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Stochastic theory of ligand migration in biomolecules
(flash photolysis/myoglobin kinetics)
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ABSTRACT When ligand binding to proteins involves thepresence of more than one ligand inside a given biomolecule,linear deterministic rate equations become useless. A stochasticapproach, however, permits a treatment of the migration andbinding of small molecules to proteins even at high ligandconcentrations. An appropriate linear master equation and itsanalytic solution are given. As an example, the binding of carbonmonoxide to myoglobin at partial pressures from I to 103 bars(0.1 to 100 MPa) is treated.
1. Deterministic and stochastic approach
The discovery that access to the binding site in heme proteinsis governed by multiple barriers (1) leads to interesting problems
in reaction kinetics. Consider, as an example, the binding ofcarbon monoxide to myoglobin (Fig. 1). The ligand CO mayencounter, on its way from the solvent S to the binding site 1
at the heme iron, four potential barriers in succession.t Assumethat the ligand concentration [CO] in the solvent S is so smallthat at any given time there is at most one ligand within anybiomolecule. The binding kinetics can then be described bydeterministic linear rate equations, of the form

dN2(t) - k12NI(t) - k2jN2(t) - k23N2(t) + k32N3(t). [1]dt
Here, N2(t), for instance, denotes the fraction of biomoleculeswith a CO molecule in well 2 at time t and k2l, the rate pa-
rameter for the step 2 - 1. The initial conditions depend onthe experimental arrangement. In flash photolysis, all binding
sites are initially occupied, all other wells are empty. Thephotolyzing light pulse breaks the bond between the heme ironand CO, and the ligand is promoted to well 2. The initial con-ditions for photodissociation thus are N2(0) = 1, N1(O) = N3(0)
= N4(O) = 0. In a stopped-flow experiment, the ligand is ini-tially in S and all other wells are empty.The sequential model of Fig. 1 and deterministic linear rate
equations adequately describe many experiments. However,
a more powerful approach is needed for more complex situa-
tions. The number of wells can be larger than five, transitions
may occur between any two wells, and many ligands may si-multaneously occupy a given biomolecule. In myoglobin, forinstance, binding at the iron is covalent; the first ligand thatoccupies well 1 blocks further transitions. The other weds,however, can very likely accept more than one ligand. Thesefeatures call for a generalization of the treatment of migrationand ligand binding, and we present here a stochastic ap-proach.

In the stochastic approach (2-5) the system at time t isdescribed by a set of stochastic variables [xl(t), x2(t),..XL(t), . .]x(t). Here xL(t) denotes the number of ligandsin well L at time t in a given biomolecule with L = 1,2,. .. Ln=

(Lrm = 4 in Fig. 1). Each well in a given biomolecule can be
occupied by at most xL ligands. The total number of ligands
in all wells is not fixed, and fluctuations can thus be handled.Blocking of well 1 by the first bound ligand is expressed by xl x
= 1. Blocking of other wells by a given number of ligands canalso be stated by corresponding restrictions on XL X. A proba-bility p(x;t,X) is introduced for finding the system at time t inconfiguration x; X describes parameters such as temperature,
pH, ligand concentration, and hydrostatic pressure. The timedependence of p is determined by a master equation. In thepresent paper we only sketch the essential steps; the full theorywill be published elsewhere.J
2. Experimental approach
In a typical experiment, ligand binding is monitored optically.The optical absorption spectra of a free heme protein and onewith bound ligand differ. From the absorbance measured at
a suitable wavelength, the fraction Nexp(t,X) of biomoleculeswithout bound ligand can therefore be determined. To compareNexp(t,X) with the result of a calculation, two features must benoted. First, migration in each individual biomolecule is astochastic process, with large fluctuations. An experimentalobservation measures an average over a very large number ofindependent biomolecules; Nexp(tX) thus is an ensemble av-
erage and fluctuations in Nexp(t,X) can be neglected (centrallimit theorem) (6). Second, the optical spectrum changes whenthe ligand binds covalently to the heme iron. In terms of Fig.
1, the bound state corresponds to one, the unbound, to zero li-gands in well 1. Ligands in wells 2 ... Lm. have a negligibleeffect on the optical spectrum. We can thus make the identi-fication

Nexp(t,X) = E p(x1 = 0, x2,.* , xLm;t,X). [2]
X2,. XLm

The experimental binding data can be evaluated if the timedevelopment of the probability function p(x;t,X) is known.
3. Microscopic description
To arrive at a microscopic picture of ligand migration, wepostulate sequential, locally stable, potential wells as in Fig. 1.The random variable xL(t) describes the occupation of well L
at time t in a given biomolecule and also the actual value in the
state-space XL = 0,1,2 .... The meaning of XL(t) will alwaysbe clear from the context. The stationary transition rate for a
transition in which one ligand jumps from well L to well K isdenoted by r(XK I XL ;X),
( ) ~~~~~~~~~r'(XKL;A))

* To whom reprint requests should be addressed.
t In ref. 1, we denoted wells I to 4 by A toD and the solvent by E. The
notation used here makes the equations simpler.
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For the evaluation, we make a number of assumptions:(i) We assume that the biomolecules are independent and
do not influence each other.

