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We study the calculation of complex transport coeffi
cients x ( (o) and power spectra in terms of complex con
tinued fractions. In particular, we establish classes of 
dynamical equilibrium and non-equilibrium systems for 
which we can obtain a posteriori bounds for the truncation 
error | ^ (to) — x(n)(c'J)| =  c (a)) I X(w)(tu) — %(”-1)(w)| when 
the transport coefficient is approximated by its n-th con
tinued fraction approximant £<n)(co).

1. Introduction

An important problem in the field of equilibrium 
and nonequilibrium statistical mechanics is the 
calculation of the spectral function (or power 
spectrum) S(w ) of time-dependent fluctuations 
with an autocorrelation function C(t) =  C (—t) e R 

1 00
S ( - ( o )  =  S(co) =  - - -  f e ~ ^ C ( t ) d t ^ 0  (1)

2* 7Z — oo 
I  oo

=  — Relim  j  e~i(ot~et C(t) dt,. (2)
71 s -*0+ 0

For, due to the fluctuation-dissipation theorem for 
thermal equilibrium systems [1] this spectral 
function determines the linear dissipative response, 
as e.g. the cross-section for scattering of light and 
neutrons [2]. Further, the electric conductivity, 
%(a>), depends upon the spectral function of the 
current fluctuations [1]

(̂a>) =  lim j  C (t) dt

S  (x) dx
-o+ o

=  lim
£-*•0 + J-oo co — i e +  x (3)

Even in stationary nonequilibrium systems we 
obtain similar relations for the transport coefficients 
if a fluctuation theorem holds [3].

In this note we discuss a suitable calculation 
technique for complex transport quantities via  
continued fraction expansions and investigate 
classes of statistical systems for which a posteriori 
truncation error bounds for these continued frac
tions can be obtained.
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2. Truncation Error Bounds for Complex
Susceptibilities

Mori [4] has considered the problem of the 
calculation of quantities like in eq. (2) and eq. (3): 
He derived a continued-fraction representation of 
the Laplace transform of thermal equilibrium auto
correlation functions using the concept of memory 
functions. The general method of expanding the 
Laplace transform of an arb itrary autocorrelation 
function is based upon the (asymptotic) high- 
frequency expansion of %{cx>) [5]

z(w ) =  2 ( -  x)?
n = 0

Cr
(i a>)n+1

The moments Cn are defined by 

dnC{t)
dtn «=o4

(4)

(5)

and are form ally related to moments of the func
tion %(co) *

1
(6)Cn =  {— Jda> con %{co)

Ä7Z —oo

(i)n f dco o)n S  (co). (7)

The asymptotic series in Eq. (4) can be converted 
into a continued fraction expansion of the form

As

i  03 +  1 +  i at + (8)

Here the coefficients {An} can be constructed from  
the moments {Cn} using determinantal expressions 
or more efficiently by use of the recursive algorithms 
presented in Reference [5]. In practice, however, 
we are forced to terminate the generally infinite 
continued fraction in Eq. (8) at a finite order. 
Henceforth, it is important to have realistic 
estimates of the truncation error F(z)

F (z) = \%{—i z ) — x (n)(— iz)|> (9)
when Eq. (8) is approximated by its w-th approxi
mant %w(z), obtained by setting

^n+l — ^w+2 0 .

* Note that these integral representations for Cn may 
in general not exist. In practice, the moments are calculated 
theoretically via Eq. (5) [4, 5] [see also Eq. (21)] or 
measured experimentally.
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To start with, suppose the susceptibility %(a>) has 
a Stielt j es integral representation

?  dy(x )
X(0J) =  J ------:----  with d w ( x )> 0 .  (10)o i co +  x  r  v / —

Then, the moments in Eq. (4) form a Stieltjes 
sequence [5, 6]

OO

Cn =  dip(w) >  0 , n =  0 , 1 , . . . .  (11)
o

Assuming that the limit / (co) in Eq. (8) exists and 
represents the correct analytical continuation, i.e. 
the limit equals the function defined in Eq. (3)

