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We present the continued fraction solution for the stationary probability of discrete
master equations of one-variable processes. After we elucidate the method for simple
birth and death processes we focus the study on processes which introduce at least
two-particle jumps. Consequently, these processes do in general not obey a detailed
balance condition. The outlined method applies as well to solutions of eigenmodes of the
stochastic operator. Further we derive explicit continued fraction solutions for the
Laplace transform of conditional probabilities. All the various continued fraction coef-
ficients are given directly in terms of the transition rates and they obey recursion
relations. The method is illustrated for the stationary solution of a simple nonlinear
chemical reaction scheme originated by Nicolis.

1. Introduction

In recent years, the concept of master equations has
attracted wide attention. These equations play a ma-
jor role in the description of systems which do not
behave in a deterministic way, but display statistical
fluctuations of the system variables. In many cases,
e.g. if particle or occupation numbers are involved,
the fluctuations are of discrete nature. Then a discrete
master equation, describing the time evolution of the
probability function on a state space N of a finite or
countable set of states, provides a useful starting
point for the investigation of the stochastics. Its ap-
plication covers such different field as quantum op-
tics [1-2], the stochastic theory of chemical reactions
[3], biophysical reactions [4] etc. However, exact
solutions of master equations are known in relatively
simple systems only; mainly because exact solutions
in terms of the spectral properties are in general too
complicated for an explicit evaluation. As a con-
sequence, various tractable approximative solution
schemes [5, 6] and the transition factor method [7]
have been developed. Nevertheless, it is of great
interest to find classes of stochastic processes for
which the exact stationary as well as time dependent
solutions can be obtained in an analytical form which

in addition is also appropriate for a computer eval-
uation [8]. In this context, the method of continued
fractions proved to be a very useful tool for the
investigation of correlation functions and spectral
functions in stochastic systems [9-11].
In this paper we want to extend the technique of
continued fractions to the direct solution of the sta-
tionary solution, eigenfunctions and Greensfunctions
of discrete master equations: In Sect. 2, we re-ex-
amine the steady state solution of a simple birth and
death process by deriving explicit continued fraction
expansions for the nearest neighbour transition func-
tions. By use of the same reasoning, we present the
continued fraction solution of the eigenmodes. By use
of the Laplace transform we present in Sect. 3 the
explicit continued fraction solutions of the con-
ditional probability. We further investigate the asymp-
totic behaviour of some stochastic quantities such as
tile mean absorption time. Sect. 4 contains the main
results of the present work. There, we derive the
continued fraction solution for the stationary proba-
bility and eigenmodes of processes introducing at
least two-particle jumps. An example, exposing some
advantages of the continued fraction method, is stud-
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ied in Sect. 5. In Sect. 6 we give a brief discussion of
the results with an outlook to solutions of more
general problems.

2. Reconsideration of the Steady State Solution
of a Simple Birth and Death Process

In order to elucidate the basic ideas we start the
investigation with the stationary solution of a simple
birth and death process. Let us consider a process in
which a population of size i, i = 0, 1,... changes due to
birth at a rate r + =4/ and death at a rate r~-=#~
(simple birth and death process). If P~(t) denotes the
probability that the population has size i at time t the
master equation that governs the evolution of this
probability reads

Po( t) = - 4o Po( t) + #1 P1 ( t) (2.1 a)

/~/(t) = 2/_1 P~-I (t) - (4i + #i) P/(t) + #i+~ Pi+~ (t),
i = 1, 2, .... (2.1 b)

For the following we restrict the consideration to
physical systems for which the stationary solution of
(2.1) is unique and strictly positive in Z. For example,
we exclude the case with absorbing states; satisfying
2/=#/=0.  Then the nearest neighbour transition
function 4~ [7]

ps
4/ pT- , i=1 ,2 , . . .  (2.2)

* / -1

is well defined. Setting the time-derivation in (2.1)
equal to zero we obtain after division with P~ 1 the
recursion relation

