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We study the calculation of complex transport coeffi­
cients x ( (o) and power spectra in terms of complex con­
tinued fractions. In particular, we establish classes of 
dynamical equilibrium and non-equilibrium systems for 
which we can obtain a posteriori bounds for the truncation 
error | ^ (to) — x(n)(c'J)| =  c (a)) I X(w)(tu) — %(”-1)(w)| when 
the transport coefficient is approximated by its n-th con­
tinued fraction approximant £<n)(co).

1. Introduction

An important problem in the field of equilibrium 
and nonequilibrium statistical mechanics is the 
calculation of the spectral function (or power 
spectrum) S(w ) of time-dependent fluctuations 
with an autocorrelation function C(t) =  C (—t) e R 

1 00
S ( - ( o )  =  S(co) =  - - -  f e ~ ^ C ( t ) d t ^ 0  (1)

2* 7Z — oo 
I  oo

=  — Relim  j  e~i(ot~et C(t) dt,. (2)
71 s -*0+ 0

For, due to the fluctuation-dissipation theorem for 
thermal equilibrium systems [1] this spectral 
function determines the linear dissipative response, 
as e.g. the cross-section for scattering of light and 
neutrons [2]. Further, the electric conductivity, 
%(a>), depends upon the spectral function of the 
current fluctuations [1]

(̂a>) =  lim j  C (t) dt

S  (x) dx
-o+ o

=  lim
£-*•0 + J-oo co — i e +  x (3)

Even in stationary nonequilibrium systems we 
obtain similar relations for the transport coefficients 
if a fluctuation theorem holds [3].

In this note we discuss a suitable calculation 
technique for complex transport quantities via  
continued fraction expansions and investigate 
classes of statistical systems for which a posteriori 
truncation error bounds for these continued frac­
tions can be obtained.
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2. Truncation Error Bounds for Complex
Susceptibilities

Mori [4] has considered the problem of the 
calculation of quantities like in eq. (2) and eq. (3): 
He derived a continued-fraction representation of 
the Laplace transform of thermal equilibrium auto­
correlation functions using the concept of memory 
functions. The general method of expanding the 
Laplace transform of an arb itrary autocorrelation 
function is based upon the (asymptotic) high- 
frequency expansion of %{cx>) [5]

z(w ) =  2 ( -  x)?
n = 0

Cr
(i a>)n+1

The moments Cn are defined by 

dnC{t)
dtn «=o4

(4)

(5)

and are form ally related to moments of the func­
tion %(co) *

1
(6)Cn =  {— Jda> con %{co)

Ä7Z —oo

(i)n f dco o)n S  (co). (7)

The asymptotic series in Eq. (4) can be converted 
into a continued fraction expansion of the form

As

i  03 +  1 +  i at + (8)

Here the coefficients {An} can be constructed from  
the moments {Cn} using determinantal expressions 
or more efficiently by use of the recursive algorithms 
presented in Reference [5]. In practice, however, 
we are forced to terminate the generally infinite 
continued fraction in Eq. (8) at a finite order. 
Henceforth, it is important to have realistic 
estimates of the truncation error F(z)

F (z) = \%{—i z ) — x (n)(— iz)|> (9)
when Eq. (8) is approximated by its w-th approxi­
mant %w(z), obtained by setting

^n+l — ^w+2 0 .

* Note that these integral representations for Cn may 
in general not exist. In practice, the moments are calculated 
theoretically via Eq. (5) [4, 5] [see also Eq. (21)] or 
measured experimentally.
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To start with, suppose the susceptibility %(a>) has 
a Stielt j es integral representation

?  dy(x )
X(0J) =  J ------:----  with d w ( x )> 0 .  (10)o i co +  x  r  v / —

Then, the moments in Eq. (4) form a Stieltjes 
sequence [5, 6]

OO

Cn =  dip(w) >  0 , n =  0 , 1 , . . . .  (11)
o

Assuming that the limit / (co) in Eq. (8) exists and 
represents the correct analytical continuation, i.e. 
the limit equals the function defined in Eq. (3)

