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Abstract. Linear response theory is developed for nonstationary Markov processes.
A generalized fluctuation theorem is derived which relates the response function to a cor-
relation of fluctuations of the unperturbed nonstationary process. It is shown that it
reduces to an ordinary fluctuation theorem relating the response function to the two-point
correlation between fluctuations of state variables in the case of a Gaussian distribution
function. The results are illustrated by explicit calculation for the class of nonstationary
linear Fokker-Planck processes.

1. Introduction
Most of the work on stochastic processes has been
concerned with stationary processes occurring in
systems under time-independent external conditions
1-1]. The statistical properties of such systems are in-
dependent of time, after the transients resulting from
the preparation of the system have died out. But
there exist many systems which are driven by external
forces varying in time giving rise to nonstationary
processes. Examples are conductors and plasmas in
time-dependent electric and magnetic fields, lasers
driven in a time-dependent way, chemical reactions
fed by time-dependent fluxes of its components,
further biological and sociological systems in a
changing environment. Also other processes such as
speech signals, pressure distribution in turbulent
flow, and earth-quake disturbances may perhaps be
more adequately described in terms of nonstationary
processes.
In this paper, we are concerned with the (non-per-
turbative) case of large time-dependent forces, the
effect of which cannot be described by a low-order
perturbation of a stationary process. We study the
relation between the fluctuations in such a system and
its linear response to an additional dynamic pertur-
bation. Fluctuation theorems connecting the linear
response with the correlations of the fluctuations in
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the unperturbed state play an important role in the
statistical mechanics of systems in thermodynamic
equilibrium (here one has the famous fluctuation-
dissipation theorem I-2, 3]), in the thermodynamics of
irreversible processes [2, 4], as well as in the theory of
stationary stochastic processes 1-5-97 . The existence
of a fluctuation theorem can therefore be expected to
be of significance also in the theory of nonstationary
processes. It simplifies, for instance, considerably the
renormalized perturbation theory for classical pro-
cesses 1-10]. In the present paper, we construct fluctu-
ation theorems for the large class of nonstationary
Markov processes with Gaussian distributions which
are perturbed by a gradient term.
In Section 2, we summarize some general properties
of nonstationary Markov processes, and introduce the
correlation matrix of the fluctuations. The linear
response theory for such processes is developed in
Section 3 and is applied to Fokker-Planck processes.
We derive a generalized fluctuation theorem which
reduces to an ordinary fluctuation theorem for the
case of a Gaussian distribution and a gradient-type
perturbation. The theory is illustrated in Section 4 by
explicit calculations for the specific class of "linear"
Fokker-Planck processes which contains the Gauss-
Markov process 1-11] and the additive Fokker-Planck
process [12]. The results obtained are discussed
briefly in Section 5.
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2. Nonstationary Markov Processes
We assume that the states of the system to be con-
sidered are described by sets of stochastic variables
x = {xa, ... x,} forming the state space X. The statistical
distribution at time t is given by the probability den-
sity function p(t) defined on X, such that the statistical
expectation of any state function qS(t) at time t is
obtained as

(4) (x (t), t)) = ~, p (x t) ¢ (x t) dx. (2.1)

We consider a Markov process for which the rate of
change of the probability density is completely deter-
mined by the probability density at the same time
(no memory !):

dp(t)
- F( t )  p (t) (2.2)

dt
(" forward equation"). Here, F(t) is the linear stochas-
tic operator acting on the space H of probability den-
sity functions, and i s - i n  contrast to stationary pro-
cesses-assumed explicitely time-dependent. In gen-
eral, F(t) is an integral operator. In the case of a
continuous Markov process, it reduces to the well-
known Fokker-Planck differential operator.
The formal solution of Eq. (2.2) can be written as a
linear transformation R of the space/ / ,

p(t2)=e(t2lt l)p(q) , (t2> tl) (2.3)

in terms of the time evolution operator

R(t2lq)= Texp F(s)ds , (2.4)
t

where T is the time ordering operator. R(t2lq) is
assumed nonsingular for t 2 and q finite. The integral
kernel R(x t2 ly t  0 of the operator R(t2 ,q)  has the
significance of a transition probability density from
state y at time t, to state x at time t2, i.e. of a condi-
tional probability density at time t 2 if the state at
time ta is fixed at y. As a consequence, the operator
R (t2lfi) must satisfy the Chapman-Kolmogorov equa-
tion [-13],