4 i -  1i s = (2.3)
( 4 i q - # i ) - - # i +  1 4 s + l

The relation in (2.3) generates the in general infinite
continued fraction

is__ 41 1 #i+ 1 4i i =  1, 2 , . . . .  (2.4)
(4i"~-#i)-- ( 4 i+1 -1 -# i+1 ) - -  " " '

By use of a simple equivalence transformation we can
cast (2.4) in the form

~/ \ #i / 1+ 4 i -  1 - t - - - -
#i

4 / - \  g~ /"  g/"

4 i

#i
2il

#i+ 1

... (2.5)

(2.6)

Observing the boundary condition in (2.1a) we have

i~ = - -4° (2.7)
#1

yielding for the in general infinite continued fraction
g] the result g ] = l  and subsequently gS=l, i
= 1, 2,.. . .  For a finite set of N states we have 2 N = 0,
so that the result gS = 1 can be verified explicitly from
(2.5). As a consequence we find up to a normalization
constant P~ the stationary solution

ps=  p~ ( I  i~ = P~ exp ~ lni~ (2.8)
i - 1  i=1

which with (2.6-2.7) combines to

P2=P~ 12i 2/ 1 (2.9)
/=1 #i

The result in (2.5) is well known from detailed bal-
ance considerations.
The same technique can be used for the determi-
nation of the components of an eigenmode 0f(P) with
eigenvalue p < 0 obeying:

0 = 4 i - 1  ~//i-1 (/0) --  (41 -[- #i q- D) @i(D) ~- #i +1 ~/i + 1 (/0).
(2.10)

We remark that with 2/, #i+ 1 >0, i=0,  1, ... all eigen-
values Pi are real and simple. Further the sequence
of characteristic polynomials (Pl(P), (Pz(P),"" q)n(P)
obtained from the n-th approximation where 2i = #i+ 1
=0, i = n , . . ,  forms a so called "Sturm"-chain [12].
We emphasize that the latter properly provides an
extremely stable and rapidly convergent algorithm
[12] for the calculation of the eigenvalues which
occur in (2.10). Introducing

O,(p)
4f ~,- I(P)' i=  1,2,... (2.11)

such that
i

O/(P)=Oo(P) l~ 4j p'
j = l

we immediately find from (2.10) the continued frac-
tion

i f  - 2/_ 1 &+ 12/ .... (2.12)
( 4 / + # / + 0 ) -  (4+ ~ +#/+ ~ + # ) -

Noting that for a finite set of N states

4 o + p
gl

= 4° #241 #N- 14N-2. (2.13)
(41 q- #1 q- P) -- (22 q- #2 q- P) -- "'" (NN- i -I- P)
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(2.13) represents an implicit expression for the char-
acteristic polynomial (PN(P). The above eigenvector
components can also be calculated directly via the
recursion formulas for the characteristic polynomials
(&(p), i=0,1 . . . . .  N;

(po(p)= 1, (p~(p)=(2o+p), (2.14a)

~o~(p) =(,~i ~ +]/~_ 1 +p)  q)i- ~(p)
- 2~_ 2 ]/~_, (p~_ 2(p), i = 2  . . . . .  (2.14b)

We explicitly find for the components of OP

Og=l,

0f =(&(p ; i=1 ,2  . . . . .  (2.15)
/j=O

However, in contrast to the continued fraction ex-
pressions, these explicit formulas (2.14) are known to
be numerically unstable [12].

3. Continued Fractions for Time-Dependent Solutions

So far we have been concerned with the study of the
stationary solution or eigenmodes only. One of the
challenges that this work contains is the continued
fraction solution of conditional probabilities of a
discrete process. Considering the system of differen-
tial-difference equations in (2.1) that governs the
time-evolution of the probability P,(t) the best ap-
proach to a general solution appears to be through
the Laplace transform technique. Let us introduce
the Laplace transform

oo
P~(z) = ~ dte ~ P,(t), (3.1)

0
with z = x  +iy ,  x >0. Then the Green's function so-
lution G(n,t[no)-P,("°)(t) (conditional probability) to
(2.1) satisfies the set of equations

]/1 P*("°)(z) = --  6o, ,o + (20 + z) Po("°)(z), (3.2 a)

= - 2 i_  1 ~(_U (z) + (2, + ]/, + z) ~(°o)(~) _ a , . .o .

