
                                                     

Note on Time Evolution of Non-Markov Processes 
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We discuss the question of the construction of a linear semigroup for the 
time evolution of the single-event probabilities of general non-Markov 
processes. It is shown that such a linear semigroup may not exist for all 
finite times. The consequences are sketched for the description of equi- 
librium and nonequilibrium systems. Further, the relationship with 
nonstationary Markov processes is investigated, and some confusion in 
recent works is cleared up using the example of free Brownian motion. 
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There has recently been a remarkable interest in the time-convolutionless 
formulation of the stochastic properties of non-Markov processes/1-9~ In 
particular, the time evolution of probabilities in non-Markovian systems has 
been investigated both from the theory of stochastic processes(5~ and from 
the underlying microscopic point of view. (6~ The question has also been 
discussed on the basis of transformation techniques that remove the memory 
from the usually accepted generalized Langevin equations. (7-9~ In this context 
it has been claimed (9) that the original process with a memory kernel descrip- 
tion is not non-Markovian but actually nonstationary Markovian, and all 
the memory kernel really does is produce a nonstationary Markovian process. 
Unfortunately, no useful strict theorems presently exist for the condition 
under which the Markov property is inherited on contraction or projection. 
It is generally believed that without any coarse-graining in time, or without 
any limiting procedures, the process obtained by a coarse-graining in phase 
space is always non-Markovian. Some rigorous derivations of Markovian 
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subdynamics, using limiting procedures, have been discussed recently. ~1~ 
Since we have been bombarded during the last years with papers on the 
subject of "non-Markovian"  versus time-convolutionless descriptions, 
the authors think it is worthwhile to point  out the relationships among the 
different approaches and clear up a possible confusion in this context. 

To discuss the relationships, the following problem suggests itself: Can 
one construct for non-Markov processes a linear propagator G(t/s)  (inde- 
pendent of the initial probability function Po) satisfying 

p( t )  = G(t /s )p(s) ,  t >1 s (1) 

for arbitrary times t and s ? Such a construction then yields from the under- 
lying semigroup property of G the time-convolutionless master equation for 
the non-Markov process 

b( t )  = r ( t ) p ( t )  (2) 

where 

r ( t )  = (d/dr)G(r/t) lr=t* (3) 

It is worth emphasizing at this stage the following(5~: From the knowledge of 
the single-time master equation it is not possible to decide whether the 
process is Markovian or not Markovian. Further, given the information 
that the process is non-Markovian, it is also, in general, not possible to 
determine the conditional probability R( t / s )  for given times t and s via the 
Green's function solution of Eq. (2). The exception is given for the time set 
(t/to) where the time to denotes the time of initial preparation so that the sys- 
tem has no memory for previous times t ~< to. ~'6~ [See also Eq. (4b).] In 
recent works, (5,6~ the linear generator P(t) was obtained by going back to the 
initial time to of preparation 

r ( t )  = (d/dr)R(r/ to)R(t / to)- l lr=t+ (4a) 

so that we get 

G(t/s)  = R(t / to)R(s/ to)  -1 (4b) 

The construction makes use of the conditional probability R(t/to),  which is 
always independent of  the initial probability P0 and is obtained in principle 
as the Green's function solution of the integrodifferential equation derived 
within the framework of projector methods3 6) 

The use of the inverse operator R( t / t o ) - I  in Eqs. (4) requires some further 
comments. For a non-Markov system, one cannot in general assume that the 
conditional probability R(t/to) is invertible for all finite times t, and as a 
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consequence, the linear generator l?(t) does not exist for some times t, 
possibly even for a whole range of parameter values of t. 4 

As an illustration, we consider a one-dimensional stationary Gaussian 
non-Markov process whose conditional probability is given by the Gaussian 
(free Brownian motion) 

2~rk T .. - 112 
RSt(xt/yO) = ( ~  [ 1 -  ' 2 ( 0 ] )  

with 

- -  [x - y~:(t)] 2 
exp ( 2 k T / M ) [ 1  - ~:2(t)] (5) 

~(t)  = ( x ( t ) x ( O ) ) / ( x 2 ) ,  l ira ~:(t) = 0 
t ~ + o o  

(6) 

where to = 0 has been chosen. 
This stationary conditional probability does not form a semigroup except 

in the Markov case, where 

~(t + s)  = ~(t)~(s) = e x p [ - y ( t  + s)], 7 > 0 (7) 

By differentiating with respect to the time t, one obtains the linear 
generator P(t) for non-Markov processes with the initial conditional proba- 
bility R(t/O) given by Eq. (5): 

r(t) = ~(t) ( d x 
~(t) - ~  + M dx 2] (8) 