R(t2l t l )=e(t2l t )e( t l t l )  for t 2 > t > t  1. (2.5)

Further, if R is "honest"  [14],

R(x tly q)dx = 1, (2.6)

indicating that no systems are " lost"  from the statisti-
cal ensemble in the stochastic process.
From R(t2ltl), joint probability densities can be con-
structed and time correlations can be calculated. The
two-time distribution is given by

p(Z)(xt2,yt l)=R(xt21ytl)p(yt l) ,  (t2>ta) (2.7)

and the correlation of two state functions (~(f2) and
~, (q) is calculated as

(¢ (x (t2), t2) 0 (x (q), tl)>
=~,[R(x t21y t l )p(yq)¢(x t2)~(y t l )dXdy .  (2.8)

Of main importance is the correlation matrix of the
fluctuations of the state variables,

= x -  (x(t))  (2.9)

which is (for real variables) defined as

S(t2, t l )=  (¢(t2) ¢(tl))

= (X (t2) x(ta)) -- (X(t2)) (X (tl)) • (2.10)

S (t2, q) is obviously positive semidefinite and satisfies

S(t2, q) = S ( q ,  t2) (2.11)

(S is the transpose of S). Further properties of the
correlation matrix are discussed in Refs. 15 and 16.
The time evolution operator R(t]to) relates the
probability density p (t) at time t to the initial probabil-
ity density p(to)-Po at the time t o of preparation of
the system:

p (t) = R (t] to) Po- (2.12)

As a consequence, all expectations and correlations
will in general depend on P0- It is of interest to study
under which conditions the statistical properties of
the system become independent of the way of prepa-
ration, i.e. of the initial distribution P0, in the course
of time. One therefore needs the extension of the con-
cept of ergodicity to the nonstationary case. A process
is called ergodic if R ( t l - ~  ) exists and represents a
singular operator which maps the whole H space on-
to a single element/9 as ( t )  ~H independent of P0,

R (x tly, - or)=p,S (x t). (2.13)

An ergodic process thus evolves to a given asymptotic
distribution paS(t), independent of the way and time of
preparation (asymptotic stability).

3. Linear Response Theory
3.1. General Formalism
We want to study the linear response of our system
to an external perturbation. We assume that the
process remains of Markov character in the presence
of the perturbation, such that the perturbed system is
described by a stochastic operator

P(t) = r ( t )  + v ox~(t) (3.1)



                                                                  

which gives rise to the time evolution operator

{! } /~(t[to)= r e x  p (F(s)+FeXt(s))ds (3.2)
t

The exponential cannot simply be split into a product
because F(t) and F e~t (t) in general do not commute. By
employing the disentangling techniques of Feyn-
man [17] and observing the nonsingularity of the un-
perturbed time evolution operator R(tts), we can
write

R ( ttto)= R ( t]to) r exP {t! F'ex~(s)ds } (3.3)

where

F' ~t (s) = e (sl t0)-I FeX, (s) e (s I to). (3.4)

Thus, to first order in F ext (t), w e  obtain
t

]R(tlto)=e(tlto)+ ~ e(tls)Fe~t(s)i(slto)ds (3.5)
to

where we have made use of the group property Eq. (2.5).
From R(t]to), we can calculate the perturbed distri-
bution