i=  1,.... (3.2b)

In (3.2) 6~,,,o denotes the Kronecker delta function.
Choosing the initial condition 6~,~o = ~i,,o= 0 we devise
from (3.2a) and (3.2b)

1G(n = 01no = 0; z) ~ Po(°)(z)-

2 0 + z  --]/1 Po(O)(z)
(3.3)

1 ]/120 ]/221
--~.0---~Z-- 21~-]/1~- Z -  22"1-]/2-}-Z--

]/i 2i- 1
... pi(+o(1 (z). (3.4)

2i+]/i +z - ] / i+  1 p(O)(z)

Thus we obtain for the special solution Po(°)(z) the in
general infinite continued fraction

P(oO)(z) = 1 ]/1 20 .... (3.5)
2 o + Z -  21 +]/a + z -

This continued fraction is just the even contraction of
the Stieltjes fraction [13],

p;O)(z)= 1 __20 ]/I 21 ]/2 "'', (3.6)
z+  1+ z+  1+ z +

which converges uniformly to an analytical function
of z in the whole complex phase (except at the poles
located on the negative half of the real axis) whenever

i (]/1]/2 "'#i)/(2021 2i)= i Mi
i = 1 " "  i =  1 NT' ( 3 . 7 )

Mi=]/1]/2 ...]/i; N / = 2 o  21 . . .2 i (3.8)

diverges [13]. For the transition function {°(z)

{°(z) - P.(°) I (z) (3.9)

we find from (3.2b) the contracted (Stieltjes) con-
tinued fraction

~2+ I(Z) = 2n ]/n+2 2n+ 1 ....
2n+l-t-]/n+l't-Z-- 2n+2-~-]/n+2@a-- (3.10)

For the following, we consider the n-th convergent
p,(o)~,~0,,t~j obtained from (3.6) by setting ]/,=]/,+1 = . . .
=0.
In terms of the functions A.(z), Bn(z ) it can be written
as
p,(o)t,~ A,(z)

o,,t"J-B,(z) (3.11)

where A,(z), B,(z) satisfy the recursion relation [13]

A.+ l(z)=(2. +]/.  + z ) A . ( z ) - &  2 1 a._ l(z)
B,+ l(z)=( 2, + ]/, + z) B,(z ) - ] / , 2 , _  1 B _  I(Z)

with

(3.12)

Ao(z)=O, Al(Z)=l
Bo(z)= 1, B, ( z )=2o+Z.

1 The rates 2~, #~ have been assumed to be positive for all i
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Noticing that

e(O (z) =
No

: B2(z ) - B 1 (z) #2 ~iO)(z)" (3.13)

P,(°)(z) is suggested to obey the recursion relation

N, ~ (3.14)P"(°)(z)-B + l(Z)-B.(z)#,+1 ~,+ ~(o) l(z)

which is easily verified from (3.2) with induction on n.
Thus we have for the solution

P,(°)(z)=Po(°)(z) ~I ~I°)(z) (3.15)
i=1

the explicit continued fraction

N,_, /B,(z)  # ,+ ,2 ,  .... (3.16)P2)(Z)-B+ + z -

If we choose in (3.2) the general initial condition b,,,o
with n o > 0 induction on n shows that

B,(z)P,(~_~(z)=#,B,_l(z)P,("°)(z), n :  1,2,. . . .  (3.17)

In particular for n = n o

B ,o(Z ) P.(o°! l (z) = #,o B ,o-1 (z) P,(o°)(z). (3.18)

Inserting (3.18) in (3.2b) with i=n  o gives

p(,o) (z~ - B"° + 1 (z)
#no+l  n o + l \  ) - -  ~ 'P ( : ° ) ( z )  - 1 '  (3.19)

no[ z )

Equation (3.19) with (3.2b), where i=n  o + 1, ... forms
a system of equations analoguous to (3.2b) with n o
=0. Combining (3.2b) with (3.19) we find the con-
tinued fraction