X ( c o )  =  lim x (n)( u ) , (12)
ft ->oo

we look for error bounds of the form

\x(— i z ) — X{n){— »2)|
^  c(z) I x (n)(— i  z) — x (n_1)( — iz )  I >

c (z )>  0 (13)

with c(z) a constant which depends only on z e  C. 
For the following the theorem of Henrici and 
Pfluger [7, 8] for Stieltjes continued fractions plays 
a major role: Let x (n)(—iz) denote the n -th 
approximation of the Stieltjes continued fraction  
of the form in Eq. (8), where with Eq. (11) Xn > 0  
for all n ^  1. Then we have for all n ^  1 and 
z e C — [0, — oo)

\x(— iz) — x (n)(— *3)|
'I £(«)(_ i  z) _  ^(n-l)(_ i z ) ^ 

if | arg 2 1 ^  7i12 , 

tan(| arg z)| *(«>( — iz )  — z <»-i>(_ i  z) | ,
if 7i12 <  | arg z | <  71. (14)

Next we investigate classes of statistical systems 
for which the expansion of the Laplace transform  
of complex transport coefficients can be cast in a 
Stieltjes continued fraction. — Most statistical 
systems are described in terms of a Markovian 
dynamics; i.e. the probability function p(x , t) over 
the state variables x fulfills a master equation of the 
form

p(t) =  r p (t), (is)

where r  denotes the generator of the linear transi
tion (conditional probability) R (x t  | yt\), t> t\ .  Let 
p st denote a stationary probability function

r p  st =  o .  ( i 6 )

T  =  p si- w r p si i/2 (i7)

we can formulate a sufficient condition for the 
moments {Cn} being a Stieltjes sequence: Whenever 
the operator r  represents a hermitian operator with 
respect to the usual scalar product

(f ,T g ) =  $ f (x )T (x ,y )g (y )d x d y  =  (T f ,g )  (18)

the moments {Cn} form a Stieltjes sequence! 
Whence the high-frequency expansion can be recast 
in a Stieltjes continued fraction, Eq. (8), with all 
In >  0.

Proof. B y use of the spectral representation of the 
operator r

r  =  d'tl Q/i\(p(l')((pp\ (19)

we obtain from Eq. (5) for the static moment Cn of 
the autocorrelation function C (t)

C(t) =  (g[x(t)]g[x(0)]>
=  <91¥ (t)] [(exP r t ) g  PstL«)> (20)

the expression

Cn =  ( -  1)” J  dx g (x) |T n g p st\
=  (— i ) w ] g(x)[pst112 T np st1/2g\
=  'Z S d ß\Q»\n \ (gp st l l 2 , y ti ) \ 2 (2 i)

oo

=  - w)\(9Pst1/2’ <Pn)\2}dwo n
OO

=  J  wn dxp (w) with d y  (w) ^  0 .
o

Hereby we used the fact that all eigenvalues of I 1 
satisfy the dissipative property ^  0.

The condition in Eq. (18) is satisfied by many 
systems in thermal equilibrium, e.g. the Brownian 
motion problems [9] and the stochastic Ising spin 
models [10]. Generally, all systems obeying a strong 
detailed balance symmetry [11] fit Eq. (18). 
Examples are the master equations for nonlinear 
chemical reactions [12] or for the current fluctua
tions in an Esaki diode [13]. In particular, all 
Fokker-Planck systems obeying a usual detailed 
balance symmetry [11, 14] whose drift vectors are 
irreversible under time reversal yield a hermitian 
Fokker-Planck operator [11, 14]. Typical examples 
are the Fokker-Planck equation for the single-mode 
Laser and parametric oscillators [14, 15]. For all 
these systems we obtain for the complex suscep
tibility in Eq. (3) by use of Eq. (14) the truncation

Then, by  use o f the operator _T
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error bound

\x(°>) — X(n) M I  ^  I x (n) (co) — x (n~1} (co) I (22) 

and for the power spectrum in Eq. (1) the relation

IS M  -  S<«> (tu) I =  -  I R e ( x ( a )  -  X<">(«)I 

ä  IX1”1!» )  — X<n"1>(®)| • (23)
71
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In a similar w ay we can utilize the results of Eq. (14) 
to obtain a posteriori bounds for the continued 
fraction representations of dynamical response 
functions of the type considered in Reference [16].
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