~(t)=~R(tlto)Po
t

=p( t )+  ~ R(t[s)Fe~t(s) p(s)ds. (3.6)
to

Here, we have assumed that the perturbation is applied
after the system has been prepared at time t o in a
given distribution Po.
We write the perturbation Fext(t) in terms of time-
dependent external forces F/(t),

r °~' (t) = Z F~ (t) O~ - V (t). a (3.7)
i

where the f2~ are linear operators acting on the state
space X. The linear response tensor x(t,s) is then
defined by the relation of the response of the state
variables
( ~  ( t ) )  perturbed ~ ( X  ( t ) )  perturbed - -  ( X  ( t ) )  unperturbed

= ~ x {~ (x t ) -  p (x t)} dx (3.8)

to the external forces,
t

( ~ ( t ) )  perturbed = ~ Z (t, S) " F ( s ) d s .  (3.9)
to

By using Eqs. (3.6) and (3.7), one finds

)~(t,s)=O(t-s)~xR(xttys)[Y2p(s)]ydxdy. (3.10)

We may define a vector-valued state function

(x t) = [ a p ( t ) ] x / p  (x t) (3.11)
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in terms of which the response tensor can be written
as a correlation over the unperturbed system,

X (t, s) = 0 (t - s) ( x  (t) ~ (x (s), s ) ) .  (3.12)

Since the perturbation cannot change the normaliza-
tion of the probability density function, one has

(~(x(t), t)) =- ~ [~p(t)]xdx =0,  (3.13)

i.e. q~ (t) represents a fluctuation (in general nonlinear)
from the unperturbed state. Therefore, Eq. (3.12) takes
the form of a generalized fluctuation theorem (GFT)

X (t, s) = 0 (t - s) ( ~  (t) 4~ (x (s), s ) ) .  (3.14)

An alternative derivation of this result using the
technique of functional derivatives is given in the
Appendix.

3.2. Application to Fokker-Planck Processes
We consider a process which is a solution of the
stochastic differential equation [18]

dx(O=a(xt)dt +t~(x~). dw(t) (3.15)

where w (t) is a vectorial Wiener process with

(wi(t)) =0 ,  ((wi(t)) 2) = t. (3.16)

This process is stochastically equivalent to a vectorial
Fokker-Planck process with the stochastic equation

8~tP(Xt)= - V .  {a(xt)p(xt)}+½(VV): {D(xt)p(xt)}
(3.17)

with drift vector a (x t) and diffusion tensor

D (x t )=b(x t)- [J(x t). (3.18)

The perturbations considered are of such a form that
a term

F(t)dt (3.19)

is added to the right-hand side of Eq.(3.15). Under
this assumption, the perturbation of the stochastic
operator also becomes a differential operator,

Fext(t)= -F(t ) .  V, i.e. f ] =  -V,  (3.20)

and the function ~(x t) defined in Eq. (3.11) is given by

~(t) = - V in p(t). (3.21)

Therefore, the GFT Eq. (3.14) takes the form

;( (t, s) = - 0 ( t -  s) (~ (t) V In p (x (s), s)). (3.22)

In order to obtain an ordinary fluctuation theorem
relating the response tensor to the correlation matrix
of the fluctuations of the state variables, the function
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~b (t) must be linear in the fluctuations. This is the case
if and only if the unperturbed distribution is a Gaus-
sian,

p (x t) = exp { - ½ (x - (x  (t))) - o - l(t)- (x - (x  (t)))}
{det 2 n ~ (t)} I-

(3.23)
Then,

~( (t, s) = 0 (t - s) (~ (t) ~ (s))" ~ - i (s) (3.24)

or in components

Zij (t, s) = 0 (t - s) ~crkj 1 (s) (~i (t) ~k (s)). (3.25)
k

Because of

( ~ (s) ~ (s)) = o (s) (3.26)

the response tensor has the property

X (t, s)-*l for t-*s + . (3.27)

A Gaussian distribution is always obtained if the time-
evolution operator R(t2f&) is a Gaussian, and the
system is initially prepared in a pure state, po(X)=
cS(X-Xo). Specific examples for such processes are
discussed in the next Section.
It should be noted that the derivation of the fluctuation
theorem Eq. (3.24) depends only on the form (3.20) of
the perturbation operator and the Gaussian form
(3.23) of the unperturbed distribution, but not on the
unperturbed process being a Fokker-Planck process.
This type of process was considered only in order to
motivate the form (3.20) of the perturbation operator.
Thus, for any Markov process with a perturbation
operator (3.20) and a Gaussian distribution there
exists a fluctuation theorem of the form (3.24).

