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A stochastic approach in terms of master equations with linear and non-
linear transition rates for the dynamics of the migration of ligands in
biomolecules is presented. Coupling to a bath with constant ligand
concentration as well as multiple occupancies by ligands of certain
sites inside the biomolecule are allowed. Explicit expressions for the
fraction of biomolecules that have not bound a ligand at time t under
experimental constraints X are found by solving the generating function of
the probability obeying the master equation, For highly non-linear systems
a computer oriented procedure is presented. The validity of a description
with a system of coupled linear deterministic equations is discussed.
Relevance to experimental data and applications to other biophysical
systems are outlined.

1. Introduction
Most biological processes are stochastic because fluctuations are an inherent
consequence of the discrete nature of matter. An interesting problem is then
the influence of fluctuations in the description of biological systems. When a
large number of particles is involved, the values of the macroscopic quantities
will vary closely around their mean values. But the stochastic aspects play a
crucial role when the chosen macroscopic variables are subject to fluctuations
comparable to their mean values. Even in situations where the fluctuations
are small they may trigger a transition to a new macroscopic state, as for
instance, in allosteric enzymes. In the present paper we develop the theoretical
background for the dynamics of biomolecules with emphasis on the effect
of fluctuations rather than confining ourselves to a specific biological system.

Much of our knowledge about allosteric interactions and relationships
between structure and function can be derived from studies with proteins.
Particularly, heme proteins constitute a large group of biomolecules where
the effect of fluctuations can be advantageously investigated. These proteins
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play primary roles in oxygen storage (myoglobin) and transport (hemo-
globin), electron transfer (cytochromes) and detoxification of poisonous
chemicals (cytochrome P450). The migration of small ligands in biomolecules
studied with flash photolysis (Austin, Beeson, Eisenstein, Frauenfelder &
Gunsalus, 1975; Alberding et al., 1978; Sharrock & Yonetani, 1976; Antonini
& Brunori, 1971), stopped flow  and temperature jump techniques (Gibson,
1956) or Mossbauer experiments (Lang, 1970; Spartalin, Lang & Yonetani,
1976) and infrared absorption (Alben & Caughey, 1968) represents an
important step in understanding biomolecular reactions. The discovery that
migration of ligands to the active site in heme proteins is governed by multiple
barriers (Austin et al., 1975; Alberding et al., 1978) leads to interesting
problems in reaction kinetics. For instance, the case of CO-migration in
myoglobin with a small ligand concentration in the solvent S can be ade-
quately described in terms of linear rate equations by using a small number
of intermediate sequential potential wells. But experimental refinements have
revealed additional complexity: At a given intermediate well the biomolecule
may exist in many conformational states (Austin et al., 1975); transitions of
ligands may occur between any two wells creating alternate competitive
pathways; anomalous non-linear ligand migration at the protein-solvent
interface at higher ligand concentrations; and a co-operativity triggered by
molecular fluctuations preceding ligand transitions. In particular, in the case
of CO-migration in myoglobin at high [CO]-ligand concentrations in the
solvent (Alberding, Frauenfelder & Hanggi, 1978) binding of CO at the iron
is covalent. The first ligand that occupies the active site blocks further
transitions. The other wells, however, can very likely accept more than one
ligand. Then multiple occupancies and blocking lead to large non-linear
fluctuations. These features call for a generalization of the treatment of
migration of ligands that accounts also for non-linear fluctuations.

In this paper we develop a unified theory for the migration of ligands to the
active site over a wide range of physical parameters h (temperature, hydro-
static pressure, ligand concentration in the solvent, external fields, etc.) based
on the theory of stochastic processes. This approach describes naturally the
effect of fluctuations in quite general situations. In many cases, the stochastic
method is superior to some equivalent non-linear deterministic approach
because the former yields the unambiguous non-linear evolution equations
and makes possible the study of noise properties, correlation functions as
well as initial (ensemble)-preparation effects. We restrict the investigation to
biomolecules with only one active site for the particular ligand under con-
sideration. The theoretical treatment can be generalized for more complicated
situations by a straightforward adaptation of the ideas presented here. The
stochastic approach has proved to be very fruitful for the description of
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co-operative phenomena in physics (Haken, 1975; Hanggi & Thomas, 1978)
and chemistry (Nitzan, Ortoleva, Deutch & Ross, 1974; Gardiner, McNeil,
Walls, Matheson, 1976).

