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We consider several main aspects of the practical application of continued fraction expansions 
in scattering problems and in the field of equilibrium and non-equilibrium statistical mechanics. 
We present some recursive algorithms needed for an efficient evaluation of continued fraction 
coefficients. The method is then applied to the summation of badly converging series which 
occur in scattering theory and to the asymptotic solution of the Schrödinger equation. In ad-
dition, the use of the method for the calculation of response functions, correlations and their 
derivatives in systems whose time-dependence is described by a master equation is discussed. 
Finally, the construction of error bounds is investigated. 

1. Introduction 

In recent years there has been considerable 
interest in the methods for the efficient evaluation 
of series in quantum mechanics and statistical 
mechanics. In many cases, the resulting series have 
an unsatisfactory convergence behaviour or are 
asymptotic series. Hence, a fundamental strategy 
consists in constructing analytical continuations, 
yielding better convergence properties. One possi-
bility consists in converting the, in general, 
asymptotic series into a continued fraction which 
leads to an appropriate mathematical representa-
tion of the series; the obtained continued fraction 
is then considered as the value of the function of 
interest. The continued fraction expansion, which 
is closely related to the Pade-approximation [1] 
has been used in solving many problems in applied 
mathematics. Particularly, the interest in continued 
fraction methods has been renewed for the com-
putation of analytical functions [2—4]. The 
continued fraction method has also found applica-
tion in the solution of linear differential equations 
[5], integral equations [6] and systems of linear 
equations recently discussed by Swain [7]. 

In physics, the continued fraction technique has 
been used explicitly e.g. in the solution of the 
Schrödinger equation [8 — 9], in slow neutron 
scattering calculations [10—11], in strong inter-
action theory and in field theory [12]. The more 
general Pade-approximation has been applied more 
or less in all fields of physics [1]. In this paper we 
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use continued fraction techniques to study the 
solution of some general physical problems in the 
field of scattering theory and statistical mechanics. 

In Chapt. 2, we review the most important 
properties of continued fractions. We then discuss 
some convergence theorems and the related 
problem of a possible approximation to the 
remainder tail of the truncated continued fraction. 
In Sect. 3, some recursive methods, needed for an 
efficient evaluation of the continued fraction 
coefficients, are presented. Of special interest are 
those algorithms which yield a numerically stable 
recursion scheme for the continued fraction 
coefficients. The continued fraction theory is then 
applied in Chapt. 4 to the calculation of scattering 
amplitudes and to the summation of slowly con-
vergent or even divergent series arising in quantum 
mechanical scattering theory and in statistical 
mechanics. The asymptotic solution of the Schrödin-
ger equation for some special types of potentials is 
evaluated using continued fraction expansions. 
The efficient calculation of correlation functions 
and response functions of stochastic processes 
describing statistical systems is presented, too. 

One of the major problems in the theory of 
continued fractions is the assessement of the 
accuracy of the approximation. In Sect. 5 a method 
for finding the best error bounds for the auto-
correlation functions and their time-derivatives of 
stationary Markov processes is given. The results 
obtained are briefly discussed in Chapt. 6 with some 
aspects of further problems in the application of 
continued fraction functions. 

2. Basic Properties of Continued Fractions 

In this section we present some of the funda-
mental properties of the continued fraction expan-
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sions [1, 5, 13—15]. Let the set { /w (z) } denote 
analytical functions which allow a Taylor series 
expansion about the origin. If the functions /M(z) 
obey the recursion relation 

bn+lz 
fn(z) = an + - — , z e C , 

Jn+1 (2) 
(2.1) 

where the sets {an } , {bn} denote complex numbers, 
we obtain the continued fraction 

f0(z) = a0 
b 1 z 

b 2 z 

= «o + 

ai - f 
a 3 + • 

b\z b2z 

«1 + «2 + 
(2.2) 

By means of an equivalence transformation [1] 
we get from Eq. (2.2) 

b\z b2z 
/o(z) = ao + 1 1 + 

(2.3) 

with 

bi = — and bt = — — — V i ^ 2. (2.4) 
«1 «t Ctf-l 

Expansion of Eq. (2.3) yields 

fo(z) = a0 + &iz - bih2z2 + 0(z*) 

— ^ ai ^ 5 
t = 0 

(2.5) 

showing the relationship of the continued fraction 
to the corresponding Taylor series of fo{z). 

If the number of terms in Eq. (2.3) is infinite, 
/o (z) is called an infinite continued fraction and the 
terminated fraction 

ßHz) = An(z)IBn(z) (2.6) 

is called the w-th convergent of /o(z) (i.e. the 
coefficients bk in Eq. (2.3) are set zero for Je ^ n + 1). 
The functions An(z), Bn(z) satisfy the recursion 
relations 

and 

A M+i (z) = An(z) + bn+izAn-^z) (2.7a) 

Bn+1 (z) = Bn (z) + bn+1 z Bn-i (z). (2.7 b) 

From the theory of Pade-approximants the 
sequence of convergents of the "corresponding 
continued fraction" to the Taylor series occupies 
the stair-step sequence of Pade-approximants [1] 

[0/0], [1/1], [2/1], . . . , where 

[L/M] = Pl(z)IQm(Z) , (2.8) 

with QM{0) = 1 . 
L, M are the degrees of the polynomials PL and 

QM, respectively. In general, successive truncations 
of Eq. (2.3) are seen to yield a useful result. For the 
convergence properties of continued fraction ex-
pansions we refer to the results in the literature 
[13 — 15]. Here, we mention the most important 
convergence theorem, first discussed by van Vleck 
and Pringsheim [16]: if the coefficients bn in Eq. 
(2.3) have the property 

lim bn — b =j= 0 , 
n—fca 

(2.9) 

then within every simply connected region T in C, 
containing the origin and no point of the branch 

Im — 

1 
Jb 

* ^ 0 , (2.10) 

the continued fraction is a regular (except for the 
poles) analytic function and coincides in the region 
about the origin Avith the corresponding series. In 
the case where the coefficients bn have the property 

lim bn = 0 , (2.11) 

the continued fraction is convergent in the whole 
complex plane except at poles. 

The error of the truncated continued fraction can 
be estimated using the convergence theorem by 
Blanch [17]. An approximation of the remainder 
tail in the continued fraction can be obtained in the 
following way: with bnz = an in 

/ » (« ) = «»/(1 + A»+i(z)) (2.12) 

and by setting fn+i = fn=fn an approximation of 
the tail becomes 

/ „ = _ j/1 + 4an) 
2 an 

1 + ]/1 + 4"an 
(2.13) 

Continued fraction expansions have found wide 
application for the numerical evaluation of special 
analytic functions [3—5]. As an example, let us 
consider the infinite continued fraction [5] for the 
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function ax with x real and a complex: 

(a— \)x [a- \)(x - 1) 
a x = 1 + 

1 - 2 + 
( « - ! ) ( * + 1) [ a - l ) { x - 2) 

3 -
( a - l)(x+2) 

5 -

2 + 

(2.14) 

This continued fraction converges for all x e [R and 
all a £ (— oo, 0]. For a = 2 and x = 1/2 the successive 
convergents read 1.5, 1.4, 1.4166, 1.414379, 
1.414285, 1.414201, 1.4142157 and the exact value 
obviously is 1.41421356 . . . . 