4. Explicit Calculation
for a Specific Class of Processes
We consider the class of one-dimensional processes
described by a stochastic differential equation of the
form

d x (t) = - 7 (t) (x (t) - c (t)) d t + b (t) d w (t) (4.1)

equivalent to the " l inear"  Fokker-Planck equation

0
~5 p (x, t)

8
=3~ {y(t)(x-c(t))p(x,  t)+½D(t)Sp(x, t)/c?x}. (4.2)

This class of processes describes systems which relax
with a t ime-dependent rate ? (t)> 0 to a t ime-dependent
average position c(t), and undergo a diffusion process

with a t ime-dependent diffusion constant D( t )=
b2(t)>0.
The time-evolution of such a process is determined
by a Gaussian

exp { - ½ c c l ( t ;  t l ) (x - f i ( t ;  y, t l)) 2 }
R(x, tly, t l )=  {2n ~(t; tl)} -~ (4.3)
with

t
0~ ( t ;  t I ) = ~ f12 (f;  S) D (s) d s (4.4)

tl
and

fl(t; y, tl)= Y fil(t; ti)+ fio(t; tl) (4.5)

where

fil (t; tl) = exp { - (A (t) - A (tl))} (4.6)
t

fl0 (t; t i) = ~ fil (t; s) 7 (s) c (s) ds. (4.7)
tt

Here, A (t) is given by

A(t )=  i 7(s)ds. (4.8)
const

This class of processes contains as limiting cases the
Gauss-Markov process for c (t)= 0, yielding

/31 (t; tl) as given in Eq. (4.6) (4.6')

/3o(t; t l )=0 ;  (4.7')

and the additive Fokker-Planck process for 7(t)~0,
c (t)--, oo, such that  ? (t) c ( t )~a (t), whence

/31 ( t ;  t l )  = 1 (4.6")
t

/30 (t; t i )=  ~ a(s)ds. (4.7")
tl

The class of processes considered here has the following
simple property: Since fi(t;y, q) depends linearly on
the initial state y, an arbitrary initial Gaussian distri-
bution remains Gaussian in its time-evolution. As a
consequence, a fluctuation theorem (3.24) holds for
all systems prepared with an initial Gaussian distri-
bution. For the fluctuation (~(t)~(s))  one obtains the
simple result

(~(t) ~(s)) =/31 (t, s) a(s) (4.9)

where a~(s) is the width of the distribution at time s.
Therefore,

Z(t ,  s )= /31  (t , s) O(t--s). (4 .10)

The response has thus the remarkable property that
it is independent of the initial distribution as long as
the latter is a Gaussian. This is a direct consequence
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of the linearity of fi(t; q,  y) with y. The response is
also independent of c(t) and D (t), and is completely
determined by the function 7 (t).
If the process is ergodic, the fluctuation theorem (3.24)
holds also asymptotically, independent of the initial
distribution being Gaussian. In order to study the
question of ergodicity one has to note that A (t) is a
monotonously increasing function of time. There are
two possibilities:
a) If A(to)-+-o% i.e. fi~(t, to)--+O, for to-+-oo,  then
the process is ergodic if

c~(t)= i fi2(t,s)D(s) ds (4.11)
o9

and
t

fl(t)= ~ ill(t, s) y(s) c(s)ds (4.12)
-o9

exist. The asymptotic distribution is then given by

pas(t)={2ncc(t)} +exp{-½cc-l ( t ) (x- f l ( t ) )2} .  (4.13)

b) If A(to)~const for to -~-oo  , then f l ~ ( t ; y , - m )
depends on the initial state y, and the process is non-
ergodic. This is in particular true for the additive
Fokker-Planck process.