(ii) We neglect transitions in which two or more ligandswithin the same biomolecule jump simultaneously.(i) We assume the transition rate L -1 K to be proportional
to the number XL initially present in well L and to depend onall other variables in the form

r(xxIxL;x) = XLYKL(XK;X). [3]
The rate parameters YKL are in general still functions of the
occupation number XK of the final well K. In the innermost well(K = 1), the ligand binds covalently to the heme iron. This fact
leads to two conditions:(iv) The binding is so tight that well 1 acts as a trap; transi-
tions from well 1 to all others can be neglected,

YK1(XK;X)=_O, K = 2, .Lmax. [4]
(v) The first ligand to occupy well 1 blocks further transitions

so that

Reaction coordinate
A B

FIG. 1. Access to the binding site in a heme protein is governedby multiple barriers. (A) Reaction path; (B) potential along the re-
action path.
and probably differ from biomolecule to biomolecule. The goalis to find an analytic expression for Nexp0tX)) with all as-
sumptions valid. Comparison with experiment tests the as-
sumptions and the theoretical treatment can then be general-ized.The nonlinear deterministic rate equations for the time ev-
olution of x(t,X) follow from Eq. 3 as

r(xllxL;x) = XLT1L(X)bxll- [5]
(vi) We assume that the solvent acts as a bath with constantligand concentration, [S]. For transitions involving S, Eq. 3consequently becomes

r([s]IxL;X) = XLySL(X),
r(xLJ [S];x) = [Sh]"YLS(XL;X).

The prime on 'Y'LS indicates that it is a second-order raterameter. The binding site, L = 1, is assumed not to couplerectly to the solvent:
YS1 = '1s = 0.

(vii) We further assume that all wells except 1 can acce
an arbitrary number of ligands and that the relevant rate ]
rameters are independent of the occupation number of the wiEqs. 3 and 7 then become for K,L # 1

r(xKlxL;x) = XLYKL(I)
r(xLI[S];X) = [S]Y'Ls(X) ='L()[

In Eq. 10, [S] can be considered one of the parameters of t
set A.(viii) The time development of the probability p(x;t,X) shbe Markovian. The transition rates then depend only on interiphysical parameters and variables, but not on the initial pre
aration, p(to), of the system (7).(ix) All biomolecules are assumed to be identical and tpotential, given for a special case in Fig. 1, shall be time indpendent.

In the specific example treated in Section 4, we add two mc
assumptions, namely(x) Transitions occur only between neighboring wells.(xi) In photodissociation, the flash breaks the bond betwe(the heme iron and the ligand. At time t = 0+, the ligand movto well 2 without perturbing the other initial probabiliti(sudden approximation), and is immediately thermalized.
Not all of these assumptions are based on equally firgrounds. i, ii, iv, and v can be well justified. Assumption ixcertainly too restrictive, as is known from experiment (1), ar

we will lift this restriction in another publication. Assumptiolvii, x, and xi are most likely inadequate, but the restrictions cthe occupation number of the various wells, alternate pathwayand the processes during photodissociation are not yet know

d(x(tX)) = M(X(t,X)) + 0dt [11]
in which

[12][6] A= (1 .. Lmax)
[7] and in which the matrix M is defined by
pa- MKL = YKL((XK(t))), K # Ldi- L

MKK = -YSK - f YLK((XL(t))).L=l[81 'L P& K

[13]
[14]

ept The bracket, (xK(t)), denotes the average occupation numberpa- in well K at time t. Eq. 11 is nonlinear. In the low concentration
ell. limit, [S] .0, at which each biomolecule is occupied by at mostone ligand, the blocking of well 1 can be neglected. Eq. 11 thencoincides with the linear rate equations of the type of Eq. 1,[9] with YLK - kKL and (xK(t)) NK(t).
10] Because it is difficult to describe the blocking of well 1 witha deterministic approach, we now turn to the stochastic treat-
the ment. If, as assumed in viii, migration of the ligands is Marko-vian, the rate of change of the probability p(x;t,X) obeys the
iall linear master equationial =P(x)- L x (XL + 1)YKLP(XL + 1,xK - 1,XI)

et L=2 K=2
.he L # K
le- LxLf (XL + 1)YSLP(XL + 1, X') + Lt OLP(XL - 1,x')L=2 L=2)re LU, L L

