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A macroscopic description for the thermal equilibrium dynamics of systems in terms ofnon-markovian processes is given
and the classical fluctuation—dissipation theorem is derived.

In recent years the description of fluctuations in 10]. In terms of the linear response tensor x(r) and
terms of stochastic processes has found wide applica- the correlation matrix C(r) of equilibrium fluctua-
tion. In principle any macroscopic law should be de- tions it can be written, for classical systems, in the
rived from the microscopic equations for all degrees form [10,11].
of freedom. In practice, however, one often sets up x(r)~—0(r)P(dIdr)C(r). (1)the macroscopic evolution laws in a phenomenological
way. Usually the irreversiblemacroscopic behaviour Here f31 denotes the temperature and 0(r) the unit
which represents the global feature of the exact dy- step function. It isworthwhile to investigate if the
namics is described in terms ofMarkov processes [1— same functional relationship can be derived on a mac-
3]. But theremay exist situations in which a clear- roscopic level if the system undergoes a non-Markov
cut separation of the macroscopic time scale and the process [4—6]- Such an investigation is also desirable
microscopic time scale, given for instance by the aver- because of van Kampen’s objection [12] to the micro-
age time between collisions, is not possible. For ex- scopic derivation of linear response theory.
ample the motion of a particle in a fluid whose parti- The macroscopic dynamics of non-markovian sys-
cle size lies between the macroscopic and atomic do- tems generally depends on the preparation of the mi-
mains is subject to memory effects. Then a satisfactory tial state [4,5] - An important class of initial states con-
description is possible in terms of non-markovian tains those which are prepared by applying constant
stochastic processes for the coarse-grained macrody- external fields F; toa system of a given temperature
namics [4—6]. 13—1.

The fluctuations occurring ina systemat equiib- In the linear approximation (denoted by =) these
rium are related to the dissipation effects by the fluc- initial states have the form
tuation—dissipation theorem of the first kind [7—11].
In special cases [7,8] this has been recognized on the ~‘~“k~=p~(ak)(l+ 13F;~a1), (2)
basis of solelymacroscopic concepts and thermody- if the fields F. couple linearly to the macrovariables.
namics a long time ago. The theoremhas been derived Here p (ak) i~the thermal equilibrium distribution at
generally by explicit use ofmicroscopic dynamics [9, tempe~aturej~1, and = a1 — (aj>p denotes the

deviation of the macrovariable a1 from its thermal
* Work supported by theDeutsche Forschungsgemeinschaft. equffibrium value (a1)p.
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If the external fields are switched off at time t0 the Splitting p (t) into
initial distribution relaxes towards thermal equilibrium.

p(t)p +5p(t) (8)For all states in the class considered above this relaxa- 13
tion is governed by the same master equation [51: we find from eq. (7) with eqs. (4), (5):

i~(t)=fl13p(t)+fA13(t—s)p(s)ds. (3) ~p(t)=fG13(t_s) tnext(s)p(s)

Note that the external fields F; have only been used to (9)
construct,an appropriate class of initial states and that + i ~ r) (r~dr ds
the stochastic operators fl13 and A13 are independent J ‘ /

toof these fields.
It is clear that the equilibrium distribution has where we have used the Green’s function (6) and

to be a stationary solution of eq. (3), hence —

p(t0)—p13. (10)
(4)

In the linear approximation we put
A13(t)p13=0. (5)

Further the kernel G13(a, a’, r) of thi Green’s function flext(t)P(t) +f ~ s)p(s)ds
G13(r)ofeq.(3)definedby to (11)

G13 (r)= ~G13 (r)+ f. A13(r — s)G13 (s)ds, flext(~ + fA~(t s)p13ds,

(6) to
G (0) = 1 whereA~tmeans the linearization of A~’~with re-

spect to the forcesF;(t). The rigM hand side of eq..
coincides with the time-homogeneous conditional (11) is a linear functional of the past history of F1(t)
probabilityp~(a,i-Ia’) of the stationary equilibrium and may be written as
process [5,6].

Let us now study the linear response of the equi- flext(t\ + ~ ~ d
librium system to time-dependent external forces ‘ ~ J L ‘ ‘~~‘~~13S

F; (t) at times t> t0. ,The effect of this perturbation to (12)
leads to additional terms in the master equation (3) t

which now takes the form =A1F,(t) + f B.(t — s)5(s).
~(t)= fl13p(t) + f A13(t — s)p(s)ds To determine A1 and we consider the masterequa-

0 (7) tion (7) in the case of constant external forcesF;(t)
~ Then, in the linear approximation (II), the dis-

+ fl~t(t)p(t)+ f Aext(t, s)p(s)ds. tribution (2) has to be a stationary solution of eq. (7).
This requirement leads to

flext(t) describes an instantaneous effect, linear in the A1 =— f3fl13p~6a1, B1(t) = —13A13(t)p136a1. (13)
external forces, whereas Aext(t, s) generally is a com-
plicated nonlinear functional of the history of the ex- Inserting eq. (13) into eq. (12), we find from eq. (9)
ternal forces F,(r) in the time interval s<r < t. These in the linear approximation (11):
retardation effects are due to the non-markovian behav-
iour of the system.
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equilibrium is governed by the same master equation
~p(t) ~ F1(s) (G13(t — s) fl13 (3). This can be viewed as a version of Onsager’s re-

gression theorem [131 in the non-markovian case since
tO (14) eq. (3) governs also the time evolution of equilibrium

correlation functions. However, in contrast to the re-
+ f drG13(t — s — r)A13(r))(6~~13)ds. gression theorem for markovian systems, its non-

markovian version applies — even in the linear regime
— only to the above-mentioned class of initial states.From eq. (6) we obtain, for instance by Laplace trans- Now consider a steady nonequilibrium state.

form,
There is always a certain class ofinitial states relaxing

r towards this steady state according to the same master
= G13(r)fl13 + f G13(r — s) A13(s)di, (15) equation that governs the time-evolution of the station-

0 ary correlation functions. If the linear effect of the ex-
ternal forces disturbs the steady state in such a way

which combines with eq. (14) to that the new state belongs to this class, we obtain a
fluctuation—dissipation theorem even for nonequiib.

~p(t) —13f F1(s) ~G13(t— s)(~a1p13)ds. (16) rium states. The importance of the appropriate cou-
pling of the external forces in this context has recent-
ly been pointed out by Graham [14] for markovian

Hence, the linear deviation ~(ak(t)) = fdaak~p(t)from systems. However, while the appropriate forces are
the thermal equilibrium value (ak)13 due to the exter- known for an equilibrium system (they couple linear-
nal forces F(t) reads: ly to the macrovariables), they are not generally

known for non-equilibrium systems, and further in-
~(a~(r)) —i3f F;(s) ~fda~akG13(t — s)(6o~.p13)di, (17) vestigation is needed.
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