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Is quantum mechanics equivalent to a classical stochastic process'
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The authors analyze the connection between the theory of stochastic processes and quantum mechanics. It
is shown that quantum mechanics is not equivalent to a Markovian diffusion process as claimed in recent
papers. The origin of a possible confusion about this question is clarified. The authors further demonstrate
that there does not even exist a non-Markovian process equivalent to quantum mechanics.

I. INTRODUCTION

Since the early days of quantum mechanics there
have been attempts to explain the quantum phen-
omena within the framework of classical mechan-
ics. One approach, which also dates back to the
1930s,' relates the motion of a quantum particle
to a classical stochastic process. This approach
was brought to our attention again by Nelson' a
decade ago, and since then the theory has been
developed further in a still-increasing number
of papers, ' including a recent review4 on this
subject.
In these papers it is claimed that the quantum-

mechanical motion of a particle governed by
Schrodinger's equation can be equally well under-
stood as a classical Brownian motion of the
particle in a vacuum which acts upon the particle
as does a heat bath in the theory of irreversible
processes. In more technical terms, the quantum-
mechanical process is claimed to be equivalent
to a classical Markovian diffusion process. In
this work we shall show that quantum mechanics
has in fact little to do with a stochastic process
and that the contrary conclusions of others'
originate in an erroneous use of the theory of
Markovian processes.

In Sec. II we present a particularly short "deri-
vation" of the Schrodinger equation from the
Fokker-Planck equation of a diffusion process.
The Fokker-Planck equation thereby associated
with the Schrodinger equation is identical with the
Fokker-Planck equation introduced by others. ' 4

We show that the Fokker-Planck operator is not a
linear operator on the space of single-event dis-
tributions p(x, t) whence it does not characterize
a Markovian process.
Since the origin of erroneous conclusions in

earlier works is not always obvious, in Sec. III
we follow their line of argumentation more closely.
Especially, we investigate the properties of

the backward Markovian process introduced in
this context, and show that this process is in fact
not Markovian, although it has many of the prop-
erties of a Markovian process.
In Sec. IV we explicitly determine the Fokker-

Planck equation for an example and calculate the
position correlation function on the basis of the
claimed equivalence with quantum mechanics.
This correlation function is in clear contradiction
to the true quantum-mechanical correlation.
Finally, we investigate in Sec, V the question

whether we can describe quantum mechanics within
the framework of non-Markovian processes, and
we are led to the conclusion that the title question
must be answered in the negative.

p, *(x, t) = p, (x, t) —Qv lnp(x, t),
Eq. (2.1) can be transformed into

p(x, t) = vp*(x, f)p(x, f—) 2Qn p(x, t)—
(2.2)

(2.3)
By adding the two Fokker-Planck-type equations
(2.1) and (2.3), we obtain the continuity equation

p(x, t) =-vv(x, t)p(x, t),
where we have introduced tQe velocity of the prob-

II. STOCHASTIC DERIVATION OF THE
SCHRODINGER EQUATION

Let us assume that the quantum-mechanical
motion of a particle in a potential V(x, t) in n
dimensional space can be described by a con-
tinuous Markovian process' with constant isotropic
diffusion Q. Then the probability distribution
p(x, t) of the position x of the particle at time t
obeys a Fokker-Planck equation of the form

p(x, t) =—Vp(x, t)p(x, f)+-,'Q&p(x, t) . (2.1)
The drift p, (x, t) and the diffusion constant Q wiII
be specified below. If we define a function p, *(x,t)
by
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ability current

v(x, t) =-,' [p,(x, t)+ p*(x, t) ]
= p, (x, t) ——,'Qv lnp(x, t) ~ (2.5)

p(x, t) = dy G(xt Iys)p(y, s), t~ s. (2.10)
Furthermore, the Green's function fulfills the
Chapman-Kolmogorov equation

In order to connect this stochastic process with
ordinary quantum mechanics we identify p(x, t)
with the correct quantum- mechanical probability
density

p(x, t}= I(I(x, t) I', (2.6)
and u(x, t} with the correct velocity of the quantum
probability current

v(x, t) = (I/2im) [v Inq(x, t) —v tny*(x, t) ] . (2.'I)
If we substitute (2.6) and (2.V) into Eq. (2.4) and
require that g(x, t) obey a linear differential equa-
tion, we find after a few elementary manipulations
that this differential equation must be of the form .