In physics, many problems occur where semicon-
vergent or asymptotic series are known (for example 
[18—19]). Therefore, the following problem suggests 
itself: can we construct continued fractions which 
serve as adequate analytical continuation of semi-
convergent series ? If we start from the recursion 
relation 

fn{z) = bnl(z — an+ fn+l{z)) 

we get 

/ i ( z ) = 
bi bi 

(2.15) 

(2.16) 
[z — Ol) + {z — a 2) + 

The expansion of Eq. (2.16) yields the correspond-
ing series 

h (z ) = f p n l z " + i . (2.17) 
n = 0 

In the following wTe will restrict the discussion to 
the so-called P, R and S forms: 

(P) 

(R) 

(S) 

I Pn 

= n Z M + l 

2 
n = 0 

1 

: - ) » r i 
?n\ 1 rn = ( - ) n V r 

(2.18a) 

(2.18b) 

y »=1 y 

Sn \Sn=Pn-l\ 

2^1 ' { y — arg y e [0, n). 
(2.18c) 

The series in Eq. (2.18) have the following "corre-
sponding continued fraction" forms: 

bi b2 63 
(P) 

(R) 

(z — ai) -f- (z — a2) -f (z — a3) 

c 1 c2 c3 c4 

1 + 2 + 1 

(2.19a) 

(2.19b) 

( 5 1 ) 

(52) 

l / ^ i d2 ds 

y\y+ y+ y + 
1 

y 

(2.19c) 

h h h 
(z+e 1)+ (z + e2)+ (z + e3) + 

(2.19d) 

The S2-form can be obtained by comparing the 
n-th convergent of the S2-form with the (2n— l)-th 
convergent of the Si-form yielding 

ei = d2 , en = d2n-i + d2n; 

fi = dxy, fn = ~ d2n-2 d2n—i (n > 1). (2.20) 

By setting z — y— 1 and using Eq. (2.20) we obtain 

dn = cn V» ^ 1 . (2.21) 

To obtain a given accuracy, the contracted S2-form 
requires fewer terms to be evaluated than the 
usual Si-form. 

In the next section we present convenient 
recursive methods for the calculation of the expan-
sion coefficients in the continued fraction equations 
(2.19a —2.19d). 

3. Recursive Methods 

A general method for the evaluation of the 
coefficients in the continued fractions is obtained 
by using the requirement that a formal expansion 
in powers of 1 \z has the same coefficients as those 
in the series Eqs. (2.18a—2.18 c) (matching method). 
Particularly, we find for the coefficients of the 
P-form [Eq. (2.19a)]: 

(f 0 P2 — Pi2) 

(3.1) 
bi=Po, bo= -

V 0' 

a 1 Pi 

Po 
a2 = 

PQPZ — pip2 

P0P2—P12 

Pi 
Po 

Using a result of Perron [20] for power series we 
obtain the formulas 

bn = — 
fn (fn-2 

{(pn-1) 2 ' an = Wn V»-l 
<Pn (pn-1 

(3.2) 

where cpn and xpn are given by the determinants 

(fn = 

po 

Pn-1 

Pn-1 

P2n-2 

, Vn 

P0 •• • Pn-2Pn 

Pn-1 • • • P2n-3 p2n-l 

(3.3a) 
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with 
(po — 1 and tpi — p i . (3.3b) 

Obviously, Eqs. (3.2) and (3.3) can hardly be used 
for high order coefficients an and bn since the 
calculation involves the evaluation of large deter-
minants. However, the P-form has found wide 
application in the theory of statistical mechanics 
for the calculation of auto-correlation functions 
[10, 18, 21—24]. In the works of Mori [21] and 
Schneider [24] for equilibrium systems the coeffi-
cients an and bn are obtained in terms of intractable 
expressions using projector methods. 

The most convenient method for the calculation 
of the coefficients in the continued fractions consists 
of a recursive calculation scheme. Given the 
coefficients pn or rn we can construct the iZ-matrix 
defined by 

Bi,i = 1, Bn< l = 0 , 

Bn,2 = Pn-i = (-)n-1rn-i (3.4) 

where the further elements are obtained with use 
of the product-difference (PD) recursion relation of 
Gordon [25]: 

Bi.i — RlJ-l • Bi+l,]—2 — R\,j-2 • Bi+lJ-1 • (3.5) 

Within each column one starts at the top and works 
downwards. When a triangular portion of the 
i?-matrix is filled, the coefficients of the iü-form are 
given by [25]: 

Ci = R i , i + i l ( B l i i - R 1 , i - 1 ) . (3.6) 

With the use of the coefficients {c*} = {di} given by 
Eq. (3.6) the coefficients [ai) and {bi} in the 
P-form can be obtained from Eq. (2.20) yielding 

bi = c i , ai = — c2 (3.7) 
and 

^ra+l = — C2n C2n+\ , 

«w+1 = — (C2M+1 + C2W+2) • (3.8) 
By use of Eq. (3.6) and Eq. (2.21) we obtain 
another recursive calculation scheme which is in 
general numerically more stable than the (PD) 
algorithm. This (P)-algorithm reads: 

di = Di, Di = si; 
d'2 = — D2ID1, = S2; 
d3= - D3/D2, D3 = S3 + S2 d>; (3.9) 

= — D 4 / D 3 , £>4 = «4 + «3 (di + d3); 
dn= — D5ID4, D5 = s5 + S4(d2 + d3 + d^ 

+ s3(d2 d^ 

The coefficients Dn for n = 4, 5, . . . can be calcu-
lated recursively using the auxiliary vector X of 
dimension L where 

L = 2[{n - l ) /2] . (3.10) 

For n = 4 we start in the following way (P-algo-
rithm): 

X(2)=d2 + d3, X(1 ) = d2, (3.11a) 

and interchange 

X ( 2 ) - > Z ( 1 ) , X ( l ) -+X(2). (3.11b) 

For higher terms (n~^5) we work upwards with 
X (L — 1) = 0 obtaining 

X(k) = X(k - 1) + dn-iX{k - 2) 
for k = L,L- 2 , . . . , 4 (3.11c) 

and 

X(2) = X(l) + dn-i (3 . l id ) 

and interchange at each recursion step the odd and 
the even components, i.e. 