5. Discussion
We have derived a generalized fluctuation theorem
for nonstationary Markov processes which reduces to
an ordinary fluctuation theorem for the class of
"l inear" Fokker-Planck processes. There exist numer-
ous examples for such type of process; we mention
only two applications: The charge on the capacitor of
an RC-circuit with a time-dependent capacitance or
resistance (as in a microphone) is a nonstationary
Fokker-Planck process with 7(O=I/(R(t)C(O). The
concentration c(O of one component of a chemical
reaction with an equilibrium at co(T ) and a reaction
rate r(T) becomes a nonstationary process if the
reaction takes place at a time-dependent temperature
T(t).
We add some comments concerning the significance
of the response function %(t2,  t l )  and the autocorrela-
tion function S(t2, q) = < ~ (tz) ~ (q)) of a nonstationary
process from an experimental point of view. The
response function X(t2, tl) can in principle be measured
as the response at time t 2 to a 8-impulse at time q,
and its double Fourier transform [15] Z(co2, coo can
be measured as the response at frequency (02 to a
harmonic force at frequency co 1. In contrast to the
stationary case, Z(ta,tl) depends on t I and t 2 se-
parately, and as a consequence, one obtains a response

also at frequencies co2q=col.-The double Fourier
transform S(o)2,COl) of the autocorrelation function
can be measured as the correlation between Fourier
components ~(co2) and ~(co0 of the fluctuations.
Whereas in the stationary case, fluctuations at different
frequencies are uncorrelated, and only the mean-
square amplitude (" power spectrum")

S(co) = <[~ (co) 12) A co

remains, in the nonstationary case there exists a cor-
relation also for different frequencies.
From the causality requirement expressed by the 0-
function in Eq. (3.10), there follow dispersion relations
for the double Fourier transform )~(co2,  co l )  also in the
nonstationary case. At fixed col, X(co2,COl) can be
analytically continued into the complex co2-plane, and
is analytic in the upper half plane. Similarly, at fixed
co2, Z(co2, 601) can be continued into the complex O)l-
plane, and is analytic in the lower half plane. As a
consequence, one finds dispersion relations for both
variables separately,

~t(CO2, COl) = 1  +~o9 •H(X' COl)dx =-1+~ 09 Z"(co-2'-x-)dx
o9 X - - c o 2  7~ -co col - - X

(5.].)
i~ __O9 ! ,,,co co, Z(x, col)dx = 1 .oo~ %,(co2,X)dx.

(5.2)
Of practical use is also the generalization of the
Wiener-Khintchin theorem for nonstationary pro-
cesses [16].

Appendix
We give here an alternative derivation of the linear
response formalism based on functional derivates.
The response tensor defined by Eq. (3.9) can be written
a s

l (t, s) = 8 (x  (t))Perturbed/&F(s)

= ~ X {@ (X t)/&F(s)} dx ,  (A.1)

where the functional derivatives are taken at F(s)=0.
Now, from the linearized equation of motion for the
perturbed distribution,

(t) = F(t) /3 (t) + F(t). f~p (t), (A.2)

one obtains on account of 8F(t)/SF(s) = 1 & (t - s)
d/dt {813 (t)/Sr(s)}
= F(O {8! 3 (t)/&F(s)} + g2p (s) 3 ( t -  s). (A.3)

This is a differential equation for 813 (t)/aF(s) with the
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solution

g)[~ (t)/6F(s) = R (tls) g2p (s) 0 (t - s). (a.4)

This result suggests the following simple interpretation
for the linear response of the distribution function to
the perturbation 6F(s)= F(s)ds: The distribution gets
an impulse of strength c3F(s), g2p(s) at time s which
then evolves according to the unperturbed time-
evolution R (t Is).
Substitution of Eq.(A.4) into Eq.(A.1) leads to
Eq. (3.10) found in Section 3.
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