For the following we assume that the migration process is governed by
intermediate potential barriers. Evidence supporting this assumption is
provided by experimental work (Austin et al., 1975; Alberding er al., 1978)
and Monte Carlo studies (Case & Karpius, 1977). The different wells L,
L == 1, . . .) L,,,, enclosed by the potential barriers represent locally stable
sites for the ligand within the biomolecule at certain reaction co-ordinates.
In addition, the biomolecule may change in a given well from one confor-
mational state to another before the iigand undergoes a transition into a
different well (conformational relaxation). We will use the notation, L’, i = 1
. . .I NAti for the different conformational sites at a given well L characterized
by certain reaction co-ordinates.7 (Austin et al., 1975; Weber, 1972). The
detailed kinetics can then be described using three different kinds of stationary
transition probabilities per unit time which in principle can all be determined
by experimental techniques :

r (K’I L’; A) (14

R (L’IL’; X) (lb)

r&!(Li; 5) (14

L4L’; A> W

Equation [l(a)] characterizes a transition from site L’ in well L to site Kj in
well K, L # K, (ligand transition) without conformational change, equation
[l(b)] stands for a conformational relaxation transition (L’ -+ Lj) within the
biomolecule where the ligands remain at the given reaction co-ordinate or well
but the biomolecule changes the conformation (conformational transitions).
The rates in equations [l(c)-l(d)] d enote transitions from the states which
are in contact with a bath (S) of constant ligand concentration, e.g. corres-
ponding to a surrounding solvent. The bath tends to keep constant the number
n;(t) of biomolecules with ligands occupying at time f well L at confor-
mational state L’. (See section 3.) The variables n;(t) do not behave in a strictly
deterministic way, but display statistical fluctuations which always reflect a
lack of knowledge about the exact state of the system due to the impossibility
of keeping track of the huge number of all microscopic variables in the
system. Because of the various blocking properties of the different wells, the

t In general, the “site” L' may correspond to a whole set of  sites with a more or less
identical conformational relaxation behavior.
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transition rates in equations [l(a)-l(d)] will in general depend in a non-
linear way on the stochastic variables nL(t, 1).

The paper is organized as follows. In section 2 we first deal with the
limiting case (“low  concentration limit”) in which the ligand concentration in
the solvent is so small that at any time t only one ligand sits somewhere
inside the biomolecule (no multiple occupancy of different wells). The general
case with possible multiple occupancies of sites, L’, with ligands and blocking
will then be treated in section 3. Diffusion effects of ligands in the solvent
and cage effects may also play an important role. In both cases we end up
with an analytical expression for the rebinding rate Nexp(t, A), the fraction
of biomolecules that have not bound a ligand at time t under experimental
constraints h. The analytical solutions for iV,,,(t, L) are made possible by
using a coarse-grained description for the migration process of the ligands,
i.e., a description intermediate between a full microscopic approach with a
huge number of degrees of freedom and a macroscopic theory which directly
describes the (unknown-) non-linear binding rate N,,,(t, 1). The results and
other biological applications are discussed in section 4.

Some important and useful properties of the generating function are
summarized in Appendix A. In Appendix B we give the detailed mathematical
development of the solution of the probability function describing the binding
process. Appendix C deals with the solution of time dependent mean values,
e.g. N,,,(t, h), in highly non-linear systems via continued fraction expansions.
A convenient numerical, computer oriented procedure is presented.

2. Stochastic Model for Migration of Ligands in the
Low  Concentration Limit

In the case of a small or even vanishing number of ligands in the solvent
we may assume that only one ligand is inside each biomolecule or inside its
immediate neighborhood [L”] at any time. All the single biomolecule-
structures with no ligand are not considered as members of the statistical
ensemble for the ligand migration process and the members with more than
one ligand are of vanishing influence. Transitions of ligands from state [L”],
(cage), into other parts of the solvent (diffusion) are assumed to be of minor
importance. The site [L”] can then be treated in terms of an additional
stochastic variable n,=(t, A). In this approximation, only one ligand is occupy-
ing a certain state L’ in each biomolecule at any time t. In such a “closed
system” the number of ligands in a certain site L’ is either 1 or 0. We may
assume that the transitions in a given biomolecule occur independently of the
transitions in other biomolecules (non-interacting biomolecules). For the sake
of simplicity, we may also assume that ligand-transitions in biomolecules
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occur only between neighboring wells L:

L'+ (L * 1)‘. (2)
In the following we introduce a one-dimensional notation. For the

stochastic variable ni(t, A), having at time t and experimental constraints 5,
& biomolecules in well L at conformational state i, we define

with
XK(f, v = ngr,v

K = ‘it N,,,(I) + i.
I=1

(3)

(4)

K will take on values from 1 to N.
The transition probabilities per unit time in equations [l(a)--l(d)] are re-

defined in a similar way. The final binding site will be denoted in the following
by [x,(t, %)]. We use the notation x(t, 2,) to denote the stochastic vector
process, for the stochastic variables at time t forming the state space and for
an actual point in the configuration space. The specific interpretation of
x(t) will be understood from the context.