X ( 2 ) - > X ( 1 ) , X ( 4 ) - * X ( 3 ) ; 
X ( 1 ) - > X ( 2 ) , X ( 3 ) - > Z ( 4 ) etc. (3.11e) 

The coefficient dn is then given by 

dn=-DnjDn-i, (3.11 f ) 

where 
LI-2 

Dn = sn + 2*n-iX(2i-l). (3.11 g) 

Both, the (P) and the (PD) algorithm have many 
points in common with Rutishauser's [26] quotient-
difference (QD) algorithm. According to the sen-
sitivity to round-off errors the logarithms must be 
calculated on a computer using double precision 
arithmetic. Here we stress that the coefficients in the 
continued fraction expansions Eqs. (2.19a—2.19d) 
remain the same in all finite approximations, i.e. a 
certain coefficient dn is not changed when wre 
calculate a higher continued fraction convergent. 

4. Application of Continued Fraction Expansions 

4.1. Series with Orthogonal Polynomials 

In the following we apply the method of con-
tinued fractions to scattering problems with 
special emphasis on quantum mechanical problems. 
In theoretical analysis we have in general a series 
expansion into a complete set of some kind of 
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orthogonal polynomials. In quantum mechanical 
scattering, for example, the expansion is the well-
known partial-wave decomposition. Similar series 
occur in the theory of electromagnetic wave 
propagation or in the solution of the Boltzman 
equation. 

For the application of the continued fraction 
method in these problems we introduce the "scatter-
ing amplitude" 

and 

/(a*;<9) = ] > > ( a i ) ^ ( c o s 0 ) , 
;=o 

(4.1) 

depending on the scattering angle 0 . The coeffi-
cients ci (a*) describe the process and the ai are the 
relevant physical parameters. The functions 
Zi (cos 0) denote any complete set of orthogonal 
polynomials, e.g. Legendre-, Chebyshev-, Jacobi-
polynomials etc. The scattering amplitude is now 
rewritten in the form 

1 = 0 y i=i y 21-1 

(4.2a) 
with 

M<*i) = Ci{cLi)Zi{cos 0) and y = |/x , (4.2b) 

and where, of course, we have to set x — y = 1. But 
before doing so the continued fraction expansion 
(2.19 c) is applied to this series and expanded at 
y = 1, thus obtaining 

d\ e?2 (h 
/ ( g « ; 0 ) = , « T 4 ••• (4-3) 

1 + 1 1 

with the di s calculated with Equations (3.9—3.11). 
Of course, this approach is completely independent 
of the special choice of the orthogonal polynomials 
Zi(cos 0 ) . We will restrict ourselves in the follow-
ing to the very important series for the associated 
Legendre polynomials Pim{cos (9), which are 
connected with the Legendre polynomials Pi(cos 0) 
by [2] 

dm 

P\m (cos 0) = ( — )m— J—-Pi{cos0), l^m. 
d{cos 0)m 

(4.4) 

Our method can be tested for a series in Pim (cos 0). 
From the well-known expansions 

2 y Pi (cos 0) = - log I sin — ^ 1 
0 0 

1 + sin 
0 

I j ^ P l i cos 0 ) = log ^ 
sin — 

- 1 , 

(4.5b) 

we obtain by formal differentiation, using Eq. (4.4), 
the result 

~ (2Z + 1) 
. I w + r y 1 

1 + cos 
0\ml 2 

(m — 1)! 
1 — cos 

0 for m ^ 1 . 

(4.6) 

For m — 1 this series is similar to the partial wave 
expansion for elastically scattered protons from 
nuclei in the presence of a spin-orbit interaction 
[27], Götz et al. [27] calculated the series using the 
Pade recursion method, discussed by Alder et al. 
[28]. 

The convergence properties of the series (4.6) can 
be analyzed using the asymptotic expression for 
large values of I for the polynomials Pim(cos 0): 

2 VI2 

P™(cOS 0) = (-)!•' 

0( / -3 / 2 ) 

TI I sin 0 

1 \ TI M 7I 
cos 11 Z-F - - — + 

(4.5 a) 

4 ' 2 
for e ^ 0 sS 7t — e, £ > 0; I > m, 1/e. 

(4.7) 

Thus the terms in the series (4.6) behave asymp-
totically as ai(m) ~ 1^-312 p o r case m—\ we 

have ai (1) ~ l~lJ2, which leads to a very poor 
convergence of the series. For a given relative 
accuracy of 10~3 we have to sum up approximately 
106 terms. Obviously, for the case m > 1 the series 
diverges. In Table 1 we present the values for this 
series obtained by the continued fraction method 
of order N (N-th convergent) when m = 1. It is 
seen that the continued fraction converges very 
rapidly to the exact value [r.h.s. Eq. (4.6)], with 
increasing N. This convergence behaviour is quite 
dependent on angle, for large scattering angles 
(0 < 180°) the convergence is much better than 
for small ones. The results for the formally divergent 
series (m 2) are shown in Table 2 for the case 
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Table 1. The i^-th convergent of the continued fraction ex-
pansion for the series (4.6) with m = 1. The scattering angles 
are 0 = 40°, 100° and 160°, respectively. 

/0 
/ 40° 100° 160° 

N/ 
3 4.6908 0.62747 0.19041 
6 3.4011 0.82395 0.17633 
9 2.6678 0.83911 0.17633 

12 2.7070 0.83910 
15 2.7584 0.83910 
18 2.7528 
21 2.7462 
24 2.7469 
27 2.7476 
30 2.7475 
33 2.7475 0.83910 0.17633 
exact 2.7475 0.83910 0.17633 

Table 2. The iV-th convergent of the continued fraction 
expansion for the series (4.6) with m = 5. The scattering 
angles are 0 = 40°, 100° and 160°, respectively. 

/ 0 
40° 100° 160° 

N/ 
3 - 340.10 — 404.04 2.6134 
6 - 380.80 61.881 - 0.033026 
9 2300.2 7.4314 - 0.000136 

12 3244.1 9.9607 0.0041035 
15 3911.7 9.8559 0.0040911 
18 3764.2 9.9834 0.0040908 
21 3757.7 9.9834 0.0040908 
24 3756.7 
27 3757.5 
30 3757.4 
33 3757.4 9.9834 0.0040908 
exact 3757.4 9.9834 0.0040908 

m = 5. As can be seen, the continued fraction 
converges nearly as rapidly to the exact result as in 
the convergent case writh m = 1. This means that 
the continued fraction expansion provides the 
correct analytic continuation of the divergent series 
in a straightforward way. 