in'it)(x, t) = (I'/-2m)&if)(x, t)+ V(x, t)(I)(x, t), (2.8)
where V(x, t) is an as yet undetermined real func-
tion of x and t which we identify with the potential.
For Q =I/m the Fokker-Planck equation (2.1)
hereby associated with the Schrodinger equation
(2.8) is identical with the Fokker-Planck equation
introduced in recent papers. ' ' It appears that
this Fokker-Planck equati, on leads in a rather
unambiguous way to the Schrodinger equation and
that "the radical departure from classical physics
produced by the introduction of quantum mechanics
was unnecessary. '" Here several comments are
in order. The Fokker-Planck equation governing
the time evolution of p(x, t) is not uniquely deter-
mined. The above argumentation is completely
independent of the choice of the diffusion constant
Q. Further, the drift p, (x, t) is not a preassigned
vector as in the theory of Markovian diffusion
processes."From Eqs. (2.2), (2.5), and (2. t)
we find

p(x, t) =Qv ln I)t)(x, t) I+ (Elm)v argp(x, t), (2.9)
which depends on the special process. This means
that the Fokker-Planck equation takes a different
form for every solution of the Schrodinger equa-
tion for a given initial state. This dependence
on the initial state is typical for certain master
equations in the theory of non-Markovian proces-
ses.' That type of mister equationleads toa correct
time evolution of the single-event distribution but
to nothing else. Here, the Green's function
G(xt I») of the Fokker-Planck equation (2.1) also
describes the propagation of p(x, t) correctly by

III. BACKWARD MARKOVIAN PROCESSES IN STOCHASTIC
THEORIES OF QUANTUM MECHANICS

In this section we further examine the connection
of stochastic processes and quantum mechanics,
following the argumentation of some previous
works. ' 4 The origin. of erroneous conclusions
drawn in these works will be clarified. -

The usual concept of Markovian processes intro-
duces an asymmetry in time which is reflected
in the irreversible character of the process. This
presents a difficulty if one wants to describe the
quantum-mechanical evolution by a Markovian
process. To overcome this difficulty Nelson and
others' introduce for a given Markovian process
a. so-called backward Markovian process whose
properties we shall discuss below.

A usual Markovian-process x(t) is generated
from a conditional probability It(xt Iys), t ~ s,
which satisfies the Chapman-Kolmogorov equation

ft(xt I») = «wxt l«)ft(eu I») (3.1)
for t~ u~ s. This conditional probability is inde-
pendent of the sing~e-event distribution, which
propagates in time according to

p(s, t) f ttytt(st)ys)p(y, s), t»- s;
consequently, the relation (3.2) is hzear in p. The
multivariable probabilities of the Markovian pro-
cess are given by

p'"'(x„t„, ... , x,t,)= " z( t,.xIx, ,t, ,)
EA

i=2
x p(x„ t,), (3.3)

where t„» I, » ~ ~ ~ » t . For an arbitrary function
f(x(t), t) of the stochastic variables x(t) and time
t a mean forward derivative' is defined by

Df(x(t), t)=lim -- dyR(ys Ixt)
1

x [f(y, s) f(x, t}]. (3.4}-
The symbol t' means that s approaches t through
larger values.

With the Markovian-process x(t), one can asso-

G(st)ps) ftts G(*t ss)G(ss ys) for t-s-s
(2.11)

as does the conditional probability of a Markovian
process. However, G(xt Iys) depends on the
chosen initial state in contrast to the conditional
probability of a Markovian process, and it will
be shown that correlation functions calculated by
means of G(xt Iys) have nothing to do with the
true time correlations in a quantum system.
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ciate a backseat Markovian process which is
generated from the backward conditional prob-
ability defined by' '

or
R*(ys ixt)p(x, t) =R(xt

hays)

p(y, s) (3.6)

R*(ys )xt) = fdzR (ys ~zx)R*(zx (xt) (3.7)

for s & u & t. The multivariate probability
p'"'(x„t„,. . . , x, t, ) can be written

p'"'(x„t„, . . . , x,t,)=Q R*(x;,t, , ~x;t;)
x p(x„, t„), (3.6)

where t, & t, & ~ ~ ~ & t„, and the single-event prob-
ability develops (backwards) in time according to

R(xt hays) p(y, s)R*ys xt = 3.6fdy R(xt

hays)

p(y, s)
Note that the backward conditional probability
explicitly depends on the single-event probability
p(y, s}. While the (forward) conditional probability
of a Markovian process generates a sohole class of
stochastic process for all possible initial prob-
abilities, the backward conditional probability de-
pends on the special process chosen. Such a
dependence is typical for a non-Markovian process.
Nevertheless, the backward Markovian process
has many properties of a Markovian process with
opposite time direction. For example, R*(ys ~xt)
is normalized and fulfills the Chapman-Kolmogorov
equation

In their attempt to describe a quantum system
by a stochastic process, Nelson and others' '
assume that the position x of a quantum-mechani-
cal particle in a potential V(x, t) undergoes a
Markovian diffusion process characterized by the
Fokker-Planck equation (2.1}with a diffusion
constant

—,'m(DD*+D*D)x(t) = -VV(x, t) . (3.12)
For a diffusion process the forward derivative
D is easily expressed in terms of the drift p. and
the diffusion constant Q. However, since the
backward derivative D* also depends on the single-
event distribution p(x, t), the requirement (3.12)
does not determine the drift p(x, t) as a preas-
signed vector essentially determined by the poten-
tial, but rather the drift will explicitly depend on
p(x, t), i.e., on the special process chosen.