Here the generator F(t) has the form of a nonstationary Gaussian (pseudo-) 
Markov generator, 5 whose explicit Markovian nonstationary conditional 
probability R~M(t/q), t >1 tl ,  reads 

G(x t / yq)  = RaM(Xt/yh) = exp(--  89 ~(t/fi)[x -- ~(t, q ) y  ]2} 
[27m(t, t~)] ~/2 (9) 

(10) 

(11) 

(12) 

with 

~(t, tz) = ~(t)/~(q), ~(0) = 1 

kr  [ ~2(t)] 
c~(t, tz) = ~ -  1 - r j 

For RaM(t/O) we obtain from ~(t, O) = ~:(t) the expected result 

Rst(xt/yO) = R~M(xt/yO) 

This happens, for example, if the system is oscillating around the stationary probability 
function, or, more generally, whenever for a fixed time t two initially different prob- 
abilities coincide. 

5 In general, the diffusion coefficient may have negative values, indicating the existence 
of non-semipositive transition probabilities G(xt/ys). 



158                                                   

Furthermore, we explicitly see that if ~(t) in Eq. (8) is zero, RSt(t/O) is singular 
and U(t) therefore does not exist. 6 This behavior is physically realized if we 
consider the velocity x(t)  of a heavy isotropic impurity (mass M) in an 
infinite, one-dimensional harmonic lattice (masses m) with nearest neighbor 
interactions (spring constant ks) in equilibrium. ~13'1~) If the mass ratio 
m / M  =  89 then as a function of the dimensionless time ~" = 2(ks/m)i/2t the 
exact conditional probability R(-c/O) is the result in Eq. (5) ~3,1~ with 

~:(~-) = 2J~(~-)/~- (13) 

J~ is the appropriate Bessel function, and the first zero of s occurs at 
1- = 3.83171 .... 

The generalized Langevin equation is found to be ~14) 

f; dx(r)/dr = - B(-c - s)x(s) ds + f ( r )  (14) 

where f ( r )  represents a stationary Gaussian stochastic driving force ( ~  with 
zero mean and with correlation 

( f ( ' r ) f (s ) )  = (kT/M)fl(~" - s) (15) 

The single-event probability of this stochastic equation has been shown to 
obey a time-convolutionless master equation with P(r) given by Eq. (8) (s'9'15) 
and ~:(r) given by Eq. (13). But again, one may not conclude that the process 
x(r) is a nonstationary Gaussian Markov process. Different choices for the 
initial probability P0 will define different non-Markov processes for which we 
have 

R(t /q)  ~ RaM(t/q) (1.6) 

for tt # t 0. This can be seen more explicitly if, for example, one chooses for 
the initial probability Po the stationary Gaussian probability; then the con- 
ditional probability of the stationary Gaussian non-Markov Brownian 
motion process is given by the stationary conditional probability R(t /q)  = 
R s t ( t -  tl/O) in Eq. (5), which differs from the nonstationary Gaussian 
Markovian conditional probability RGM(t/q) in Eq. (9) if tl :A to = 0. To 
obtain the detailed stochastic properties of the process defined by the 
generalized Langevin equation (14), one has to study the joint and higher 
multivariate probabilities for arbitrary time sets. 

The fact that a non-Markov process may have a singular conditional 
probability R(t/to) has further consequences. In recent works, ~-7~ various 
time-convolutionless master equations containing, in general, an inhomo- 
geneity have been derived. In most of these works one assumes the existence 

6 On the other hand, if ~e(t) has no zeros for finite times, e.g., if ~(t) = 1[(1 + t), the 
linear generator r(t) exists for the non-Markov processes for all finite times t. 
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of  an inverse operator  O(t) to a certain expression obtained within the frame- 
work of  projector techniques. I t  is easy to show that in all these cases the 
existence o f  the inverse operator  O(t) for all finite times t is equivalent to 
the existence o f  the linear generator  P(t), t ~ [to, ~ ) .  However,  if a so-called 
"par t ia l  coarse-graining in t ime"  is performed by using a finite approxima- 
t ion of  an infinite expansion of  the exact operator  O(t) in terms of  an effective 
coupling constant  A, 

1 oo 

O(t) - 1 - AA(t) - 1 + ~ [AA(t)] ~ (17) 

one introduces additional "irreversibility terms,"  yielding a regular generator  
F~vPr(t). Furthermore,  in the description of  equilibrium and nonequil ibrium 
systems, a singularity in R(t/to) means that  no t ransformations exist that will 
remove the memory  kernel terms f rom either the Langevin equations for 
macroscopic variables (1~,17) or the deterministic evolution equations. In this 
context more  detailed information about  the exact structure o f  coarse- 
grained quantities obtained through a contract ion or a projection is desirable. 
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