1
p(~o)(z) = B.o +1 (z)/B,o(Z) - #,o +t ~,o +lw,~(,o) ~,~ (3.20)

where ~(,o),(z) is the contracted Stieltjes fractionnO+

~("°~ ~(z)= 2"° #"°+22"°+~ ....
no+ )~no+ I + #no+ I + Z - 2no+ 2 + #no+ Z + Z__

(3.21)

By compariance of (3.16) with (3.20-3.21) and apply-
ing repeatedly the relation (3.17) we obtain the re-
lations

(, , M,o Bi(z)Pi ° ~ ( z ) = ~ , , ' P , ( ~ ° ) ( z ) ,  i=0,  1 . . . .  ,n o (3.22a)
IVI i Dno[Z)

Pi("°)(z) - ~ P/(°)(z), i = n o, n o + 1,... (3.22b)
IV_noI

o r

M,oBi(z ) (  1 #,o+12,o )
M  B.o(Z)  - + + z ) - " "  '

i=0,  1, . . . ,n  o

N - 1  Boo(Z) { 1
~ 2 ; ~ ( z )  ~B,+~(z)/B~(z)- (2,+

i = no, no + l, ...

#i+ 1 2i ...~
, + p i + l + z ) -  ] '

(3.22c)

In time space we have for the time-homogeneous
conditional probability G(n, tlno) from the inverse
Laplace transformation

1 +co
G(n, tlno)= ~ ~ e~P}"°)(z)dy. (3.23)

In order to calculate this Laplace inversion one ad-
vantageously determines first the location of the
poles (eigenvalues pN0). Using the m-th convergent
approximation P~,"~)(z) the eigenvalues are according
to (3.16) given by the zeros of the polynomials
B,+Az).
It is also worthwhile to emphasize that the continued
fraction solutions allow an efficient calculation of
asymptotic stochastic properties. For example, we
find from the residue of P~("°)(z) the correctly normal-
ized stationary probability

lira z Pi ("°)(z) = Pi s (3.24)
z~0

and from

- lim ~ zPi("°)(z) ='c,o(i )
z~0

(3.25)

the mean absorption time z,o(i )

%0(0= ~ t G(itlno)dt. (3.26)

4. Stationary Solution of a Discrete Master Equation
with Two-Particle Jumps

In this section we investigate the stationary stochastics
of systems for which detailed balance does not nec-
essarily hold. In particular, we confine ourselves to a
study of systems in which two-particle jumps with
rates r/~ + = v i and r~-- =co i may occur. Examples are
given by the stochastic modeliugs of interacting so-
cial groups 1-14-15] or chemical reactions introduc-
ing bimolecular reaction steps [3,5, 16]. For these
cases the stationary birth and death master equation
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reads

O= 20Pd-E I ] P~ q-#2 Pd q-co3 P ~

0 = ~i- 2 P/S- 2 -}- 2i- 1 P/S-i - - [  i] p/s
+#i+ 1Pi+ 1 +coi+ 2 Pi+ 2, i=2 ,3 , . . .

with

(4.1 a)

(4.1b)

(4.1 c)

[0] = 20 + vo
[1]=21 + # 1 + v l

[i] = 2i-? #i + vi]-coi, i=  2, 3 . . . . .  (4.2)

As before, we introduce the nearest-neighbour tran-
$__ s ssition function ~i -Pi /P/_l .  In virtue of (4.1a) we

obtain

E0]~] - (4.3)
#1+co2G

and from the boundary condition in (4.1b) we deduce

[1] [0] --]/1 2 0

~'~ = coz 20 + E0] (#; + COB ~ ) '  (4.4)

Considering the expression for ~ we find after a
straightforward calculation the result

[2] [13 [0] - [23 #1 20 - [13 Vo co2 -G -
c%(21 [0] +#1 Vo) +

-- [0] #2 21 --20 21 (D2 -- !70 #i #2 (4.5)
+ (Eli [0] - #12o) (#~ + ~o+ G)

This result suggests the following ansatz for the re-
cursion relation of the transition coefficient ~

a,_ l (4.6)
~ = b ,  +a , -  2(#, +c°,+ ~ ~+ 1)
with

a _ l = l ,  ao = [0], a l=E1] [0 ] -#120 ,

b 1 =0, b2 = co2 20 . (4.7)

