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For Langevin equations with colored random noise in either a retarded (Mori) form or in a time-instantaneous form we
derive an exact closed time-convolutionless masterequation. We show the equivalence of an extension of the usual Markovian
nonlinear Langevin equation with both, white Gaussian noise and white generalized Poisson noise to the Kramers Moyal
expansion and derive the fluctuation induced drift.

In the last years an ever increasing interest is paid described either by an equation of the form
to the modelling of statistical systems in terms of

z(t)’a(z,t)+f(t), (1)stochastic differential equations for macrovariables.
By use of the projector method therehave been many or a Mon-type equation
attempts to derive exact generalized Langevin equa-
tions starting from first principles F 1,21. In practice, •(t) — — f ~ — s) z(s)ds +f(t) , (2)
however, these exact equations involve many diffi-
culties connected with the evaluation of the micro- 0
scopic expressions for e.g. memory kernels, transport where ‘y(t s) may contain an instantaneous contri-
coefficients etc. To overcome these difficulties one bution a~(t st). It is worth emphasizing that the
usually sets up phenomenological equations retaining random force in eq. (1) and eq. (2) may depend in
the main structures of exact equations. In this con- general on the collective variable z(t) (e.g. f(t) =
text, a well known procedure is the description of b(z, t) ~(t)) so that its stochastic properties may
collective variables in terms of a continuous Markov depend on the choice of the initial probabilityp0(z).
process either by Langevin equations driven with We note that the solution for z(t) are themselves
white Gaussian noise or equivalently by the corre- functionals of the random force f(s), 0 ~ s ~ t.
sponding Fokker—Planck equation. However the In this letter we present only some main results.
physical justification for such an approximation is The details of the calculations and more general re-
often dubious and not well understood. Because of sults will be presented elsewhere [3]. For the deriva-
the large variety of factors responsible for the fluc- tion of the masterequation the following correlation
tuations an approach implying continuous and dis- plays an important role
continuous sample paths generated from Markovian (f(r)g [z]) 0~r~t , (3or even non-Markovian noise may be a better model-
ling. withgt [z] g(z(r), 0 ~ r ~ t) some functional of the

The aim of this letter is to present the derivation random process z(r).
of an exact closed time-convolutionless masterequa- By use of the cumulants K0 (t1, ..., t0) of the ran-
tion for the probability p(z, t) of the process z(t) dom force f(t) one obtains for eq. (3) [3]
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(f(r)g~[z])-~ l, fdsi ... fds~K,,+i(r,s1 s,,) p(z,t)- zp(z,t)
00/1-0

/ ~“g~[z] \ : ~~ie~(t s)~1p(zt) (12)
X \6z(s1) ... öz(s,7) / (4) Note, that for nonlinear a(z, t) the analogous result of

eq. (12) can be obtained if we rewrite eq. (1) with the
With the auxiliary functional ~ FyI random force f(t) -4 v(t) = f(t) + a(z, t) az. Gener-

(5 ln ~~[V] ally ~ in eq. (12) depends via the cumulants off(t)
~t,r[~] = i(5v(r) , 0 ~ r < t , (5) on the initial probabilityPp~This shows clearly the

non-Markovian character of the process z(t) under
where 1~[vj denotes the characteristic functional consideration. If the noise f(t) is z-independent we

obtain a closed masterequation with a p0-independent
Øt [u] — (exp i fl(s) u(s) ds~, (6) and hence lineargenerator F(t) defined by eq. (12):

0 j3(t) = F(t)p(t) . (13)
the result in eq. (4) can be rewritten in the compact Then the kernal of the initial Greensfunction G(tl0)
form

= (~t,r [~f]g~z), 0 ~r< t. (7) G(tIO) = r exp fF(s)ds (14)

