exact asymptotic solution, ε =
‖�̄att(mT ) − �ex(τ = 0)‖, for the two-mode model, Eqs. (6) and (7).
Here N = 100, J = 1, μ0 = 1.5, μ1 = 1, U = 3, γ0 = 0.1.

structure of the classical attractor (its stroboscopic section,
to be more precise) produced by the mean-field equations.
This allows us to conjecture that the attractor density matrix
is resolved with a good accuracy. The 128 cores allowed
us to sample the same number of realizations for the
model with dimension N = 2048 during approximately one
week [67].

VII. CONCLUSIONS

The objective of this study was to estimate the numerical
horizon of a high-accuracy sampling of nonequilibrium dissi-
pative states of periodically driven quantum systems by using
a high-precision realization of the quantum trajectory method.

FIG. 4. Attractors of the two-mode model, Eqs. (6) and (7), with
N − 1 = 1023 bosons. Left panel: Husimi distribution p(ϑ,ϕ) of the
stroboscopic density matrix �att(0) (top) and Poincaré plot of the
attractor of the corresponding mean-field system, Eq. (8) (bottom).
The density matrix was sampled with 105 stroboscopic realizations.
Right panel: Plane version of p(ϑ,ϕ) (top) compared to the probability
density function (pdf) P (ϑ,ϕ) of the classical mean-field attractor
(bottom). The pdf was estimated by sampling the histogram on a
200 × 200 bin grid with 108 stroboscopic points. Note that, because of
a high localization of the density near point (0,3π/2), the logarithmic
scale is used. The parameters are J = 1, μ0 = 1.5, μ1 = 1, U = 3,
γ0 = 0.1.

053313-7



V. VOLOKITIN et al. PHYSICAL REVIEW E 96, 053313 (2017)

We demonstrated that, by implementing the algorithm on a
cluster with � 128 cores, it is possible to resolve time-periodic
asymptotic density operator of driven open quantum systems
of several thousand of states on a time scale of a few days.
The benefit of gaining access to the whole density matrix is
the possibility to extract more detailed information about the
nonequilibrium regimes such as the purity and many-body
entanglement [59].

We would like to surmise on possible optimization of the
sampling procedure. An immediate idea is to use an optimal
initial state |ψ init〉 to reduce the transient time tp. When it is
about resolving the asymptotic density operator as a function
of the value of a parameter changed within some range, the
last moment wave vectors for the current parameter value can
be used as the initial states to sample operator for the next
parameter value. Next, the performance of the algorithm can be
substantially increased by grouping trajectories into matrices
and substituting a set of matrix-vector multiplications with a
single matrix-matrix multiplication. Our tests have shown that
even in the presence of intrinsic asynchrony between different
trajectories, this modification leads to a more than tenfold
acceleration of the sampling process [68].

Research areas where many-body “quantum attractors”
are of potential interest have been already mentioned in the
introduction. We like to recall them.

First, this is many-body localization [19] where the action
of temporal modulations [20,21] and dissipation [22,23] so far
have been considered separately. A combined action of both
factors on the ergodic-MBL transition presents an intriguing
challenge. The survival of Floquet topological insulators
[15] in the presence of dissipation or creation of new types
of insulating Floquet states with synthetic dissipators are
objectives of interest for practical applications.

Second, a large-scale accurate sampling of nonequilibrium
many-body states can serve a useful tool to explore non-
Markovian quantum systems [69]. There is a branch of related

studies where non-Markovian effects are realized by using
different modification of quantum trajectory method, e.g., gen-
eralizations to the case of time-dependent temporarily negative
dissipative rates γk(t), Eq. (1) [70]. Non-Markovian evolution
can also be obtained for a system A, a part of a bipartite
system in which the second part B is subjected to continuous
measurements [71]. The evolution of the total system A + B
is Markovian and therefore can be performed by using the
standard quantum trajectory technique; the density matrix
of system A will be obtained by tracing out B. Asymptotic
Floquet states of periodically driven non-Markovian systems
[72] are intriguing objects per se.

Third, a numerically exact realization of quantum trajectory
method can be used to analyze—in a very accurate way—the
thermodynamics of quantum jump trajectories [73] in complex
periodically modulated open quantum systems and search for
nonequilibrium analogs of dissipative phase transitions [74].

Finally, we would like to mention an alternative to quantum
trajectory method that is the unraveling of the Lindblad Eq. (1)
into a set of realizations generated by a stochastic Schrödinger
equation (SSE) [24]. There are real-life physics behind these
equations; on the microscopic level they can be deduced from
the dynamics of systems subjected to continuous quantum
measurements. There is a selection of numerical methods to
integrate SSEs that are adapted from the toolbox developed
for classical stochastic equations [75], such as the Heun
scheme and different stochastic Runge-Kutta schemes [24].
Implementations of these methods on computational clusters
may open a complimentary path to many-body quantum
attractors.
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