By use of (4.1c) and induction on n we find the
recursion relation

With an equivalence transformation we can cast (4.6)
in the form

1 ft, f i ,+l . . .  (4.9)
C=c~"l+: 1+ 1+

where
a,_ 1

°:"=bn-t-#na. 2'
a"a"- 2 (4.10)

fl"=C%+ l (b, + g, a,_ 2)(b,+ l + #,+ l a,_ l)"

Considering a (right-) eigenmode 0(P) we obtain for
the ratio ~,(p) the continued fraction

0,(P) a,_ I(P)~.(p) -

~,-I(P) b,(p)+a,-z(P)(#,+cG+I 4,+1(P))
(4.11)

where a,(p), b,(p) satisfy the recursion relations in
(4.8) with In] substituted by [n]-* [n] +p.
In analogy to Sect. 3, where we find from (3.14), (3.24)
a closed continued fraction for the stationary solution
itself, we may look for a closed expression for the
stationary solution of the process in (4.1). The results
in (4.3~4.5) suggest the following ansatz which is
verified by induction on n.

s_  s -1 (4.12)p._pd c.
d, +d,-1 an- 2CO.+ 1 ~ n + l

Here the continued fraction coefficients {c,}, {d,}
obey the relations

G=ao.a l  ...a,, n=0,  1,2 ... .

d,=(b,+ G 2#,)dn_l-l-oonan_lan_3dn_ 2 (4.13)

with the initial values

do= l ,  d l = #  1. (4.14)

In the particular case that ~o~ =0, i=2,  3 .. . .  N -  1, 2 we
obtain from (4.12~4.14) for the distribution function
ps the useful result

~-  an-1 , n = l , 2  . . . . .  (4.15)P~ - PdPl " #2" ... "#.

For a simple birth and death process we immediately
recover the well known result in (2.9).

an- 2 an- 4a,_x=[n-- t]an_2--oo,_l  V,_3
an 3

- ( b , _ l + # , _ x G _ 3 ) ' ( v , _ 3 b " - 2 + ~ [ ~  2a" 4 ~-2,_2) ,

(4.8 a)

bn=ogn(Vn_3[bn_2+#n_zan_4]+2n_2an_3). (4.8b)

5. Application to a Simple Nonlinear Model

We illustrate here some of the previous ideas on the
simple biomolecular reaction scheme
A k l )X ,  2 X k Z + A .  (5.1)

2 We assume a finite number  of states. Then no explosion to
infinity can occur
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This reaction has been studied previously by a num-
ber of authors [5, 16, 17]. For the following we denote
by n the number of particles of a chemical species X
which is the stochastic variable of the model. The
master equation for this model reads

lJ(n, t) = k 1NAP(n -- 1, t) + k2(n + 1) (n + 2) P(n + 2, t)
- [k 1 N A + k2(n - 1) n] P(n, t) (5.2)

yielding

2 . = k l  NA=-2 , /x. = 0 ,

v,=0,  c % = k z n ( n - 1 ) ,  n=2,3,  . . . .  (5.3)

The continued fraction coefficients {G, b,} in (4.8) are
calculated to be

a, = 2" + a, b, = co, 2"- i (5.4)

such that from (4.10)

~.=17°- (;o/G)
n ( n -  1)' n = 2, 3, .... (5.5)

Thus Equation (4.6) reads explicitly

(;/k~)
~ - , n = 1 ,  2 . . . . .  ( 5 . 6 )n ( n - 1 ) + ( n +  l )n~ ,+ l

The maximum of the probability distribution can be
~ ~ 1. The po-obtained from (5.6) by setting ~ , + ~

sition of the peak in the example is thus given by

(5.7)
nw= \2k2 ] "

In normal situations the peak has a rather broad
extension on the macroscopic scale of the particle
number n. Because ~, around n w is a slowly varying
quantity we set in roughest approximation

(;/k~)
~ s  _+ z, ~ 2(n -t- A n) 2" (5.8)