X ( c o )  =  lim x (n)( u ) , (12)
ft ->oo

we look for error bounds of the form

\x(— i z ) — X{n){— »2)|
^  c(z) I x (n)(— i  z) — x (n_1)( — iz )  I >

c (z )>  0 (13)

with c(z) a constant which depends only on z e  C. 
For the following the theorem of Henrici and 
Pfluger [7, 8] for Stieltjes continued fractions plays 
a major role: Let x (n)(—iz) denote the n -th 
approximation of the Stieltjes continued fraction  
of the form in Eq. (8), where with Eq. (11) Xn > 0  
for all n ^  1. Then we have for all n ^  1 and 
z e C — [0, — oo)

\x(— iz) — x (n)(— *3)|
'I £(«)(_ i  z) _  ^(n-l)(_ i z ) ^ 

if | arg 2 1 ^  7i12 , 

tan(| arg z)| *(«>( — iz )  — z <»-i>(_ i  z) | ,
if 7i12 <  | arg z | <  71. (14)

Next we investigate classes of statistical systems 
for which the expansion of the Laplace transform  
of complex transport coefficients can be cast in a 
Stieltjes continued fraction. — Most statistical 
systems are described in terms of a Markovian 
dynamics; i.e. the probability function p(x , t) over 
the state variables x fulfills a master equation of the 
form

p(t) =  r p (t), (is)

where r  denotes the generator of the linear transi­
tion (conditional probability) R (x t  | yt\), t> t\ .  Let 
p st denote a stationary probability function

r p  st =  o .  ( i 6 )

T  =  p si- w r p si i/2 (i7)

we can formulate a sufficient condition for the 
moments {Cn} being a Stieltjes sequence: Whenever 
the operator r  represents a hermitian operator with 
respect to the usual scalar product

(f ,T g ) =  $ f (x )T (x ,y )g (y )d x d y  =  (T f ,g )  (18)

the moments {Cn} form a Stieltjes sequence! 
Whence the high-frequency expansion can be recast 
in a Stieltjes continued fraction, Eq. (8), with all 
In >  0.

Proof. B y use of the spectral representation of the 
operator r

r  =  d'tl Q/i\(p(l')((pp\ (19)

we obtain from Eq. (5) for the static moment Cn of 
the autocorrelation function C (t)

C(t) =  (g[x(t)]g[x(0)]>
=  <91¥ (t)] [(exP r t ) g  PstL«)> (20)

the expression

Cn =  ( -  1)” J  dx g (x) |T n g p st\
=  (— i ) w ] g(x)[pst112 T np st1/2g\
=  'Z S d ß\Q»\n \ (gp st l l 2 , y ti ) \ 2 (2 i)

oo

=  - w)\(9Pst1/2’ <Pn)\2}dwo n
OO

=  J  wn dxp (w) with d y  (w) ^  0 .
o

Hereby we used the fact that all eigenvalues of I 1 
satisfy the dissipative property ^  0.

The condition in Eq. (18) is satisfied by many 
systems in thermal equilibrium, e.g. the Brownian 
motion problems [9] and the stochastic Ising spin 
models [10]. Generally, all systems obeying a strong 
detailed balance symmetry [11] fit Eq. (18). 
Examples are the master equations for nonlinear 
chemical reactions [12] or for the current fluctua­
tions in an Esaki diode [13]. In particular, all 
Fokker-Planck systems obeying a usual detailed 
balance symmetry [11, 14] whose drift vectors are 
irreversible under time reversal yield a hermitian 
Fokker-Planck operator [11, 14]. Typical examples 
are the Fokker-Planck equation for the single-mode 
Laser and parametric oscillators [14, 15]. For all 
these systems we obtain for the complex suscep­
tibility in Eq. (3) by use of Eq. (14) the truncation

Then, by  use o f the operator _T
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error bound

\x(°>) — X(n) M I  ^  I x (n) (co) — x (n~1} (co) I (22) 

and for the power spectrum in Eq. (1) the relation

IS M  -  S<«> (tu) I =  -  I R e ( x ( a )  -  X<">(«)I 

ä  IX1”1!» )  — X<n"1>(®)| • (23)
71
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to obtain a posteriori bounds for the continued 
fraction representations of dynamical response 
functions of the type considered in Reference [16].
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