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We study the calculation of complex transport coeffi-
cients y(w) and power spectra in terms of complex con-
tinued fractions. In particular, we establish classes of
dynamical equilibrium and non-equilibrium systems for
which we can obtain a posteriori bounds for the truncation
error | x(w) — 7™ (w)| = c(w)| ™ (w) — x™1D(w)| when
the transport coefficient is approximated by its n-th con-
tinued fraction approximant y(®)(w).

1. Introduction

An important problem in the field of equilibrium
and nonequilibrium statistical mechanics is the
calculation of the spectral function (or power
spectrum) S(w) of time-dependent fluctuations
with an autocorrelation function C'(t)=C(—t) e R

S(— w)=S(w):§1; _E‘iw‘C(t)dtgo (1)

— -1 Re lim fe—"a’l—” c@)de. (2)
T e—0+0

For, due to the fluctuation-dissipation theorem for
thermal equilibrium systems [1] this spectral
function determines the linear dissipative response,
as e.g. the cross-section for scattering of light and
neutrons [2]. Further, the electric conductivity,
% (), depends upon the spectral function of the
current fluctuations [1]

7 (w) = lim fO(t) e~tot=¢t d¢

e—0+ 0
=lim — ¢ f — 7§ix,),daj . (3)
e—0t —o0 W —1E -+ X

Even in stationary nonequilibrium systems we
obtain similar relations for the transport coefficients
if a fluctuation theorem holds [3].

In this note we discuss a suitable calculation
technique for complex transport quantities via
continued fraction expansions and investigate
classes of statistical systems for which a posteriori
truncation error bounds for these continued frac-
tions can be obtained.
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2. Truncation Error Bounds for Complex
Susceptibilities

Mori [4] has considered the problem of the
calculation of quantities like in eq. (2) and eq. (3):
He derived a continued-fraction representation of
the Laplace transform of thermal equilibrium auto-
correlation functions using the concept of memory
functions. The general method of expanding the
Laplace transform of an arbitrary autocorrelation
function is based upon the (asymptotic) high-
frequency expansion of y(w) [5]

Cn

(T w)n+l :

% () =go( —1)n 4)

The moments (', are defined by
20 )
din

Cn=(—1) (5)

t=0+
and are formally related to moments of the func-
tion y(w)*

(=)

O = (—i)" 5 _Ld“’ "y (o) (6)
= (¢)» _ofoda) o S(w). (7)

The asymptotic series in Eq. (4) can be converted
into a continued fraction expansion of the form
A1 A2 A3

gl = ®)
Here the coefficients {4,} can be constructed from
the moments {C',} using determinantal expressions
or more efficiently by use of the recursive algorithms
presented in Reference [5]. In practice, however,
we are forced to terminate the generally infinite
continued fraction in Eq. (8) at a finite order.
Henceforth, it is important to have realistic
estimates of the truncation error F(z)

F()=|g(—i2)— y®(—1i2)|, zeC, (9)
when Eq. (8) is approximated by its n-th approxi-
mant y7(z), obtained by setting

}Ln+1:)-n+2= ce =0,

* Note that these integral representations for C; may
in general not exist. In practice, the moments are calculated
theoretically via Eq.(5) [4, 5] [see also Eq. (21)] or
measured experimentally.
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To start with, suppose the susceptibility ¥ (w) has
a Stieltjes integral representation

g
z(w) = | ¥

el -
dieTs with dy(z) =0.

(10)
Then, the moments in Eq.(4) form a Stieltjes
sequence [5, 6]

Cn= [wrdpw) >0, n=0,1,.... (11)

0

Assuming that the limit y(w) in Eq. (8) exists and
represents the correct analytical continuation, i.e.
the limit equals the function defined in Eq. (3)

2 (w) = lim y™ (), (12)
we look for error bounds of the form
|2(—i2) — x™(—iz)]
=c(2)|y™(—i2) — y»-D(—i2)],
c(z) >0 (13)

with ¢(z) a constant which depends only on z e C.
For the following the theorem of Henrici and
Pfluger [7, 8] for Stieltjes continued fractions plays
a major role: Let x((—iz) denote the n-th
approximation of the Stieltjes continued fraction
of the form in Eq. (8), where with Eq. (11) 1, >0
for all »=1. Then we have for all »>1 and
z2eC — [0, — )

|2(—i2) — ™ (—i2)]
[x™ (—i2) — y-D(—iz)],
if |argz| < a2,
tan(}argz)| x™(—iz) — y-D(—iz)
if #/2<|argz|<m.

’

(14)

Next we investigate classes of statistical systems
for which the expansion of the Laplace transform
of complex transport coefficients can be cast in a
Stieltjes continued fraction. — Most statistical
systems are described in terms of a Markovian
dynamics; i.e. the probability function p(z, t) over
the state variables z fulfills a master equation of the
form

p(t)=TIp(t),

where I” denotes the generator of the linear transi-
tion (conditional probability) R (zt|yt1), t>t1. Let
pst denote a stationary probability function

Fpstz().

(15)

(16)
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Then, by use of the operator I’

T’ = pet~172 T pgy)/2 (17)

we can formulate a sufficient condition for the
moments {C,} being a Stieltjes sequence: Whenever
the operator T represents a hermitian operator with
respect to the usual scalar product

(tT9)= [{@) T y) g(y)dzdy = (T'f,g) (18)

the moments {C,} form a Stieltjes sequence!
Whence the high-frequency expansion can be recast
in a Stieltjes continued fraction, Eq. (8), with all
An > 0.

Proof. By use of the spectral representation of the
operator I’

T=73[dyoulou {pu| (19)

we obtain from Eq. (5) for the static moment C,, of
the autocorrelation function C (t)

C@t)=<glz@®)]g[z0)]>

= <glz®)][(exp I't) g pstlaqy> (20)
the expression
Cp= (=17 fdxg z) [ 1™ g pstl,
= (—1)* [dz g(z) [pss}/2 T p1i2 g],
(21)

= ZfdulQuI"l(gpstl/z, Pu) |2
"
= Jur {2 dudlou] — )| (g1, g)|2} dw
"
= [wrdy(w) with dy(w)=0.
0

Hereby we used the fact that all eigenvalues o, of I’
satisfy the dissipative property o, <0.

The condition in Eq. (18) is satisfied by many
systems in thermal equilibrium, e.g. the Brownian
motion problems [9] and the stochastic Ising spin
models [10]. Generally, all systems obeying a strong
detailed balance symmetry [11] fit Eq. (18).
Examples are the master equations for nonlinear
chemical reactions [12] or for the current fluctua-
tions in an Esaki diode [13]. In particular, all
Fokker-Planck systems obeying a usual detailed
balance symmetry [11, 14] whose drift vectors are
irreversible under time reversal yield a hermitian
Fokker-Planck operator [11, 14]. Typical examples
are the Fokker-Planck equation for the single-mode
Laser and parametric oscillators [14, 15]. For all
these systems we obtain for the complex suscep-
tibility in Eq. (3) by use of Eq. (14) the truncation
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error bound
| x(@) — ™ (0)] =

and for the power spectrum in Eq. (1) the relation

2™ (w) — 2D (w)| (22)

1
[S(w) — 8™ (w)| = . |Re(y(w) — x™(w)]|

1

< L |300) — 20V (29
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In a similar way we can utilize the results of Eq. (14)
to obtain a posteriori bounds for the continued
fraction representations of dynamical response
functions of the type considered in Reference [16].
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