We shall not give the somewhat cumbersome
evaluation of (3.12),' 4 since the final expression
for the drift coincides with the expression derived
in Sec. II. Clearly, by the dependence of p, (x, t) on
p(x, t) the stochastic process so determined is not
Markovian, and the erroneous conclusions drawn
in some previous works' 4 can in part be attribu-
ted to the author's overlooking of the non-Marko-
vian character of the so-called backward Marko-
vian process.

(3.11)
inversely proportional to the mass. To determine
the drift p, (x, t) they demand for the process a
generalized time-symmetrical form of Newton's
law,

p(y, s)= fdxR"(ys)xt)p(x, t), s- t. (3 9)
IV. EXAMPLE: THE HARMONIC OSCILLATOR

These properties follow from the corresponding
properties of R(xt ~ys) and Eq. (3.5). However,
(3.9) is not linear in p, since R* itself depends
on the single-event distribution, in contrast to
the corresponding equation (3.2) for a true Marko-
vian process.
A mean backboard derivative of a function

f(x(t), t) can be defined by'

(t)(x 0)—(ot&/R/~&/4)e- z/RN2(x-Rp)2 (4.1)

where

In this section we illustrate the general analysis
by a simple example. Consider a harmonic oscil-
lator initially at time t= 0 in the coherent state'

D*f(x(t), t) = lim dy R*(ys ~xt)
1

n = (m(u/K)'/'. (4 2)

x [f(x, t) -f(y, s)J.
(3.10)

This state centers about the position x=xo Its
change in time is governed by the time-dependent
Schrodinger equation

This derivative also depends on the special pro-
cess chosen, in contrast to the mean forward
derivative, which is the same for the whole class
of stochastic processes generated by the Marko-
vian (forward) conditional probability.

A s (/J(xy t) = — 2 + Rm(t) x ((xy t),2m x

and the state at time t is found to be"

(4.3)
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(t(x, t) = (n't'/v't')exp[- —,'n'(x —xc cos(ot)'

,i ~—t—in'(xx, sin(ot

tor. For instance, if we choose x,=0 the oscilla-
tor is initially in its ground state. In this case we
obtain from (4.10}

——,'x', sin2(dt)]. &x(t)x(s)) = (tt/2m (u) e-"' '-". (4.12)

Hence the position probability is

p(x, t) = y(x, t)y*(x, t)
—(n /&&

~ t 2)e - a 2 (( x- x() ca) (s& ( P

(4.4)

(4.5)
Let us now consider the stochastic process asso-
ciated with this quantum-mechanical dynamics
in the work of Nelson and others. ' c With (2.9),
(3.11), and (4.4) the Fokker-Planck equation (2.1)
reads

8
p(x, t) =——[-((&x—urxc(cos(dt —sinurt) ]p(x, t)

~X+, , p(x, t).2' 8x' (4.6)

The explicit dependence of the drift on x, clearly
shows that this equation is not a linear equatio in
p(x, t), rather, it only holds for the special p(x, t)
given in Eq. (4.5}. Nevertheless, formally we
might consider the drift as an assigned time-de-
pendent vector and look upon Eq. (4.6) as a linear
equation in p(x, t). Then Eq. (4.6) characterizes
a nonstationary Gauss-Markov process, and the
conditional probability of this process is obtained"
as the Green's-function solution of (4.6):

o(r) = (lf/2m(o)(1 —e '"') . (4.8)

The position correlation function of this process
is given by

(x(S)x(s)) js(xayxy&((xS(ys)y={y, s). (4.9)

If we insert the position probability (4.5) and the
conditional probability (4.7) we find

&x(t)x(s)) = (h/2m a&}e "' ' "+x', cos(dt cosa&s; (4.10)

For t = s this correlation function gives the correct
second moment

&x'(t)) = (h/2m'&)+ x', cos'~t (4.11)
of the harmonic oscillator. However, for t&s the
correlation function (4.10) has nothing in common
with the true correlations of the quantum oscilla-

ft (xt l ys) =

[x- ](x, t, s)]'
exp — — 2no t-s ' ', 4.7

2(r(t —s)
where

$(y, t, s) = ye """+x(&(cosset —e "'' "cosmos),

Clearly, these exponentially damped correlations
do not describe a reversible quantum-mechanical
oscillator. Here we see explicitly that the Marko-
vian diffusion process characterized by the Fok-
ker-Planck equation (2.1) does not describe ade-
quately the motion of a quantum-mechanical
particle.