As a second example we study a divergent series 
resulting from the elastic scattering of a particle 
with charge Z\e in the electric field of a nucleus 
with charge Z2e (Rutherford scattering). It is well 
known (see e.g. Ref. [29]) that this process is 
described by the scattering amplitude 

1 00 

2 i k ,=0 

exp {2i(ai{rj) — a0(rj))} Pi(cos 0 ) 
t] 1 

= ~ 2k ~ 7 7 

(4.8) 

-ß exp {— 2i rj log (sin 0/2) } , 

where 

rj =Z1Z2e2lhv and k = m*v/h (4.9) 

denote the Coulomb parameter and wave number, 
respectively, of the particle with asymptotic 
velocity v and reduced mass m*. The Coulomb 
phase shifts ai(rj) are given by 

Oi(rj) = SiTgr(l+l + iri). (4.10) 

This series was investigated in Ref. [28] using the 
Pade-approximation, and it was shown that the 
correct analytic continuation of the series can be 
obtained by this method. 

In Tables 3 and 4 the results of the continued 
fraction method for the function \f{rj\0)\ are 
showTi for some typical scattering angles and for 
rj = 10 and rj —100, respectively. Again, the 
continued fraction expansion can be used to sum 
the divergent series. The order N of the continued 
fraction (iV-th convergent), necessary to obtain a 
given accuracy, is about the same as the number 
of terms needed for the construction of the [L/M]-
Pade-approximation which is 2 M -j- L -f- 1. This 
can be seen by comparing our results writh those 
obtained by Alder et al. [28]. Again, both the 
continued fraction expansion and the Pade-
approximation work best for large scattering angles 
and small values of rj. The reason for this can be 
understood by physical arguments: in the classical 
limit the scattering with small 0 and large rj corre-
sponds to a large impact parameter and therefore 
the contributions to the series (4.8) come from 
higher I-values. 

With this divergent series as a background, we 
nowr investigate twTo very slowly convergent series. 

Table 3. The iV-th convergent of the continued fraction 
expansion for the modulus of the Rutherford scattering 
amplitude for ^ — 10 and k= 1. The scattering angles are 
0 = 60°, 120° and 180°, resepctively. 

/ Ö 
180° 120° 60° 

6 5.0700 3.2366 0.03457 
12 4.9992 7.5257 0.02949 
18 5.0000 6.6702 0.05333 
24 5.0000 6.6667 0.57953 
30 6.6667 3.0322 
36 24.395 
42 19.823 
48 20.000 
54 5.0000 6.6667 20.000 
exact 5.0000 6.6667 20.000 
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Table 4. The 2V-th convergent of the continued fraction 
expansion for the modulus of the Rutherford scattering 
amplitude for r j= 100 and k = 1. The scattering angles are 
6 = 60°, 120° and 180°, respectively. 

N 
/ /0 

180° 120° 60° 

9 
15 
21 
27 
33 
39 
45 

105 
111 
117 
123 
129 

203 
209 
215 
221 
227 
233 

16.062 
50.278 
50.028 
50.008 
50.012 
50.000 
50.000 

0.00024 
0.00079 

66.126 
66.714 
66.663 
66.667 
66.667 

50.000 66.667 

237.19 
198.81 
199.92 
200.02 
200.00 
200.00 

exact 50.000 66.667 200.00 

First we deal with the scattering of a particle in a 
repulsive inverse square potential Ar~2. This 
process is described by the scattering amplitude 

1 

« 1=0 

1) e1 1 sin di Pi{cos0), 

( 4 . 1 1 ) 

where the phase shifts bi are given by [30] 

( 4 . 1 2 ) 

Since for large values of I the phase shifts behave 
asymptotically as di~— t t A / 4 Z , the series ( 4 . 1 1 ) 

converges very slowly. Inserting this asymptotic 
expression for bi and using Eq. (4.5) we find 

/U;6>) = 
4&sin 

sin2 . 7r2 A2 

0 + k ~i~8k~ 

This series converges rapidly and the exact value 
of /(A; 0) can be obtained easily. The continued 
fraction expansion results for the original series 
( 4 . 1 1 ) are shown in Table 5 , where for simplicity 
only the absolute values of /(A; 0) are given. Again, 
a strong convergence improvement is obtained. The 
direct summation requires up to 106 terms for a 
relative accuracy of 1 0 - 3 . The series ( 4 . 1 1 ) was also 
studied by Corbella et al. [31], using the diagonal 
Pade-approximation. Table 5 was calculated for 
the same scattering angles as done by Corbella et 
al, so the two methods could be compared. It fol-
lows again that the continued fraction expansion of 
order N leads to roughly the same accuracy as a 
[L/L]-Pade-approximation, if 3 L + 1 ^ . N . In con-
trast to the Pade-approximation, howTever, the 
calculation using a continued fraction of high order 
is straightforward and very fast, due to the use of 
recursive methods. The [L/Jf]-Pade-approximation 
requires the solution of a system of M linear 

Table 5. The iV-th convergent of the continued fraction 
expansion for the modulus of /(A; 6) for the repulsive in-
verse square potential. We have chosen A = 1 and k = 1 and 
the scattering angles are 6 = 8°, 18°, 38° and 58° respec-
tively. 

/o 

1 00 / 
T 2 + 1) sin bi cos <5/ + 
k 1=0 \ 

8° 18° 38° 58° 

3 17.12 9.788 2.523 1.531 
6 16.66 3.113 1.486 0.9397 
9 7.116 3.672 1.576 0.8988 

12 8.173 4.021 1.555 0.9054 
15 11.46 3.825 1.552 0.9046 
18 10.07 3.950 1.554 0.9045 
21 9.517 3.898 1.554 0.9045 
24 9.739 3.905 
27 9.693 3.910 
30 9.998 3.910 
33 10.00 3.908 
36 9.992 3.908 

54 9.906 
57 9.914 
60 9.913 
63 9.903 
66 9.903 3.908 1.554 0.9045 
exact 9.903 3.908 1.554 0.9045 

log si 
0 

sin 1 - f sin 
0 

( 4 . 1 3 ) 

71 A 

~2~ + » ( 2 Z + 1) sin2 öi — 
I 2 A 2 

8/ 
Pi (cos 0) 
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equations with M unknown. For large M this may 
be time-consuming and may become numerically 
unstable. 

We remark that the calculation of the coefficients 
di in a continued fraction expansion of high order 
may lead to numerical instabilities. This difficulty 
can be easily circumvented by summing some of 
the first terms in the original series and then 
applying the continued fraction expansion to the 
remainder series. (This method cannot easily be 
used for the [L/ilf]-Pade-approximation with the 
orthogonal polynomials!) Numerically, the total 
number of terms needed for a given accuracy is 
approximately equal to, or even smaller than the 
number needed for the complete series. 