Since the behavior of different biomolecules is independent and the
configuration changes only by single jumps of the ligand we may assume
stationary linear first-order transition rates (McQuarrie, 1968)

( . . .) XI, . . ..XK -1, . . .) roacl~r; I) ( -, ..*,XI -1, . . .,XK, . . .) (5)

WKJG v = xr YKr@)*
Neglecting fluctuations, the kinetic deterministic rate equations for the
variables x1(t) read

dx, N

dt= - A YKI XI + c YIK XKR, 1 = 1 . . . N, (6)
KZI

x=1
K#I

where the total number of all ligands is kept constant in the biological system
under consideration (closed system), i.e.

jl XI (6 V = No. (7)
By use of the matrix h(X)

&A~) = YIJ 049 1 z J (8)

Arr w = - jl YJI@)9 (9)
JTI

equation (6) reads in matrix form
dx(t, JJ - = n (h) x (t, I.).

dt (10)
The structure of the A-matrix for Lmm = 4 is shown in Fig. 1.
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Wells

FIG. 1. Structure of  the n-matrix, for L,,, = 4. The R-submatrices describe con-
formational relaxation, the r-submatrices the ligand-transitions to neighboring wells.

Note that A,,(L) for Z # Jis a reaction constant which for ligand-transitions
is given usually in terms of a phenomenological Arrhenius equation, a tunnel
rate expression, a diffusion controlled expression, or various combinations of
all. Assuming the multi-dimensional process x(t) = [xl(t), . . . , x,,(t)] is a
Markov process (Hanggi & Thomas, 1978, Haken, 1975), the master equa-
tion, describing the rate of change of the probability p (x, I; h) that the system
at time t has the configuration x in state space, reads

I=1 K=l (11)
K#I

[(x,+l)p(xl+l,x,-l,x’,t;h)-x,p(x,t;h)].

Herep(x,+l,x,-l,x’,t; L)standsforp(x,, . . . . x,+1, . . . . ~~-1, . . . .
t; L). The experimental data can then be evaluated if the time development of
the probabilityp(x, t; L) is known. This master equation can be solved for an
arbitrary initial probability, p(x, o), using the technique of the generating
function G(y,, . . . , yN, t; I.)

yielding
a x,+ ... +x..J

x,! p(xl, . . ., y,, t; A) = -- G(Y, t; A) 1 Wb)
I=1 ayfl . . . ayx,N all yJ = 0

Using some useful and important properties of the generating function G,
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reviewed in Appendix A, the following linear first order differential equation
for G is obtained

For a given initial probability p(x, o) we obtain with the eigenvalues, {pK},
and the eigenvectors, {bR}, of the matrix

C A,, &I = PK bm (14)

and the co-factors, BK1, of the eigenvector matrix b for the solution of
G(y, t; I) (see end of Appendix B)

G(y,t,V = C . . . ~P(x,, . . ..xN.o)

(” x1 = N,
I 1

116 /I denotes the determinant of b.
For the probability p(‘)(x,, I; h) of having x1 ligands bound at time t and

experimental constraints 1 we find by contracting on the stochastic variable

The experimentally monitored function IV&t; a), the fraction of ligands
which have not bound at time 1 to the binding site, is then given by

Nex& V = (No- (XI (4 V>>/N,, (17)
with

(x1(4 A>> = & Xl P(%? 5; 5).

For the interesting case of an initial multinomial probability

W-9

P,(O)“’
P(X> 0) = No! ,fil (XI)I (19)

with
P,(O) = <xXo,4>/Nm v-9

it is known (Saito, 1974) that the probability p(x, t; L) at time t will remain
of the multinomial form

N PI(t 5) x1p(x, t; A) = N,! n ---.
I=1 (x3!

(21)
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The occupation probabilities of the sites, p(t, L) = {pr, . . , pN; I, a}, are
obtained by the solution of

-$ PC4 5) = A (1) P 0, A) (22)

with the initial condition in equation (20). It is in this case, that the mean
values are simply given by

<x,(4 A)) = No Pr (6 519 (23)
and coincide exactly for all times t with the values obtained by solving the
deterministic equations equation (6) or (10) using the initial conditions in
equation (20). Furthermore, in the special case of linear transition proba-
bilities in equation (5), the mean values calculated with the master equation
[equation (1 l)] f or any initial probability, are identical with the deterministic
values given in equations (6) or (10). This follows by use of an appropriate
splitting up of the double sum in equation (11). Hence, two dzjk~nt initial
probabilities with the same initial mean values yield the same mean values at
any time t (but different higher moments).

With equation (23) the fraction of ligands N&t, A) that have not bound at
time t is in this special case given by

Kx& J-1 = 1 -pr (t, a>. (24)
For the variance 02(t) of a stochastic variable xr(t, k) we obtain (see Appendix
4

4 0, v = No PI (4 w -PI (4 VI (25)
and for the covariance a&t, 5) of x,(t, k) and xK(t, 5) always the semi-
negative result

a,, 0, JJ = - No ~r(t,V PRO, WI Z K. (26)
Finally we add some comments relating to the choice of the initial proba-

bility p (x, o; A). In situations with a low  ligand concentration in the solvent,
it is known from photolysis experiments (Austin, et al., 1975, Alberding et al.,
1978) that only the conformational states in well L = 2 are occupied at
time t = O+ after the flash. Using the initial occupation probability gc2’(i, h),
that site 2’ is occupied at t = 0” we get for the initial condition of equation
(22)

pr(O+) = {iC2)(i,k),ifl = Ni&+i;i = 1, . . . . Max N(2) (27)
with the normalization