L=2 f"=2L-KLP(X)- LfXLYSLP(x)LSKen'es LLies - " ALP(X) + r (XL + 0)Y1L x1,1 P(XL + 1,X1-1,X')L=2 L=2
m - Lfx XLY1Lbx1,O p(x). [15]
is L=2ad
ns Here, x' is the reduced vector derived from x by removal of the
an explicitly written components. For brevity, we have alsoes, omitted the parameters t and A in oy and p. In order to solve forin the set of probabilities obeying this master equation, a gener-
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ating function G(y;t,A) is introduced through the definition
G(yI, ..*YL.WS;tIA)

= E E ... E p(x;t,X) TjyLXL [16]xI=O X2=0 XLMaM=O L=1
The evolution equation for G then follows from Eq. 15 as
i7G_ L L__=r L(YL - 1)G + rYSL(1 YL)aJt L=2 LL=2aYL

LX L X aG+ L' L! -KL (YK YL )L=2 K=2 bYL
+ E* ** E Y IYL[(XL + 1)bxll P(XL + 1,Xi - 1,r')xl xLmax L=2

-XLEbxl,o p(x)] frylXI. [17]C=1
Comparison of Eqs. 2 and 16 shows that

Nexp(tA) = G(O,1, . . . 1;t,X).
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[18]
Eq. 17 can be solved analytically for G(O,1, . . . ,1;t,X); with the
initial probability p(x;t = O+,X), the desired expression be-
comes
Nexp(tX) = exp {-II bJi-' r L(X)L=2

X [ K1BKL(exPUKt- 1)bK1 + BlLblltllK=2
co co

X E ..**E p(OAx2.* XLmix;t =OX)X2=1 XLmax=l

X fr {1 - IbiL' r_ B bKleXPAKt|. [19]L=2 K=1
Here, bK = (bK1,... bKL.) are the eigenvectors of the matrix
M, with corresponding eigenvalues gKt. The matrix M, Eqs. 13
and 14, is defined with constant elements yKL (X) (assumptionvii). B is the cofactor matrix of the matrix of eigenvectors, b;II bII denotes the determinant of b.
4. An example-myoglobin
As application of Eq. 19, we consider binding after photodis-
sociation in Mb. Flash photolysis experiments have shown that
at least four wells exist inside Mb, so that the potential en-
countered by CO is as given in Fig. 1 (1). At CO partial pres-
sures of less than one bar (1 bar = 105 Pa), the probability of
having more than one ligand inside a given protein is small and
the use of the linear deterministic equations (1) is justified. At
higher CO concentrations, however, these equations are no
longer adequate, while the stochastic approach is still valid.
With the assumptions i-xi, and Lmax = 4, Mand # are given

by

10-4

e Well 3

,'Well 2

1 10 100 1000
Partial pressure CO, bars

FIG. 2. Mean initial occupation of wells 2-4 at 230K in Mb beforephotodissociation as function of the CO partial pressure.
therefore satisfies

p(1,x2,x3,x4;0+,X) = 0, p(O,O,xs,x4;0+,X) = 0,
and the grand canonical initial probability becomes
p(x;0+ A) = (x2(0,X)) X2-1 exp(-(x2(0,A)))

X (1 - 60,X2)(1 -bX (X3( -) Xexp(-(x3(0,X)))

[21]

X exp(-(x4(0,X))). [22]x4!
The initial mean values x2 to X4 are determined by

( (X2(OX)) (o

(xs(O,X)) =-M-A 10 ,

(x4(0,X))/34
[23]

in which Mr denotes the matrix M without the first row and
column and with Y12 = 0. With Eq. 19, Nexp(tX) now be-
comes
Nexp(tX) = exp(-(x4(t,X)))

X l1- J1bIM' E, BK2bKuexpAKtl [24]
in which
(x;(t,x))

/° 12 0

M=1 0 -('12+Y32) 723
0732 -(F

SO0 743
(23 + y43)

O

O

34
-(734 + YS4)/

= (0,0,0,134). [20]

Before the photoflash, all wells are in thermal equilibrium with
the solvent; because of the covalent binding, well 1 is fully oc-
cupied. We assume with xi that the flash moves the ligand from
well 1 to 2, but leaves the other initial probabilities unperturbed
(sudden approximation). At time t = 0+, the initial probability

= 1I b'ih-4 [B l4biit + -(expAKt i)bKl]K=2 AK
4 4

+ E (XK(O,X))I|bI| E BL-bLlexpKt.K=2 L=1 [25]
The mean value (x;(t,X)) has a simple interpretation: If the
recombination were to start with an initial occupation of zero
at the binding site and the equilibrium Poisson distributions in
wells 2-4 with mean values given by Eq. 23, (x*(t,X)) would
be the mean occupation number of site 1 if no blocking were
to occur. In reality, the actual mean (xl(t,X)) has little in
common with (x4(t,X)).
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Time, s
FIG. 3. Computer-simulated rebinding curves for MbCO. N(t)

after photodissociation at 230 K. The CO partial pressure increases
from 1 to 103 bars. The solid lines are calculated with the stochastic
model, the broken ones with deterministic linear rate equations. The
top lines of labels in the figure refer to the stochastic calculation.