As a last example we study a series, frequently 
encountered in nuclear and atomic physics, where 
reactions in the presence of a Coulomb field [32] 
are described by 

oo 
f(g,rj-,0) = 2 ( 2 1 + l)e2ia'M Ri{Q,rj) Pim(cos(9). 

l=m 
(4.14) 

The special type of the reaction is determined by 
the radial integrals Ri(rj, g). As an example we 
choose the description of the elastic scattering of 
positively charged particles in the presence of a 
Yukawa potential, proportional to e^^jr, where 
m = 0. This case was investigated in detail in 
Ref. [28] using Pade-approximants. The radial 
integrals for this process are approximately given 
by 

Ri(g,rj) = %e-<>K0(Q]/rf + 1(1 + 1)) 
with g = fx(r]lk), (4.15) 

where KQ is the Bessel function of the third kind. 
The amplitude f(g,rj;0) for large values of the 
parameter rj can be well approximated by [33] 

2 717] 
f(g,rj-,(9)^-7 sin2 (0/2) 

• exp 

e-eKo 

0 
i \ 2rj log s i n - - + — 

sin (0/2) (4.16) 

The convergence behaviour of the series (4.14) 
becomes immediately evident from the structure 
of the radial integrals (4.15): They decrease signifi-
cantly only if rj. In Fig. 1 we have plotted the 

c o n t i n u e d 
f r a c t i o n e x p a n s i o n 

11" i [_i_ 

Fig. 1. The number of terms required for a relative ac-
curacy of 10~5 for the continued fraction expansion or the 
direct summation of \f(g, rj; 0)\ is shown as a function of 
rj. The parameter q = 2.5 (solid line) and q — 5.0 (dashed 
line), respectively. The scattering angle is 0=180° . 

number of terms in the continued fraction expansion 
necessary to obtain a relative accuracy of 10~5 and 
the corresponding number for the direct summation 
of the series (4.14) as a function of rj for several 
typical values of o. The scattering angle is chosen 
typically to be 0 = 180°. The same is shown in 
Fig. 2, but for 0 = 150°. As can be seen, the 
improvement of the convergence by using the 
continued fraction expansion is dramatic for large 
values of rj and very dramatic for scattering angles 
0 ~ 180°. (Note, that about 20—100 terms in the 
original series have been summed up directly, as 
was discussed above.) For small values of rj (rj < 10) 
the convergence of the original sum is already good 
enough so that the application of the continued 
fraction method leads to no significant convergence 
improvement. Further, wTe have calculated the 
[L/il/]-Pade-approximation to the series (4.14), 
showing that the corresponding continued fraction 
of order N — 2 M + L + 1 leads in general to a 
much higher accuracy [28]. 

Our selected examples for the application of the 
continued fraction expansion to series with ortho-
gonal polynomials show that this method can be 
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f r a c t i o n e x p a n s i o n 

of two point charges Z\e and Z2e in this potential 
leads to a radial Schrödinger equation of the form 

10 10' I 
2. Same as in Fig. 1, but for 0 = 150°. 

used advantageously for the summation of all such 
slowly convergent series. Finally, we note that we 
have used complex coefficients ai (on) in the calcula-
tion of the continued fraction. An alternative 
approach would be to split the original complex 
series in its real and imaginary parts and to use the 
continued fraction expansion separately for both 
series. Our results show that this approach is 
somewhat worse than the approach using complex 
coefficients. (Note that this statement holds also in 
the case of the Pade-approximation, as we have 
seen in numerical calculations.) 

4.2. Asymptotic Solution of the Radial 
Schrödinger Equation 

The continued fraction expansion is also a 
powerful method for the summation of asymptotic 
series [19]. Such series result, for example, from the 
asymptotic solution of the radial Schrödinger 
equation for Coulomb problems in presence of 
potentials of type 

V ( r ) = V o l r , (4.17) 

This type of potential is used e.g. to describe 
relativistic effects in scattering theory (v = 2) or 
nuclear polarization effects (t> = 3). The scattering 

f d ' 2yi IJ±1) 
\ dr2 

2m* V0 

h2 9i(r) = 0 (4.18) 

wrhere I denotes the angular momentum. 
The asymptotic form of the wave function is 

given by 

9i (r) = j (Aj->(h r) - a, *}+>(* r)), (4.19) 

where the coefficients ai determine the cross section. 
The incoming and outgoing Coulomb waves h^A 
and h^A can be expressed in terms of the well-
known regular and irregular Coulomb functions Fi 
and Gi by [2] 

h\±>(kr)=Gl(kr)±iFl(kr), (4.20) 

with the asymptotic behaviour 

h\±y>{kr) ~ 

•exp j i i r — rj log 2k r — I— + • 

(4.21) 

For the solution of Eq. (4.18) we now define a new 
wave function Hi (r) by 

Hi(r) = ai(r) 

e x p ( k r — rj log 2k r — I — + cfi(rj) 

Gt(r) + i¥i(r), (4.22) 

wehere we impose the following asymptotic be-
haviour 

Hi (r) =Gi{kr) + i Fi {k r) = h\+\k r). (4.23) 
lim r-* oo 

Inserting Eq. (4.22) into the differential equation 
(4.18) we obtain 

dr2 \ r J dr 
adr) 

2m* Vo 
—v-?-ai{r)==0- ( 4 , 2 4 ) 
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For sufficiently large r, the function ai(r) can be 
expanded in terms of inverse powers of r, i.e. 

OO J OO J OO J 

rn 
n = 0 n = 0 

(4.25) 

For the coefficients gn and fn we find the following 
recursion relations: 

1 / 2m* \ 
fn+y = - — \glncn - fndn — V0gln_v+2\ 

(4.26a) 

and 

9n +1 9n dn + fn cn 
2 m* 

h2 

(4.26b) 

In Eq. (4.26) we have used the abbreviations 
cB = ( » ( w + l ) - rj2 - l ( l + \ ) ) , 
dn = (2n -f- 1) 77, (4.27) 
en = (n + 1)2 k. 

From the asymptotic behaviour (4.23) the initial 
conditions are determined by 

= 1 , /o = 0 , 
rj 1 

9i k 
/ l = J k W + W + l ) ) . (4.28) 

The solution of Eq. (4.18) can now be represented 
by the functions Gj(r) and Fj(r) by 

flri(r) = yiFi(r) + i , G i ( r ) , (4.29a) 

and 

~ 9i (r) = yi "^T Fi (r) + di ^ G* (r). (4.29 b) 

From the knowledge of the numerical solutions of 
the differential equation at some point ro, the 
coefficients yi and di are determined. The wave 
functions gi(r) are then completely known for all 
r ^ r 0 by the functions F/ and G; and therefore the 
coefficients a; in Eq. (4.19) are determined. 

It is seen from the definition of the function ai (r) 
and the above recursion relation that the expansion 
is an asymptotic series, which converges only in an 
asymptotic sense, i.e. for r —̂  oo. However, it is 
often possible to obtain the value of such functions 
for finite r by terminating the summation of the 
series after a finite number of terms. This "con-

vergence" behaviour can now be improved signifi-
cantly by converting the series (4.25) into a 
continued fraction representation of the form of 
Equation (2.19c). 