,il  pr (0+) = Ny$:2’ gc2) (i, A) = 1. (28)

The probability gt2’ can be determined by fitting to the experimentally
monitored function N&t, X) (Austin et al., 1975; Alberding et al., 1978).
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It is not difficult to generalize the theory for transitions between non-
neighboring wells L of the reaction paths. We stress again, that so far a
multiple occupation of a site L’ has not been considered. Hence it has been
possible to consider each random variable x,(t, 5) as a certain “chemical
species” (McQuarrie, 1968; Saito, 1974) or a “color” where x1(?, X.) has the
meaning of the number of biomolecules that are found with “color I” at time
t and constraints L This enables us to treat the full dynamics of migration of
ligands in biomolecules in terms of ligand-transitions and conformational
relaxation in an analytical closed form equation (15) whatever the initial
probability p(x, o) is.

Using the experimental binding data (Austin et al., 1975; Alberding et al.,
1978; Sharrock & Yonetani, 1976) the approach given here allows for the
detailed study of the mechanisms which cause the conformational states
inside the biomolecule. Depending on the experimental constraints, h, the
ligand may shuttle many times among the internal conformational states
(L’) in the well L before undergoing a ligand transition. The different time
scales introduced in these processes as well as the dependence on the initial
preparation procedures and experimental constraints, L, are contained in
the detailed structure of the transition matrix, n equations (8)-(g) and the
experimentally monitored expression N&t, L) given by equations (17), (18),
(24). The formulas in equations (25)-(26) make possible the investigation of
noise properties in those processes.

3. Stochastic Theory for Migration of Ligands
in a Biomolecule

In the general case of biomolecular migration processes of ligands in
contact with a solvent (bath) some or all of the ligands may migrate into the
solvent. Here, we consider situations where the number Ls of ligands in the
solvent S is much larger than the number L, of ligands within all biomolecules :
L,, % LB. We employ, as before, a homogenenous state-space description for
the problem, i.e. the reaction times for the whole rebinding process are
assumed to be much greater than the equilibration times for elastic collision
processes among the ligand molecules in the solvent (vanishing ligand-
diffusion effects in the solvent). The solvent itself contains a concentration of
ligands which is specified by one of the parameter of the set L characterizing
the experimental constraints. All ligands in the solvent then compete for the
vacant binding site [xi]. Because of the huge number of ligands in the solvent
the concentration of ligands therein can be considered to be constant at any
time t (constant bath concentration C,). Each biomolecule is then in contact
with the bath and additional transitions to those considered in section 2
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from and into the solvent may occur. [See equations (Ic)-( Id).] The number
of all ligands inside a single biomolecule is no longer equal to I so that we
deal with possible multiple occupancies,

For completeness, we mention that diffusion effects could be described
by dividing the state space into cells and considering additional transitions
from one cell i into an adjacent cell j with probability d. In the case of a
cubic cell system with cell length I the deterministic equations for the concen-
tration of ligands in cell [i], c(i, t; h), would have the following structure in
the limit of a continuous variable, r, for the cell index (no fluctuation re-
normalization effects) :

with
+ DV2(c(r, t; IL)), (29)

D = l’d. (30)
Here D corresponds to Fick’s diffusion coefficient and the {jj) denote the
rates in cell i G r into and from the cell i  to the states [x1] inside the bio-
molecules in cell r.

Treating the solvent as a bath, again we may assume that transitions in one
biomolecule do not influence the transitions in other biomolecules. Then the
migration process of the ligands can be described by use of the following set
of stochastic variables: We consider a single biomolecule and denote by
X&, A), K= 1, . . . N the number of ligands at site K at time t under
constraints 1. Note that in contrast to the case in section 2, x,(t, A) does
pertain to a single biomolecule. Hence, the effect of fluctuations plays a
major role. Owing to a multiple occupation and blocking of site K, the
transition probabilities will in general be non-linear. Blocking is especially
important for the binding site which completely stops further transitions when
x1(& L) = 1. As in the previous treatment we assume that the occupation
changes only by single jumps of ligands. We use then for the stationary non-
linear transition probabilities the scaling

( . . . ) XI, . . . ) XK--1, ,. .)rK~(xK’xz;y(. ..,XI--1, . * .,XK, . ..)
L&K~~I; v = W&K3 A)* (31)

The additional transitions from and into the bath with a constant ligand
concentration C, are assumed to depend only on the occupation of site [x1]
and the bath concentration Cs in the form

rs, (x1; v = XI Ysr (V (32)

l-1, (XI> v = cs Yis (XI, A) (33)



                                    

and if yis can be considered to be independent of x, we obtain
I-,, ($9 u = G Yrs 04 = PI (0

With the matrix M
Mm = YKI (XK, v K # 1,

MII = - YSI (V - $, YKI (XK; A),
K#I
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(34)

(35)

(36)

the non-linear deterministic equations for the time evolution of the variables
x read

dx (0 - = Mx(t)+j3,
dt (374

with
B = (81, . * .,BN)- W’b)

