NON-MARKOVIAN EQUILIBRIUM DYNAMICS AND FLUCTUATION—DISSIPATION THEOREM ¥

H. GRABERT

Department of Physics, Temple University, Philadelphia, PA 19122, USA

and

P. HANGGI and P. TALKNER

Institut fiir Theoretische Physik, Universitit Stuttgart, Stuttgart, Germany

A macroscopic description for the thermal equilibrium dynamics of systems in terms of non-markovian processes is given

and the classical fluctuation—dissipation theorem is derived.

In recent years the description of fluctuations in
terms of stochastic processes has found wide applica-
tion. In principle any macroscopic law should be de-
rived from the microscopic equations for all degrees
of freedom. In practice, however, one often sets up
the macroscopic evolution laws in a phenomenological
way. Usually the irreversible macroscopic behaviour
which represents the global feature of the exact dy-
namics is described in terms of Markov processes [1—
3]. But there may exist situations in which a clear-
cut separation of the macroscopic time scale and the
microscopic time scale, given for instance by the aver-
age time between collisions, is not possible. For ex-
ample the motion of a particle in a fluid whose parti-
cle size lies between the macroscopic and atomic do-
mains is subject to memory effects. Then a satisfactory
description is possible in terms of non-markovian
stochastic processes for the coarse-grained macrody-
namics [4-6].

The fluctuations occurring in a system at equilib-
rium are related to the dissipation effects by the fluc-
tuation—dissipation theorem of the first kind [7—-11].
In special cases [7,8] this has been recognized on the
basis of solely macroscopic concepts and thermody-
namics a long time ago. The theorem has been derived
generally by explicit use of microscopic dynamics [9,
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10]. In terms of the linear response tensor x(7) and
the correlation matrix C(7) of equilibrium fluctua-
tions it can be written, for classical systems, in the
form [10,11].

x(r) = —0(r)B(d/dr)C(r) . (1)

Here B~1 denotes the temperature and 8(r) the unit
step function. It is worthwhile to investigate if the
same functional relationship can be derived on a mac-
roscopic level if the system undergoes a non-Markov
process [4—6]. Such an investigation is also desirable
because of van Kampen’s objection [12] to the micro-
scopic derivation of linear response theory.

The macroscopic dynamics of non-markovian sys-
tems generally depends on the preparation of the ini-
tial state [4,5] . An important class of initial states con-
tains those which are prepared by applying constant
extlernal fields F; to a system of a given temperature
g1

In the linear approximation (denoted by =) these
initial states have the form

p(ak) = pﬂ(ak)(l + 61;}'6“]) ? (2)

if the fields F; couple linearly to the macrovariables.
Here Pa(“k) is the thermal equilibrium distribution at
temperature $~1, and b4; = a; — {a;) 5 denotes the
deviation of the macrovariable g; from its thermal
equilibrium value (4;),.
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If the external fields are switched off at time £, the
initial distribution relaxes towards thermal equilibrium.
For all states in the class considered above this relaxa-
tion is governed by the same master equation [5]:

t
b= p() + [ Ay(t-)p(5)ds. 3)
fo

Note that the external fields F; have only been used to
construct,an appropriate class of initial states and that
the stochastic operators 2 gand A g are independent
of these fields.

It is clear that the equilibrium distribution r5 has
to be a stationary solution of eq. (3), hence

Qyp,=0, )
A,(Dpg=0. ()

Further the kernel GB(a, d', 1) of the Green’s function
Gﬁ(r) of eq. (3) defined by

G,(1=2,6 (T)+f Ay (T —8)Gy(s)ds,

(6)
G (0)=1,

coincides with the time-homogeneous conditional
probability py(a, 7la") of the stationary equilibrium
process [5,6].