This analytic continuation in form of the con-
tinued fraction allows the calculation of the func-
tions Ff(r) and G;(r) respectively, at small values 
of r. The convergence of the truncated continued 
fraction can be tested by the Wronski-relation 
which is given by 

G; (r) Fi (r) - F* (r) G* (r) = k . (4.30) 

Numerical investigations have shown that for 
different values of Fo and v the functions Fj(r) 
and G i{r) can be evaluated with the continued 
fraction expansion for ro given by 

yv2 +i(i + i)). (4.31) 

As a typical example, the number of terms in the 
evaluation of the continued fraction is shown in 
Fig. 3 as a function of r, where a relative accuracy 
of 10~6 for on was required. Hereby we have used 
the parameters 77 = 10, fc = l f m and angular 
momentum 1 = 0. The potential parameters are 
Fo = 50 MeV and v = 3. 

The above discussed method can always be used 
for potentials which can be expanded into a series 
in terms of inverse powers of r. Moreover, it is also 
possible to find an asymptotic expansion around 

r(fm) 

Fig. 3. The number of terms required for a relative ac-
curacy of 10~6 for the continued fraction expansion ofFj(r) 
and G i(r) is shown as a function of r. The parameters used 
are: 77 = 10, £ = lfm, / = 0, F0 = 50MeV and i> = 3. 
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the origin, which can be continued by the continued 
fraction. 

4.3. Correlations and Response Functions 
for Stochastic Processes 

The stochastic behaviour of coarse-grained 
variables of a system can be described in most 
cases as a stochastic time-homogeneous Markov 
process x(t)= (xi(£), . . . } with a time-independent 
dissipative forward generator r [34—36]. If we 
study the linear response of the system to external 
dynamic forces F(t), the perturbed system can be 
described by a time-dependent generator r(t) of a 
non-stationary Markov process [35—36]: 

r ( t ) = P + F (* )ß e x t (4.32 a) 

yielding the master equation for the perturbed 
probability p (xt ) : 

dp(t)/dt = r ( t )p ( t ) (4.32b) 

The stochastic operators P and Qi are in general 
dissipative linear integro-differential operators act-
ing on probability functions. Using functional 
derivatives the linear response tensor (t — r) is 
then defined by the relation of the response of the 
state variables x(t)*: 

<5<*(0>perturbed 
Z ( « - T ) = 

F= 0 ÖF(t) 
= jx{dp(x(t))IÖF(t)}f=0cI*. (4.33) 

Here we have assumed that the perturbation is 
applied after the system has been prepared at time 
to in a given stationary state described by the 
stationary probability function ^st(*) of the 
unperturbed Markov system 

r p s t = 0 . (4.34) 

The response tensor %(t) can be expressed in the 
form of a generalized fluctuation theorem, first 
discussed by Hänggi and Thomas [36]. The theorem 
can be written as a correlation over the unperturbed 
stationary system 

x ( t ) = < 9 ( t ) < ( * ( t ) - <*>u n p e r t u r b e d)«i>(*(0))> 
(4.35 a) 

= 0( t ) f(x - ^^unperturbed) ^r • r «j, ^ d* , 
(4.35b) 

* Here we use the notation x(t) to denote the stochastic 
process as well as for the random variables x(t) at time t. 
The specific meaning will be understood from the context 

where (x) is in general a non-linear fluctuation: 

&(x) = [£lpst]xlpst(x), (4.36a) 

with 

<<£(*)> = $®(x)pst{x)dx = 0 . (4.36b) 

In Eq. (4.35) 0 ( r ) denotes the step function. In 
practice, the calculation of a correlation function, 
C(T), of two state functions g(x) and f{x), 

c ( t ) = <flr(*(r)/(*(0))>, (4.37) 

and response functions XV(T) i n terms of the exact 
stationary joint probability pW (x(r)\ *(0)) of the 
unperturbed stationary Markov process x(t) is 
intractable. Usually the calculations require a 
great deal of numerical analysis to determine the 
eigenvalues and left and right eigenvectors of the, 
in general, non-symmetric generator P. Therefore, 
approximation methods requiring the minimum of 
computer time and human effort are very important. 

By using the Taylor series expansion of Eq. (4.35), 
the component %ij(T) becomes 

Xijir) = %{r) 
Pn 

= n n\ 
T > 0 

= 0 
(4.38) 

The static moments pn are given by 

Pn = 

dn X(T) 

dTn 
T = 0 + 

= J (Xi - ^ u n p e r t u r b e d ) [Fn p ^ 

(4.39a) 

= « ( « < - <^>u nP e r t u r b e d ) r n 0 y » . 
(4.39b) 

Equation (4.35) can be rewritten in terms of 
conditional averages 

^•(t) = 0(T)<<ZM*(O)) (4.40) 
• <(®i(r) - <a:i)unperturbed) | * ( 0 ) » , 

where the time evolution of the conditional average 
is governed by the backward generator r + 

(r-(x.y) = r(y, x ) ) . 

Hence the moments pn can often be written more 
simply in terms of the backward generator r + : 

P n = j[(r+);i]x0j(x)pst(x)dx 
= < [ ( / T f ) vJ .^ ( * )> . (4.41) 
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The Fourier transform x(M ) Z(T)> 
oo 

x(co) = lim J exp (r (i a> — e)) * (r) dr , (4.42) 
e | 0 0 

can be written with Eq. (4.38) in terms of the sum 
rule expansion as 

z N = 2 Pn 
— „ 2n+l ' 
= 0 z 

where z = — i co 

(4.43) 

The powerful methods described in Sects. 2 and 3 
can now be used to calculate the Fourier transform 
X(co) of the response function ^(r) or to calculate 
the Laplace transform c(co) of a general stationary 
correlation function c(r). By applying the continued 
fraction method to Eq. (4.43) we obtain 

X(co) = x'(co) + i x" (&>) 
bi b2 = (4.44) 

(z - ai) + (z - a2) + 
Cl c 2 c 3 

Z + 1 + 3 + 

The continued fraction expansions are completely 
determined by the static moments pn. 

The imaginary part of x(a>), ^"(co), describes the 
dissipation in conservative systems, ^"(co) has the 
S-form 

X"(a>) = 2 2ra—1 n = 1 w 

d2 

CO 
•••,«»= ( )M+1 p2n-2 • 

(4.45) 

For a one-dimensional Gauss-Markov process with 
a gradient type perturbation, 

Qext = _ v , (4.46) 

the response function ^(r) can be written in terms 
of the relaxation rate y as [35—36] 

Z(T) = 0 ( T ) e x p ( - y r ) , y> 0 . (4.47) 

Using the moments 

Po=i, pn = ( - ) « y » , n ^ 1, (4.48) 

we have 

ci = l, c2 = y, a = 0, (4.49) 

which gives the exact result for Eq. (4.42) 

X(co) = ll(-ico + y). (4.50) 

More generally, for a response function ^( t ) consist-
ing of a finite number of exponential terms, 

x(r) = 2a»e 
n = 0 

-XnT 

the continued fraction in Eq. (4.44) terminates and 
yields the exact result. 