The master equation with the rates in equations (31)-(34) has the same struc-
ture as in section 2 with the sums over I and K extended to include the bath
transitions. If the bath couples to one site R only and if the coupling of this
site is much stronger than to other sites such that

YKS ySK+ oo,yKs-+ ccl;- = constant = p,
YSR

(38)

then the average occupation of this site is kept constant at the value
h (t>> = PG (39)

If in addition, (I) is large enough so that fluctuations may be neglected,
the site K itself may serve as a bath and we have one less site. The blocking of
the binding state [l] (x1 = 0 or 1) is taken into account by

rlK(&; v = XK Y&l; a% - LO. (40)
In equation (40) 6 denotes the usual Kronecker function. The details of the
migration process of ligands is then completely given by the solution of the
master equation with the non-linear rates. We are interested in the probability
p(l)(x, = 0, t; 1) that the active site, [I], is not occupied with a ligand at time t

p(l)(x, = 0, t; L) = c . . . x p(x, = 0, x2, . . ., XN, t; I), t > 0 (41)
x2

=Y- (x1(& A)), (42)
which for non-interacting biomolecules is identical with the experimentally
monitored function N,,,(t, h), the fraction of biomolecules that have not
bound a ligand at time t. An analytical solution of the master equation for the
non-linear vector process x(t, A) is in most cases not available. There may not
even be a tractable numerical solution. However, the form of equation (42)
forces us to settle for a numerical solution of the mean value (xl(f, 5)) in
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quite general situations. This is attained by using an analytical continuation
of the short time behavior of the mean value in equation (42) (Taylor ex-
pansion in t) by means of a continuedfraction solution of the high frequency
expansion for the Fourier-transform x,(w, I) of (x,(t, I)) (Hanggi &
Thomas, 1978 ; Hanggi, 1977) :

Xl(~, A> = Cl
-iw+C,

Cl c2 G=-------
-io+ 1+ -io+ .‘I (43)

The continued fraction coefficients {C,} can be calculated via a recursive
scheme if the operator in the master equation and the initial probability
p(x, 0) are known. The details of this procedure are sketched in Appendix C.

An analytical solution is available if we can neglect the non-linear effects
in all except the binding site [x,], i.e., if:

(i) K # 1: r,, (x,1x1; L) = xr y&J, x1 = 0, 1, . . ., 0D (44)
(ii) rlr (xlIxr; 5) = x1 Y~XW~,-~,~. (45)

Assuming further a complete trap property for the binding site [x1]
(absorbing state) we have

(iii) y&) = yKr (x1, A) = 0; K = 2, . . . , N. (W
We also assume no direct coupling of the solvent to the binding site, i.e.

(iv) &(L) = 0. (47)
The Markovian master equation for the probability p(x, t; A) reads then
explicitly :

at = ,T2 K~2YKr(1L)(Xr+1)P(Xr+lrXK--1,X’, tiJ.1
K+I

+ 5 Ysr(n)(Xr+l)P(xr+l,x’, cv
I=2

f $ BI @Mx,- 1; x’, t; A)
I=2

- Ig2 Kt2YKI @) xI Ax, t; h, - c YSI @h dx, z; R,
I=2

K+I

+ r~2Y11(~~(x,+1)6nl-1,0~x,+l,r,-l,x’,t;~~
- ,g2 YlXVX, %, 0 Pk t; A>. W)
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In order to solve this master equation we use the generating function which
obeys the following evolution equation derived from equation (48) (see
Appendix A)

R#I
G(Y, t; k>+ 5 & (YK- ~)G(Y, t, M f c YSK@) (1 -YK) - jjy---

K=2 K=2 K

N

-x1 8x1,0 P(X, t; VI j-J YIX’
*=l

Comparison of equation (12) and equation (42) shows that we are interested
in the case where y, = 0 and y, = . . = yN = 1:

Nexp(t, I+) = G(0, 1, . . . 1, t; k) = p(l) (x1 = 0, t, J.). (50)

By use of the eigenvectors br = (brl, . . . &,,), I = 1 . . . N, with eigenvalues
p1 of the matrix M defined with the constant elements y&k) and the co-
factor matrix B of the matrix of eigenvectors b, the explicit solution for G in
equation (50) with an initial probability p(x, 0) reads (for the detailed solution
see Appendix B)

N&, L) = G(0, 1, . . . ht;U = exp

For the initial probability p(x, O+) we may assume for most experimental
situations an equilibrium distribution given by a multi-Poissonian prob-
ability which corresponds for the open system to the grand-canonial
probability. For example, in flash photolysis experiments we have after a
photoflash x1 # 1, i.e.

