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In this communication we comment on a recent work [12] on the evaluation of the
memory-kernel of the generalized master equation. We derive in a transparent and
straightforward way the basic expression for the memory kernel. We demonstrate that
the evaluation of this expression in [12] is carried out by use of the exact Laplace
transform of the Greens function solution of the master equation.

I. Introduction

In recent years the projection operator technique and
the concept of generalized master equations proved
to be a very useful tool for the description of a set of
macrovariables a [1-5]. Starting from the basis of
microscopic first principles the projector operator
method enables to contract on the minimal infor-
mation necessary to describe the macroscopic dy-
namics. This information is collected in the relevant
probability fi(t) whose time evolution is determined
by the generalized master equation

t

= t) + I ( ( t -  dr  + I(t). (1.1)
0

The method of master equations has seen a rapid
development over the last years and recently the
emphasis has shifted from the basic theoretical work
to applications [3, 4, 6-9]. In spite of the flexibility of
the generalized master equation there are certainly
limits of its practical usefulness: The main difficulty
lies in the evaluation of the rather involved formal
expressions for the integral kernel K(t) and the in-
homogeneity I(t). Recent theoretical progress has
elucidated that the problem connected with the in-
homogeneity is not the most serious one. By taking
the preparation of the initial distribution explicitly
into account one can always obtain a homogeneous
generalized master equation with uniquely defined
stochastic operators [10, 11]. Consequently, the ma-
jor difficulty is the evaluation of the memory kernel
K(t). It involves the solution of a problem with the

unusual propagator exp(1-P)Lt  where L means the
microscopic stochastic operator (Liouvillian) and P
the appropriately chosen projector operator. An
exact integral equation for the stochastic operator
K(t) which does not contain this unusual propagator
has been derived in Ref. 10. However, it remains to
be shown that a perturbation expansion based on
that integral equation is more adequate than the
usual procedures [3, 4].
In a very recent paper [12] on this subject, a method
has been presented which allows an exact evaluation
of the memory kernel K(t) without using a per-
tubational expansion. The aim of this communication
is to show that this method makes use of the exact
Laplace transform of the solution of the master equa-
tion (1.1). Hence, the method is of no use if we want
to determine that solution. However, it exposes some
general properties of memory kernels !

II. Evaluation of the Memory Kernel

Starting from the equation of motion for the micro-
scopic probability function p(t)

~(t) =Lp(t) (2.1)

we obtain by use of an appropriately chosen pro-
jector operator P (i.e. this choice implies (1-P)p(0)
=0) for the relevant part Pp(t) the generalized mas-
ter equation [3, 4, 10]
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d t
~- P p = P L P  p + ~ K ( t -  z) P p(t - z )  d z (2.2)
at o

with K(t) given by

K(t) = PL e (a - P) Lt(1 - P) LP. (2.3)

The time-evolution of the relevant part  p( t )=Pp( t )  is
described by the propagator  G(t) satisfying (2.2) with
the initial condition G(0)= P; i.e.

p(t) = G(t) p(O) (2.4)

where

G(t) = P LPG(t) + i K ( t -  z) G(z) dz,
0

G(0) =P. (2.5)

Note  that from (2.1) the propagator  G(t) is simply
given by

G(t)=peLt p. (2.6)

The method of the evaluation of the memory  kernel
K(t) proposed by the authors of Ref. 12 has its bear-
ing on the equation

It(z) = z P - G(z)- 1 _ P L P  (2.7)

with

f ( z ) = ~ ( e x p - z t ) f ( t ) d t ,  G ( z ) = P z ~ P .  (2.8)
0

However, Eq. (2.7) is equivalent to (2.5) because is just
represents the usual Laplace transform of the latter
relation. By use of the Laplace inversion we obtain

1 - 1

2 n i c  I
(2.9)

where C denotes the usual path (not closed) in the
complex plane [13] that passes the eigenvalues of L
from the right side. Equation (2.9) is the main result
of Ref. 12; it has been derived there under the implicit
assumption of a bounded spectrum of L. The authors
of Ref. 12 consider in this context a different path
steming from the integral representation of the F-
function. Under some mild mathematical  restrictions
this path can be deformed to a closed path such that
the contributions of the analytic first and third term
in (2.9) vanish and consequently can be droped for
the evaluation of the memory  kernel K(t), t > 0. Using
the usual Laplace path C in (2.9) we obviously obtain
from those two terms the singular contributions
5'(t)P and - 6 ( 0  PLP respectively. However, these
singular terms are compensated by the singular con-

tributions of the second term yielding for K(t), t >= 0 a
regular expression [11].
Also, it can be seen that a further evaluation of K(t)
from (2.7) or (2.9) is based on the knowledge of the
propagator  G(z) (or up to a Laplace transformation
on G(t )=peLtp)  which on the other hand represents
the solution of the generalized master equation (2.5).
This latter fact can be seen explicitly from the exam-
ples given in [12, 14]. However, in cases where we
know the propagator  G(t )=peLtp  either exactly or
within an approximation there is in general no need
to consider the master equation (2.2). Nethertheless,
equations (2.7) and (2.9) may be used for a test of
approximation schemes as presented in [3, 4] in cases
where the exact solution is known.
Finally, I would like to mention, that with a possible
series expansion for the memory-kernel  given in (2.3),
generated from a small dimensionless parameter,  the
generalized master equation does not remain an emp-
ty concept [3, 4, 6]. Its advantage lies in the fact that
the calculation of K(t) is based on the projected
relevant information and not on either an exact or
perturbative solution of the microdynamics (i.e. so-
lution for the propagator  er~).
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