A more refined expression for ~ can be obtained
S ~ sfrom (5.6) with ~,~,,~,+~

1 (1 l ( l+X¢:= - i +  ~q k~ (.a~l-) ~} ~ - ~ +  \~ U~VI  (5.9t
This expression just coincides with the result ob-
tained by GOrtz and Walls in terms of the q-method
[5]. But in contrast to the q-method we do not need
to consider a quartic equation in q.
Noting that with the Euler-Mac Laurin summation
formula we obtain

n~+An 1 ~ s
P~L+an=PnL ~:,~+~ a ~ P n L  exP2 ~n ,: ,w'(An) 2. (5.10)

Therefore we have for the variance 0 -2 of the distribu-
tion from (5.9) the result

3t;  7  3 a 2 = ((A n)2> =~  \2~-z ] = ~ n . .  (5.11)

Using for large and small n the somewhat crude
approximation i s in (5.8) for all n 3

(2 /G)
~ -  2n  2 , n = 1, 2 , . . .  (5.12)

we obtain for the stationary probability the ex-
pression

s p,s . (5.13)P~ - o (n !)2"

By noting the ascending series of the modified first
Bessel function [18] we find for fd the result

1

/z~ Io( 2)]/2~/k2)' (5.15)

Henceforth, the mean values (n} and <n2> a re  calcu-
lated to be

Ii(2nw) 1
(n}  = n w I0(2 n~) - n w - ~  + .... (5.15)

2 (5.16)<n2> =n~.
Thus the variance 0 .2 equals within this crude approxi-
mation the value

o_2 ___ @2> _ (n> 2 = ½nw + .... (5.17)

For the model in (5.1) the moments can be calculated
exactly [17] yielding

I°(4n~) - n ~ + 8 ,  (5.18)
(n }  =n~i i (4nw)

I°(4nw) [ n I°(4nw)]
t - -  w - -  0.2=n~i i (4n~)  1 i1(4n~)]

-}- w--4 w n2 - - !n  q- 11~ -t- . . . .  (5.19)

Thus, we can deduce, that with a reasonable size for
the system (e.g. (n} ~ 100) the Gaussian approxima-
tion (5.10-5.11) is almost exact! With the crude ap-
proximation in (5.12) the mean value is produced
nearly exact whereas the variance fails the exact

1result by a factor 3n w.

3 For n>> 1 the correct asymptotic behaviour is from (4.6) given by
G = ;o/(k2 n 2)
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6. D i s c u s s i o n

We derived exact solutions in terms of continued
fractions of discrete one-variable master equations
which in general do not satisfy a detailed balance
relation.
The explicit expressions are given in mathematical
appealing forms which simplify considerably the
study of the stationary and time-dependent fluc-
tuation dynamics in nonlinear stochastic systems.
This latter fact is also exposed in the example of Sect.
5, where we obtain very satisfactory results by use of
simple approximation schemes. The results of a non-
trivial application and various refined approximation
schemes will be discussed elsewhere.
The outlined method for the stationary solution is
not restricted to birth and death processes with possi-
ble two-particle jumps only. However, higher order
jump processes require a study of more and more
complicated boundary conditions. Likewise, the
method in Sect. 3 can also be extended to higher
order jump processes. For example, we obtain from
the results in Sect. 4 for the transition function of the
conditional probability of the two-particle jump pro-
cess the recursion relation

(.o) - P/("°)(z) ai- l(z)
~i (Z)-pi(,,~(z) -bi(z)+ai_ z(Z)(#i+~oi+ l,~i+ l,.,, y(no) ( ~  '

i= l, ..., no - l, no+l  ,.... (6.1)

Hereby ai(z), bi(z ) satisfy the recursion relation in
(4.8) with [i] substituted by [i(z)]=[i]+z. In this
context it is worthwhile emphasizing that for the
calculation of correlation functions (f(x(T)) g(x(0)))
the direct continued fraction methods in [9-11] are
in general superior to those which introduce the
continued fraction representation of the conditional

probability: Whereas the correlation function may be
determined by a restricted set of relaxation frequen-
cies and variable weighted modes, the conditional
probability is composed of all relaxation frequencies
and modes with equal probability.
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