PC& 0+1 = Ax, o+)(l -h,, 1). (52)
In situations where the equilibrium occupations in the sites I > 1 are high,
the equilibrium distribution will be disturbed only slightly by the initial
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preparation procedure (e.g. the flashed-off ligand from the binding site). So
we obtain

~(7 O+) = (1 -b,, A ,III, -(x3’.- ev -MO)). (53)

with the initial moments given for the situation in equations (44)-(47):

‘%o)) = - ; (Mr)-jK BK; I = 2, . . ., N.
K=2

M’ is the matrix M, defined with constant transition rates Y1x, with the first
row  and column deleted and MI, defined with ylr = 0. At an arbitrary time
t the probabilityp(x, t; A) will now  not remain of the multi-Poissonian form,
because of the non-linearity in the transition rates rlK [equation (45)].
Summation over x2 . . . x, in equation (51) yields for N&t, 1) the simple
result

Nexp (4 AL) = exp - (x1* (4 5)) (55)
where (Appendix B)

<xl*(o)) = 0 (56)

(57)
and

lim (x1* (t, A)) = 03. (58)t++m
The present theory allows us to calculate the macroscopic observable
N&t, h) from which we can extract characteristic features of the internal
mechanisms such as alternate pathways, restrictions on occupation numbers
or volume available in different wells, function of conformational inter-
mediates, or the role of the surrounding solvent. In particular, the simplified
model with the assumptions in equations (44)-(47) explains the features of the
experimental data of carbon monoxide migration in myoglobin over large
ranges of [CO]-ligand concentrations in the solvent, temperature and time
(Alberding, Frauenfelder & Hanggi, 1978). In systems more complex than
myoglobin multiple occupancies may occur even under biological conditions.
For CO-migration to cytochrome-a, of cytochrome oxidase, for instance,
Sharrock & Yonetani (1977) have found experimental evidence for a carbon
monoxide reservoir that connects to an intermediate well and is occupied by
many CO-molecules. The characteristic dynamics for this system can be
treated by a straightforward adaptation of the methods presented here.
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4. Summary and Conclusions

In this paper we have given a complete description of the kinetics of the
migration process of ligands in biomolecules under genera1 experimental
situations. Previously, the problem has been studied by solving a set of
linear coupled ordinary differential equations (Austin et al., 1975; Alberding
eb al., 1978). This traditional method of analysis is based upon a deterministic
formulation of ligand migration in which reaction constants are viewed as
“reaction rates” and the various species concentrations are treated as con-
tinuous single-valued functions of time. Although this deterministic formula-
tion is adequate in many cases (see e.g. section 2) there are experimental
situations with non-linear transition rates, blocking effects, non-linear
cage-solvent effects, history and preparational dependent conformational
relaxation, where the non-linear fluctuations play a major role! The influence
of fluctuations is also indispensable in noise studies. Experiments under
extreme experimental constraints (e.g., high ligand concentrations), to which
the present paper is mainly addressed, appear at tist sight to have little direct
bearing on biological processes. Such experiments, however, help elucidate
the internal dynamic features and functions in complex biomolecular systems.

An approach that is more broadly applicable than a deterministic formu-
lation is a stochastic formulation in terms of master equations where reaction
constants are not viewed as “reaction rates” but as “reaction probabilities
per unit time”. From a physical point of view, the stochastic formulation is
superior to the deterministic formulation: the stochastic approach is always
valid whenever the deterministic approach is valid and is still  valid when the
deterministic approach is not. The former takes account of fluctuations and
tiime dependent correlations. The stochastic approach, based on a linear
evolution equationfor theprobabilityp(x, t) (see in this context also Appendix
C), enables us to extract uniquely defined fluctuation renormalized mean
value equations, i.e., non-linear renormalized deterministic equations in the
s’ense that we have in equation (37)

<MCxWl) Z MCW)>l- ! 59)
In particular, no apologies need be made for the fluctuations. These fluctua-
tions are really present and give rise to macroscopically observable effects in
appropriate situations (section 3). In those cases in which fluctuations turn
out to be unimportant, that fact too will emerge quite naturally from the
formalism presented here. Further, a set of non-linear deterministic equations
is often harder to solve than the stochastic properties based on the linear
structure of the master equation. (Appendix C.)

Because the non-linear biophysical systems are finite in the sense that only
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a small number Q of ligands can occupy a certain state (blocking) the usual
expansion of the master equation with highly non-linear transition rates in
terms of an inverse system size, Q-‘, as a smallness parameter cannot be
used here (Kubo, Matsuo & Kitahara, 1973). This procedure could be
applied if only one stochastic variable, the number y(t, L) of biomolecules
not rebound at time t, would be considered; but on this macroscopic coarse
grained level the transition probabilities per unit time ~(JT  --f y’, t) are com-
pletely unknown.