For all problems with a finite discrete state space 
of N different states, the generator r is an ordinary 
stochastic matrix P. A general correlation function 
will then be given by a finite sum of exponentials 
whose inverse relaxation times {Aw} are identical 
with the eigenvalues of —P. Hence the straight-
forward application of the continued fraction 
technique in the P-form Eq. (4.44) yields an exact 
result after iV-steps. This eliminates the numerical 
analysis needed to determine the eigenvalues and 
all the eigenvectors of JH! The continued fraction 
method only requires the specific form of the 
generator and the right eigenvector for eigenvalue 
Xn — 0, the stationary probability. 

The initial relaxation functions <g(x(t))y for a 
system prepared in a non-stationary state at time to 
with the initial probability po(xto), can also be 
determined using the same techniques. Using the 
propagator i?(r) = e x p ( / , r ) of the unperturbed 
master equation, the non-stationary probability at 
time t, p(xt), becomes 

p(t) = R(t- to) Po = exp {r(t - to)}po- (4.51) 

Hence, the moments {gn} of the Tajdor series for 
the relaxation function <<7 (*(£))> are 

9n = $g(x) irn po\x dx, n = 0, 1 , . . . . (4.52) 

5. Lower and Upper Bounds 
In practice we must terminate the infinite 

continued fraction at a finite order. So far, in this 
paper, the quality and consequence of such finite 
approximations have not been discussed. In recent 
works on Pade-approximations, correction terms 
have been derived which give upper and lower 
bounds for the exact result [1, 25, 37]. This is even 
possible in cases in which the actual exact result is 
not known. Here we study some applications to the 
theory of stationary stochastic processes by using 
theory of Stieltjes series [38]. For a vectorial 
stochastic Markov process x(t)= {xi(t), . . . } which 
fulfills the strong detailed balance condition [35] 
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the real stochastic dissipative operator f can be can be written with Eq. (5.5) as a Stieltjes series of 
the form 

(5.1) 
S(a>) = 2(-)"rn/wn+1. 

n = 0 

symmetrized by 

T=T+ = p~t1'2 rPH2, 

where pst again denotes the unique stationary 
probability function. The symmetric dissipative 
operator r may have eigenfunctions ipv(x) and 
eigenvalues l v ^ 0 . Assuming that the set of eigen- has then a Stieltjes integral representation 
functions form a complete set (i.e. T is even self-
adjoint) 

d(x-y) = j]dvy>v(x)v>v(y), (5.2) 

(5.10b) 

The powerful methods developed for Stieltjes series 
[38] can then be used directly. The function S(co)* 

S(co) = 
r dp{u) 
J a>-\-u 

with co > 0 (5.11) 

we have for F the spectral representation 

r= 2Jdv A, I xpv) (xpv I . (5.3) 

The stationary two-time joint-probability pW 
then is 

The Laplace transform S ( c o ) of the w-th time-
derivative of the auto-correlation S (r) becomes 

n 
£(«)(ft>) = conS(co) — i — )1'1 rt-1; 

i = 1 
n= 1 , 2 , . . . . (5.12) 

pW(x,y, t ) = (pst{x)pst(y))112 

•2 Jdr \pv{x) yv(y) e> 
The functions S^(co) are for even n a Stieltjes 

(5.4) series with dp^ (u) = undp{u) and for odd n a 
negative Stieltjes series. The Stieltjes series can be 

For an auto-correlation function S(r) of any state replaced by its "correrponding continued fractions" 
function ff(x), 

rn 
S(r) = <y(*(r)) flf(*(0))> = 2 ( " ) ' " - r T' 

n\ 

c<w> (co) of the .R-form. If we consider a sequence of 
approximants ck(n^(oj), obtained by setting 

w = 0 
„(«) _ Jn) 

the static moments, 
dnS(r) 

rn = ( - ) 
T = 0 + drn 

= (-)n jdxg(x) [r^gpst]a 

for n = 0, 1 , . . . , 

(5.5) 

(5.6) 

1 'k + 2 0 

the best upper and lower bounds are obtained. 
[This follows from Eq. (5.11) and Eqs. (5.17) to 
(5.18)]: 

ftiM ^ (-)»£<«>(o>) ^ cW(co) 
for n,k = 0 , 1 , . . . . (5.13) 

Note also that for a general continued fraction with 
can be expressed in terms of a Stieltjes integral by o n i y positive elements the odd and even approxi-

mants always yield monotonically decreasing upper 
bounds and monotonically increasing lower bounds 

(5.7) [20]. The Stieltjes continued fraction 
ci<»> c2(w) c3(m> 

c(n)(2) (5.14) 

using Eq. (5.4): 
C O 

rn = \ undp (u) 
o 

where 

dp (u)ldu = 2Jdv<5(|A,| <Pll2 91 V.) |2 ^ 0. 
(5.8) 

In particular, ro is given by 

S(O+) = r0 = ZSd»\<Pll29\v>»>\2< + <5-9) 
V 

so that with Eq. (5.8) p(u) is a bounded monotonic 
non-decreasing function. Therefore, the Laplace 
transform S(co) for real co, 

: + 1 + Z + 

converges for all complex z £ ( — oo, 0] uniformly 
to a regular analytic function 

S(z) = 
d])(n) (u) 

Z-\-U 
if [39] 2 bv diverges, 

V=1 
(5.15) 

S(co) = f d rS ( r ) e -
ö 

* Note that the function in Eq. (5.10b) is in general not 
with OJ > 0. (5.10a) identical with the function in (5.11), but represents an 

asymptotic series of the functions in (5.10a) and (5.11). 
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where 

61 = 
1 

&2v+l = 
Jn) Jn) 2 • Jn) • • l2V 

Ci<") ' &2v+l = r(n) Jn) Jn) 

b2v = 
Jn) Jn) c3 ' • Jn) • c2v-l 

b2v = c(n) c(n) _ r(n) • • l2V 
(5.16) 

The asymptotic expansion of S(z) is then given by 
a series like that of Equation (5.10b). If the sum in 
Eq. (5.15) converges, the continued fraction is 
divergent for all z e C. 