V. NON-MARKOVIAN PROCESSES AND
QUANTUM MECHANICS

In this section we investigate the more general
problem of deciding whether or not there exists a
non-Markovian process equivalent to the Schro-
dinger evolution. A general stochastic process
x(t) is characterized by the set of all multitime
moments (f„(t„) .f,(t,)).of arbitrary function
f(t) =f(x(t)}. The two-time moments (correlation
functions) satisfy the following conditions.

(I) Compatibility:

(f(t )1(t,))= (f(t,), (5.1)
{

where 1 denotes the unit function 1(x)= l.
(II} Linearity:

&g(t,)[nP, (t,)+ ng. (t,)])
= n, &g(t )f (t ))+ n &g(t )f (t )) (5.2)

(III) Symmetry:

&f (t.)f (t,))= &f,(t,)f (t )) . (5.3)

&f.«.)f.(t.))= &c lf.(t.)f.(t.) ly)

where l(t) is the Schrodinger wave function at
time t = 0, and where

f (t) e(il )))H&f( )e-(i/ h)Ht

(5.5)

(5.6)
is the Heisenberg operator which corresponds
to the classical observable f(x(t)).
This definition of the quantum-mechanical corre-

lation function does not fulfill the symmetry and
positivity requirements (III) and (IV), because

(IV) Positivity:

f -0, f -0 &f (t )f (t )) 0. (5.4)
The correlation functions of classical statistical

mechanics fulfull these conditions. There is no
unique extension of the classical correlations to
quantum systems, and various definitions of
quantum-mechanical correlations have been intro-
duced in different contexts.

A definition widely accepted in quantum optics, '
reads'4
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the operators f,(t,) a.nd f,(t,) generally do not
commute for different times and their product
is not a Hermiti'an operator.
Symmetry holds if one uses the definition

which often occurs in quantum-statistical thermo-
dynamics. " However, this definition also does
not fulfill the positivity requirement (IV). An
explicit counterexample to (IV) is given in the
Appendix.

Another definition of the quantum- mechanical
correlation function comes from the theory of
the measuring process and takes into account the
reduction of the wave function at the time of the
first observation.
For t,&t, the correlation of two arbitrary func-

tions of the position x is defined by"

&f,(t.)f,(t,)&=- &f,(t,)f.(t, )&
=trf, (t, —t,)f,(0)W (t,'),

where tr denotes the trace, and where W"(t,') is
the density matrix of the reduced ensemble pro-
duced by the position measurement at time t, ."
The measurement changes the situation from one
corresponding to a pure state described by the
density matrix

w(g-) e-( i/h)Hi
I q&&q Ieii h)H/t

(5.8)

(5.9)
to a situation corresponding to a mixture which is
described by W"(t,').
The correlation function (5.8) fulfills the sym-

metry and positivity conditions (III) and (IV). In
order not to violate the linearity condition we
must put

&f2(t2)l(ti)& = trf2(t2 —ti)W (t~), t2 & t~ (5.10)

which does not coincide with

&f,(t,)&= trf, (t, - t, )W(t;) .
Consequently, compatibility (I) and linearity (II)
cannot both hold. The reason for this is that the

(5.ll)

&f.(t.)f,(t,)&=k&eIf2(i2)f, (t,)+f (t,)f (t2) I4& (5 ~)

evolution of a quantum-mechanical system is in-
fluenced by measurements in contrast to the evolu-
tion of a classical system.

VI. CONCLUSIONS

In this paper we have analyzed the relations
between the theory of stochastic processes and
the statistical interpretation of quantum mechan-
ics. We have shown that the Schrodinger evolution
is not equivalent to a Markovian process, as
claimed in several papers. Possible relations
to a non-Markovian process have been investi-
gated, and we have shown that the various corre-
lation functions used in quantum theory do not
have the properties of the correlations of a classi-
cal stochastic process. This leads to the conclu-
sion that quantum mechanics has little if anything
to do with the theory of stochastic processes.
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APPENDIX

Consider the harmonic oscillator of Sec. IV.
Heisenberg s equation of motion for the position
operator x has the solution

x(t) =x cosidt+ (p/(om)sinidt, (Al)
where p= -ih s/sx is the momentum operator.

We now determine the symmetrical correlation
(5.7) for the positive observables e'" and x' in the
ground state I0&. An elementary calculation yields

p &0
I
e'"' "x(0)'+x(0)'e'""'

I
0&

=(iI/2m&v)e"' / "[],+(jzc /2m')cos2(ot], (A2)

which for Sc &2m' is not positive for all t.
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