The theory given here is also applicable to other problems in biophysics
such as the dynamic behavior of cycling of cross bridges in a muscle (Hill,
1974), detailed studies in nerve membranes (Hill & Chen, 1972; Fishman,
1973) and neuron networks (Wilson & Cowan, 1972). In these problems the
stochastic variables denote the number of cells in a given activated state at
time t and experimental constraints A.. Enzyme kinetics (Heyde & Heyde,
1971; Edelstein, 1970; Goel & Richter-Dyn, 1974) and enzyme-assisted
membrane transport, where the ligand-membrane (enzyme) complex may
exist in several distinct states as intermediates, can also be treated by carrying
through the ideas presented in this paper. Other applications are the cell
development in a tumor, the growth of vital plaques and kinetic proof reading
in biosynthetic systems (Hopfield, 1974). Even brain models should fit, to a
certain extent, with the formalisms developed here.
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APPENDIX A

Properties of the Generating Function

From the definition of the generating function G in equation (12) we obtain
for the rate of change

Further we have for

YiG=~.--~P(xl -..,Xi-l,...,XN,t)j~lY;l (A24

YdaG/aYJ = C * * . z 3 Ptxt) jfil Yix’ WV

cYG/~JJ, = C . . . C(Xi+I~~Xl, . . .) Xii-l, . . .y XN, t)jfil yj” WC)
XI XN

yielding

Here we used the fact that the probability p(x,, . . . , xN, t:) is assumed to
satisfy the normalization condition

G(l, . . . . 1, 6 = ; *. * &p(xl~ . .Y xN, t> = l* (A41
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From the definition in equation (Al) it follows that
8” WY, f)/a$la~ yj = I = <Xi(t) [Xi(t)- 11 * . . [Xi(t) - n + l]),

or for the moments
645)

anIn WY, fYtalnYi)“ld~ y, = i = <xiYO>. L46)
In particular we obtain for the variance bii(t) of the stochastic variable x,(t)

aii(t) = ([X~(t)-(X~(t))]2) = a2G/ay~ + a~:. - all y, = 1 G47)
I

and the covariance aij(t), i # j:
Oi jCt> = <Cxi(t>-(xitt>>l Cxj(t)-<xj(t)>l> =

a2G aG aG-_--
?kaY j aYi ayj I all  yn = 1. W-9

APPENDIX B
Solntion of equation (49) and equation (13)

With help of the conditional probability R (x tlz0) of the stochastic process
x(t) which is just the solution of the master equation with the initial condition

Pb, 0) = W-z), 031)
we obtain for the generation function, using a general initial probability
Ph 0)

WY, 0 = ; PW fi yixi
i=l

= ;F R (+o>P(z, 0) fi yixi
i=l

= 1 Hz, 0) GJ (Y, t, 9. 032)
Z

Here we have defined G’(t), which is just the generating function solution of
equation (49) for the initial probability given in equation (Bl) yielding

GJ (J’,O;Z) = fi yizi- @3)i=l
Due to the blocking property of the binding well, we have:

P(Zi > Lz29 . . .,+,o+) = 0, @4)
giving

G(Y,O = i. 1 . . . c P(ZI,ZZ, . . . . zN,O+)GJ(y,t,zl ,..., zN). (B5)
z2 ZN
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Finally we are only interested in G,(y, = 0, yt, . . . , yN, I; z). Setting y1 = 0
we obtain from equation (49) a partial linear first order differential equation
for Gz(y, t; z):

+ i Bi (yi-1) Gf - iE2 YliYi%!
i=2 I

with

G,d(y,O;Z) = fi 1 * yiz*8,-,,o.
i=2

036)

(B7)

IJsing the properties of the binding site; i.e.

Bl = 0,
Yil = O,
YSl = 09 (BfQ

and yii = - Mii (see equation (36) for M defined with constants Yik) it is more
convenient from a technical point of view  to write equation (B6) in the
compressed form

(B9)

considering yj= r as a parameter set equal to zero. We have also introduced the
index j = 0 for the bath (II) and y, z 1.

The solution of equation (B9) is obtained by the method of characteristics
(see e.g. Miller, 1941; Kamke, 1959; Gans, 1960) considering Gf analytical in y
and finahy setting yt = 0, y2 = . . . = y, = I.

The set of simultaneous ordinary differential equations to equation (B9)
reads

dt-=
1 - dYil $ YjiYj = d In Gt/ t Bi(yi- 1). @lo)

i=O i=l....,N i=l

Since

dyi = - dt. i yjiyji  = l,...,N, (f-W
j=O

we can choose sets of multipliers b,, fulfilling

0312)
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yielding

(B13)

Hence, we obtain with equation (B12) and the property

yoi= - ~ yji:

j=l

PK itl &dYJ i$ bkt j$o YjiYj = d In j$l bjk(Yj-1). (B14)

Equation (B13) can now  be integrated immediately giving

zk(t) = pkf+h i b,,(y,-1)k = 1,. . .,N (B15)
j=l

J(t) = III Gt-t- /lb/-’ t Bj; i@j eXp [lk(t)-&kf]r 0316)
j=l

with Ilbllmeaning the determinant of the matrix of eigenvectors b, = (bkl, . . . ,
bkN) of M and Bki the co-factor element defined by

b
-’ = lbll

d- BT. (B17)

I’ ”BT denotes the transpose of B.
The solution of equation (B9) can be written as

G: = ICI (I,, . . .,ZN,J), (BW
where the functional relationship + between the integrals Zk and J is deter-
mined by the initial condition equation (B7) and remains independent of
time. Solving equation (B15) for vj we obtain for Gf(y, 0; z)