Of most practical use are the approximate 
quadrature formulas due to Skohat and Tomarkin 
[38] and Gordon [25]. Given only a finite number of 
static moments rn for n = 0, 1, . . . , 2M — 1 one can 
derive the following approximative quadrature 
formulas for an arbitrary Stieltjes-integrable state 
function / : 

OO M 

Sf(u)dpin)(u) = Ze(ilMef(yfäe) i= 1 
4 m 4 M + I / ( 2 M ) ( £ ) 

(2M)\ + , (5.17) 

M = 

Jn) 

~ (4n> C(3n))ly2 

- (4n) C(3w))ly2 

(4n) + ci»>) 

M 
(5.18) 

i = 1 
, 4m~1 4 A/-2 /<2Jf~1> (I) 

+ ( 2 1 / - 1 ) ! 
where £ e (0, od) and the coefficients {c} and {c} are 
all positive for a monotonic non-decreasing bounded 
function p ^ (u). The parameters in Eqs. (5.17) and 
(5.18) can be found from the finite approximants 

4 N = 2 QiM 
,(n),e = i co + yM 

e: even, (5.19) 

and 

with 

Jn) C2M 
M 

•1 (co) = 2 
Jn), 0 QiM 

= 1 w -f- yiM 
o: odd, (5.20) 

(5.21) w (w), 0 _ A 

Following Gordon [25] a direct calculation of the 
parameters in Eqs. (5.17) and (5.18) consists in a 
diagonalisation procedure for the symmetric tri-
diagonal matrix M : 

_ (r(n) „(n) n 1 j 2 , (n) , Jn) \ \c2M-2c2M-l) \c2M~l + C2M) 
Jn) 

(5.22) 

Using the orthogonal transformation matrix U the we find together with Eq. (5.7) for the n-th time 
parameters y e are then given by the eigenvalues derivative of S (r) 

y($* = (U-lM U)u 

and the weight factors by 
An), e _ Jn) TI(2) . Jn) — Jn) QiM — C1 uli > — 70 

(5.23) d»£(r) 
drn 

(-)nf, 

(5.24) 

:-Mrdp(»)(u), n = 0 , 1 , 2 , . . . . 

(5.26) 

The odd parameters are obtained by setting the Using the quadrature formulas with / (u) = e - t h e 
, . , . . • TT , best upper and lower bounds become 

in the original matrix M equal to zero. 
By using the Taylor series for the auto-correlation 

function 

S(r) = 2(-V T ^ 0 , (5.25) 

M dnS(r) 

i=l 
M (5.27) 

= 2 QiMe e x P ( — t/m'E T ) , » * N U { 0 } . 
t=i 
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The relations in Eqs. (5.27) and (5.13) also have 
wide application in equilibrium statistical thermo-
dynamics, where the following fluctuation-dissipa-
tion-theorem holds [18, 35,36] 

X(r) = -0(x)ß — S( t). (5.28) 

Here, ß denotes the Boltzmann factor. In addition, 
the Fourier transform %(ico) — — ß • S(co) fulfills 
as a consequence of the Kramers-Kronig-relation 
the sum rule 

oo oo 
- ß $SW{a>)d(o = JY'(co)dco, (5.29) 

o ö 

where the left hand side can be approximated by 
the error bounds from Equation (5.13). 

As a physical example for the theory, we consider 
the dynamical behaviour of a bi-stable tunnel diode 
undergoing a non-equilibrium phase transition 
[34], [40]. If p(Nt) is the probability that there are 
N electrons on the diode capacitance at time t, the 
master equation for the rate of change of the 
probability p(Nt) is given by the Fokker-Planck 
equation 
3plNt) 

= [rp(t)]N (5.30) 

and diffusion D (N) are given by [40] 
A (N) = I + | iz (N) | - iE (N) - iT (N), (5.34) 
D (N) = i (A + | iz(N) | + iE(N) + iT(N)). (5.35) 

The Esaki current iE and the thermal current %T 
tend to discharge the diode capacitance, whereas 
the Zener current iz and the supply current X (pump 
parameter) tend to charge the diode capacitance. 
The auto-correlation function S(T) of the fluctua-
tions of the charge number N on the diode capaci-
tance is then 

with 

£ ( t ) = (ÖN(T) ÖN(0)> 

dN(r) = N(r)-(N}st 

(5.36) 

(5.37) 

01 

M A{N)p(Nt) 37V 

The results in Eq. (5.27) can nowT be applied directly 
using the moments 

rn = ( _ ) » «<5iV(0) Fn dN(0)» (5.38) 

and can be compared with the exact results for the 
physical system. Using M = 1 and Eq. (5.27) the 
upper and lower bounds S{T) are given by 

r0 = S(0+) ^ S{T) (5.39) 

^ Ä ( 0 + ) e x p f - ^ r j , r ^ O . 

(D(N)p(Nt)) . Using the first four moments ro,r\,r2, we find 

This system obeys a strong detailed balance 
condition yielding for the probability current 
I(N): 

I(N) = A (N) pst (N) - --N- (D (N) pst (N)) = 0 . 

(5.31) 

The symmetric operator r becomes in this case 

d d 

W J W 
4 \ D{N) 

r 2 

2 w a ( n ) 

with 
A (N) = A (N) — dD {N)/dN . 

(5.32) 

(5.33) 

Hence, if an imaginary time is introduced, the 
physical system can be described by the Schrödinger 
equation for a particle with a "space"-dependent 
mass in a potential. For the diode, the drift ^4(Ar) 

Ti ro — n 2 ri2 , 
+ exp - — t ^ S ( r ) ( 1 - a ) r2 r2 \ n 
•exp(— yn) + r0a- exp(— y2 r), (5.40) 

Avith a,yi,y2 given by Eqs. (5.23) —(5.24). An 
equivalent result for the auto-correlation of the 
intensity fluctuations in a single mode Laser has 
been given by Smith [41] using the Risken-Fokker-
Planck equation [42], Further, the results developed 
here can be used to test the accuracy of the auto-
correlation functions obtained in a recent work on 
non-linear brownian motion [23] and on diffusion 
inperiodic potentials in superionic conductors [43]. 

6. Conclusions 

In the present paper we have considered some of 
the main aspects of the practical application of 
continued fraction expansions in scattering theory 
and in the calculation of response and correlation 
functions in statistical problems. 
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The different problems considered could not be 
represented directly in a continued fraction form, 
but b y using the efficient recursive algorithms 
developed in Sect. 3 they can be recast in the 
correct form. The most convenient method would 
allow the direct construction of the continued 
fraction coefficients since this b y passes the possible 
numerical instability in the usual method of 
moments. Recently , this has been possible for 
calculations of oscillator strength distributions in 
atoms [44] and for the calculation o f wave vector 
dependent diffusion coefficients derived f rom the 
Boltzmann equation [45]. 

In this paper we have also found suitable correc-
tion terms and bounds for a finite approximation of 
a continued fraction. The generalization to more 
complicated situations than those discussed in 

Sect. 5 with rigorous bounds on the physical 
functions is very desirable. Moreover, it would be 
interesting if continued fraction expansions could 
be established on more physical grounds. Further, 
the results derived in this paper challenge t o 
establish the mathematical and physical conditions 
under which the continued fractions or Pade-
approximants provide the correct analytic con-
tinuation. 
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