The case with r = t needs a special treatment. With coincides with the initial non-Markovian conditional
the auxiliary functional ~. [v] probabilityR(z. tiz0. 0) of the process [41.As an

i a example for eq. (13) we consider a z-independent~ [v] -. ~ ln ~ [v] (8) Gaussian random force f(t) with Kf(t)) a(t) and
i 1(f(t)f(s)) — a(t, s) + a(t) a(s). Noting that the operator

it is shown in [3] that ~ breaks off after the second cumulant we obtain
/ ~ ~ 1 \ for the generator T(t) the Fokker Planck-type result

(9)
Writing for the probabilityp(z, t) t1~eexpectation F(t) = t a(t)~+ fu(t, s)e~t~ds at

2 (15)

p(z, t) = (ö(z(t) z)) , (10) Next we assume that z(t) in eq. (1) is composed of in
where the averaging is over all realizations off(t) and each timepoint independent increments. Only in this
the initial probabilityp

0(z0) we obtain the master- case it is guaranteed that the solutions of eq. (1) des-
equation by differentiation with respect to the time cribe a Markov process [5] , an important fact to
t. For the sake of simplicity we first consider the which has not been paid attention in a recent related
processes described by eq. (1) for a linear system with paper [6] . In particular we decompose the random
a(z(t), t) = az(t). force f(t) in eq. (1) into two state dependent terms

Observing the dynamical nature of z(t) we obtain —

with eq. (9) and the relation f(t) YG(~’t) ~G(t) + ‘yp(z, t)~~(t), (16)
a with ~G(t) a normalized white Gaussian process and

(5(z(t) z) = e~t s) at ö(z(t) z) , (11) ~~(t) a white generalized Poisson process. By use of
the functionals ~ of these processes [3] we obtain

the closed masterequation for p(z, t) for the masterequation of the Markov process z(t)
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2 one can set up a closed masterequation which with
j3(z, t) = — a(z, t)p(z, t) + ~(~j-7G(z~t)) p(z, t) p0(z) = ~(z — z0) explicitly depends on the initial con-

dition z0 [3]. Here we restrict the discussion to the case
that the “correlation” x(t) after a partial coarse graining

+x ~ (_i)fl (x
0) ( ~ yp(Z, t)) p(z, t). (17) in time takes on only positive values. Eq. (2) can then

n2 be transformed into an exact time-convolutionless
Here X denotes the parameter in Poisson’s law and form
(x’~)are the higher moments of the statistically inde-
pendent jump variables with vanishing mean in the 1(t) =~!2)z(t) + X(t) d j X(tr) f(r) dr. (22)
generalized Poisson process. Eq. (17) can be recast in x(t)
the form of the Kramers—Moyal expansion [7] with
the moments a~(z,t) In terms of the operators ~~2t,r[iX(t s) (~/~z)]and

ayG(z, t) ~t [ix(t— s)(8/az)] one can derive again a closed
a
1(z, t) = a(z, t) + 27G(Z, t) az masterequation. For example, using the stationary

z-independent Gaussian noise with (f(t)) = 0 which
fulfills the 2nd fluctuation dissipation theorem [8]

+ ~ E ~> 7p(z, t)Dm~l[~ ~(z,t)], (18) (f(t)f(s)) = cy(It sD, (23)
m2 m

we obtain for the linear generator r(t) in presence of
;(z, t) = y~(z,t)~~2 an external deterministic forceK(t) coupled additively

into eq. (2) after a somewhat laborous but straight
forward calculation the simple result

+n’X ~i:~(Xm)
m=n ~ ‘Yp(Z, t)D

m’~[y~ 1(z, i’)] , ~(t) a a2 1F(t)=—--——- —z+c—IX(t) [az az2J
n~’2.

d t(t
— x(tHere we made use of the function D1 introduced by / x~t~s) K(s) ds -~-. (24)az

Bedeaux [6]
Note that the effect of the perturbation is given only

n
D’[~4(z, t)] = Z~ a ~2 a~. ~ ~— ... . (19) by the last term (f(t) does not depend on K(s) by

1, assumption) in form of a linear functional which in-
11+... ij+

1 =n volves in contrast to the Markov case (x(t) = e Yt) the
whole prehistory of K(s) as well.
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