Because of the absorbing property of the binding well [x,], (yI1 = 0), the
matrix M has a vanishing eigenvalue /*r = 0. Eliminating Ik, we have there-
fore from equation (B16) for Gi(y, t; z) the final result:
Gz(y, t ; z) = exp

0320)
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Note that all the eigenvalues pk of M have a real part Re per I 0. Moreover,
pure imaginary eigenvalues cannot exist. This is a consequence of the theorems
of Gerschgorin (Gerschgorin, 1931; Hanggi & Thomas, 1978) applied to the
matrix M. Using equation (B5) we finally get for G(0, 1 . . . 1; r)
G(O,l,... 1; t) = exp

The solution for the generating function in equation (13) is obtained from
equation (B20) with ysr = fir = 0; I = 1, . . . , N. Then the structure of the
matrix M reduces to that of the stochastic matrix A in equations (8)-(9). From
equation (B17) we obtain

C CbkjB Ir’ = Ilbll* @W
j k

Interchanging order of summation and using the properties of A as a
stochastic matrix (Hanggi & Thomas, 1978):

T bki = 0, if& f 0, (~23)

we obtain from equation (B20) for the solution of equation (13) with equation
(B2) :

G(y,t;W = c . . &G,, . . ., x,,O)
.111 xiv

(c
xI = N,

I 1

(~24)

APPENDIX C

Continued Fraction Expansion for Time Dependent
Mean Values in Non-linear Systems

If we deal with a master equation (in the following we use linear operator
notation)

d(r) = I-p(t) (Cl)
with in general non-linear transition rates T(xly), the solution of equation
(Cl) for an initial probability p(o) reads

144 = exp (W P(o). (C2)
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The knowledge of the operator r and the initial probability p(o) enables us
to calculate the Taylor expansion of a mean value (xi(t)) of the stochastic
variable x,(t)

(Xi(t)) = SXip(Xt)dX = (xi(O)) + “~~ ;I~. (C3)

The static moments p. are given by

J7, = <Xil?“p(O)$~ n = 1,. . .
= SXi [r P(O)], dx, (C4)

Next we study the Fourier transform of the function C(t)

Uf> = Kf) (Cxitt)> - CxiCt= + 03))) WW

= Nf) <Ctt)>9 (C5b)

where O(t) denotes the step function. For the Fourier transform C(o)

C(W) = i e iof (C (f)) dt, 63)

we obtain with equation (C3) the sum rule expansion:

where

C(0) = f -dL-
“~0 (-i(u)n+ I’ (C7)

PO = Cxito)> - (xiCco)>* (C8)

The series in equation (C7) is in general semi-convergent or asymptotic. Next
we construct a continued fraction expansion which serves as an analytical
continuation of the series in equation (C7). With z= - iw the corresponding
continued fractions are given by (Hanggi & Thomas, 1978; Hanggi, 1977):

C(0) = 222 . . . (C9)

b, bz= ___ --.__-
z---a,+ z-Q+ . . . (C10)

A general evaluation method for the coefficients in equations (C8)-(C9)
consists in the requirement that a formal expansion in powers of l/z of the
continued fractions equals those appearing in the asymptotic series. A most
convenient method for the calculation of the coefficients consists in a recursive
calculation scheme (Hanggi, 1977; Gordon, 1968). Here we outline the
recursive scheme (Hanggi, 1977) which is usually numerically more stable
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than that given by Gordon (Gordon, 1968). Starting with
Cl = D, DI = P,

c2 = $2 02 = PI
1

c3 = 2 4 = PZ+P~ C2
2

-D4
c, = __

D3
D, = P~+Pz(C~+G) (Cl 1)

one proceeds from n = 4 to the higher terms in the following way: using the
auxiliary vector x of dimension L

L = 2 integer [(n - 1)/2]
X(2) = c,+c3, x(l) = c,

interchange
x(2) --f x(1); x(l) -+ x(2)

with x(L-- 1) = 0 we work upwards:
x(K) = x(K-l)+C,-, x(K-2)

K = L,L-2, ,.. 4
x(2) = x(l) + c,- *

interchange the odd and even component, i.e.
x(2) + x(l), x(4) + x(3)
x(1) + x(2), x(3) -+ x(4) etc.

The continued fraction coefficient C,, is then given by

c, = - if
n 1

Ll2

(C15a)

D” = Pn-1 + & Pn-(i+l) X(2i-1). (C15b)

‘With the C, evaluated by equation (C15), the coefficients of the contracted
continued fraction equation (ClO) are simply given by the relations

b, = C, a, = -c, (C16a)
b n+1 = -C2nC2n+1 a,+1 = --(c2n+l+C2”+2)~ (C16b)

The function C(t) (and therefore (xi(t)) for all times t) is then given by the
inverse Fourier transform

C(t) = & Ir C(w) emiD’ dw. (C17)
Co

(Cl3

In=4 (C13)

n25

W4)