Nexp(tX) depends, for a fixed value of X, on the rate pa-
rameters y and fl. The rate parameters are determined by fit-
ting Eq. 24 to the experimental data. Here we demonstrate how
the deterministic and stochastic approaches give different re-
sults when the probability of finding more than one ligand in-
side a given biomolecule can no longer be neglected. As an
example, we consider the rebinding of CO to Mb after photo-
dissociation at 230 K, with rate parameters Y12 = 2.8 X 106 s1,
y32 = 4.7 X 105 s-1, T23 = 2.3 X 104 s-1, 743 = 3.7 X 103 s1,
734= 4.9 X 102 s-1, ys4= 1.9 X 102 S-, f4 = [CO]'Y' = 5.5 X
105 Pco s-1, in which Pco is the CO partial pressure in bars (1).
For clarity, we assume ix to be valid and neglect distributed
barriers. The initial mean values (xi), determined from Eq. 23,
are given in Fig. 2 as a function of Pco. The outermost well, 4,
is appreciably populated above about 10 bars, the next one
above 100 bars. The solubility of CO inside Mb therefore is
considerably larger than in the solvent, and deviations from the
linear deterministic rate equations should be expected already
around 10 bars. The curves for Nexp(t, 230 K, pco), calculated
for both the stochastic (Eqs. 24 and 25) and linear deterministic
rate equations (ref. 1) and shown in Fig. 3, bear out this ex-
pectation. At 10 bars, the stochastic theory predicts a slightly
faster rebinding. At 100 bars and above, the discrepancy be-
comes large, and the linear deterministic rate approach is no

longer useful. The results in our preliminary experiments with
CO partial pressures up to 128 bars obey the qualitative featuresof the stochastic description and disagree with the deterministic
one. We cannot, however, expect that the actual data will followthe stochastic prediction exactly, because some of the as-
sumptions i-xi are too restrictive. It is, for instance, unlikely that
an arbitrary number of ligands can occupy wells 2-4. It will bethe goal of future work to remove restrictions.

Experiments with high ligand concentrations, to which the
present paper is mainly addressed, appear at first sight to havelittle direct bearing on biological processes. Such experiments
may, however, help elucidate ligand migration withinbiomolecules and explore the limitations on the capacity ofaccommodating ligands. In some systems more complex thanMb, nonlinear situations may occur even under biologicalconditions. In cytochrome oxidase, for instance, Sharrock and
Yonetani (8) have found evidence for an oxygen reservoir that
connects to a number of heme groups and is occupied by manyCO2 molecules. The processes that take place under such cir-
cumstances can be treated by a straightforward adaptation of
the ideas presented here.
The motivation for the present investigation came from R. H. Austin,who performed our first experiments with high CO concentrations.

We thank L. Eisenstein, L. B. Sorensen, and H. Thomas for comments
and discussions and K. T. Yue for assistance with computer program-
ming. The work was supported by the Swiss National Science Foun-dation (P.H.), by the U.S. Department of Health, Education, and
Welfare under Grant GM 18051, and by the U.S. National ScienceFoundation under Grant PCM 74-01366.
1. Austin, R. H., Beeson, K. W., Eisenstein, L., Frauenfelder, H. &

Gunsalus, I. C. (1975) Biochemistry 14,5355-5373.
2. Haken, H. (1975) Rev. Mod. Phys. 47,67-121.
3. Iosifescu, A. & Tautu, P. (1973) in Stochastic Processes and Ap-

plications in Biology and Medicine, eds. Krickeberg, K.,
Lewontin, R. C., Neyman, J. & Schreiber, M. (Springer, NewYork), Biomathematics, Vol. 3, pp. 163-303.

4. McQuarrie, D. A. (1967), J. Appl. Prob. 4,413-478.
5. Goel, N. S. & Richter-Dyn, N. (1974) Stochastic Models in Biology,(Academic Press, New York), Chap. 9, pp. 206-222.
6. Feller, W. (1966) An Introduction to Probability Theory and Its

Application (John Wiley, New York), Vol. 2, pp. 252-264.
7. Hanggi, P. & Thomas, H. (1977) Z. Phys. B26, 98-105.
8. Sharrock, M. & Yonetani, T. (1977) Biochim. Biophys. Acta 462,

718-730.

Chemistry: Alberding et al.