Let us now study the linear response of the equi-
librium system to time-dependent external forces
Fj(¢)at times|t > £y. The effect of this perturbation
leads to additional terms in the master equation (3)
which now takes the form

t
pO=p(D)+ [ At-9)p(s)ds
to

(7

t
+ Q¥ Dp0) + [ A, 9)p(s)ds.
fo

£2eXY(¢) describes an instantaneous effect, linear in the
external forces, whereas A®Xt(¢, 5) generally is a com-
plicated nonlinear functional of the history of the ex-
ternal forces F]-(r) in the time interval s <1 <t. These
retardation effects are due to the non-markovian behav-
iour of the system.
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Splitting p (t) into
p()=ps+8p(0), (8)

we find from eq. (7) with egs. (4), (5):

t
sp()= [ Gy(t~9) [ne’“(s)p(s)
to

)
§
+ f A™Y(s, 'r)p('r)dr} ds
lo
where we have used the Green’s function (6) and
p(ty) =pg. (10)
In the linear approximation we put
¢
Q™ @) + [ A )p(s)ds
fo
(1)

t
= Q% (), + [ AP (6 )pyds,
fo

where A ! means the linearization of A®Xt with re-
spect to the forces F; (t) The right hand side of eq.
(11)is a linear functlonal of the past history of F 3]
and may be written as

t
ﬂ"’“(t)p‘i + f AT, 5)p,ds

ty

(12)
t
=4F@)+ [ Bt-9)Fs).
to

To determine A; and B; we consider the master equa-
tion (7) in the case of constant external forces F,(¢)
= F;. Then, in the linear approximation (11), the dis-
tribution (2) has to be a stationary solution of eq. (7).
This requirement leads to

A =— B 6a Bj(t) = —BAﬁ(t)pBBa]. . (13)

Inserting eq. (13) into eq. (12), we find from eq. (9)
in the linear approximation (11):



!
5p(1)= 8 [ F(5) {Gﬁ(r -9y
° (14)

t—s§
+ dTGB(t—s—T)Aﬁ(T)}(rSa].pB)ds.
0

From eq. (6) we obtain, for instance by Laplace trans-
form,

G,(1)=G,(NR,+ [ Gyr—s)A(s)ds, (15)
0

which combines with eq. (14) to

t
0(1) 2 = [ F6) 2 Gylt — 5)(6a,2,)ds. (16)
to

Hence, the linear deviation 8¢, (¢)) = fdaa; 8 p(¢) from
the thermal equilibrium value {g; )5 due to the exter-
nal forces F]-(t) reads:

t
5a (1)) = 8 [ F;(5) 2 fdaba, Gyt - $)(5ayp,)ds,(17)
fo

so that the response tensor emerges as

Xig(r) = ~0()8 = [aada, GyrXoa;p,) . (18)

Since the kernel of Gg coincides with the stationary
conditional probability, we immediately find eq. (1).
In frequency space eq. (1) takes the more familiar
form

Xjg (@) = FwB Gy (w), (19)

where x}c']- (w) = (1/21)x4(w) - X (-w)) is the dis-
sipative part of the response tensor.

We would like to emphasize that eq. (19) has been
derived without use of a detailed balance condition or
special choices of the transition probabilities, and in-
dependently of the magnitude of the fluctuations.
There is only one essential point. By applying con-
stant external fields F; to the equilibrium system we
prepare a certain class of nonequilibrium states. The
relaxation of these nonequilibrium states towards

equilibrium is governed by the same master equation
(3). This can be viewed as a version of Onsager’s re-
gression theorem [13] in the non-markovian case since
eq. (3) governs also the time evolution of equilibrium
correlation functions. However, in contrast to the re-
gression theorem for markovian systems, its non-
markovian version applies — even in the linear regime
— only to the above-mentioned class of initial states.
Now consider a steady nonequilibrium state.
There is always a certain class of initial states relaxing
towards this steady state according to the same master
equation that governs the time-evolution of the station-
ary correlation functions. If the linear effect of the ex-
ternal forces disturbs the steady state in such a way
that the new state belongs to this class, we obtain a
fluctuation—dissipation theorem even for nonequilib-
rium states. The importance of the appropriate cou-
pling of the external forces in this context has recent-
ly been pointed out by Graham [14] for markovian
systems. However, while the appropriate forces are
known for an equilibrium system (they couple linear-
ly to the macrovariables), they are not generally
known for non-equilibrium systems, and further in-
vestigation is needed.

Orie of us (H.G.) wishes to thank D. Forster who
read and commented on the manuscript.
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