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The continued fraction method is applied to the summation of various types of series using
a computer-oriented recursive algorithm for the calculation of continued fraction coetlicients.
For convergent as well as for formally divergent series, the continued fraction representation
so obtained shows a marked improvement of the convergence behaviour compared with the
corresponding series representation.

1. INTRODUCTION

In recent years there has been some resurgence of interest in the field of application
of continued fractions (CF) [l-3]. In particular, the method has proved to be a very
useful tool for summing up asymptotic perturbation series as they occur in scattering
theory [4, 51, field theory [6] and statistical mechanics [4, 71 as well as applied
mathematics [ 1, 81. A fundamental advantage of the continued fraction method is the
fact that it yields a useful analytic continuation of asymptotic series. An unsolved
problem in this context is the derivation of rules which determine conditions under
which the CF method provides us with the correct analytic continuation. Further, for
the method to be an effkient tool in practical applications one needs a powerful
algorithm giving the continued fraction coefficients. Recently, we presented such an
algorithm [4], which we expand in this paper. Our aim is to show the usefulness and
flexibility of this algorithm for the summation of various types of series, and also
shed some light on the difficult theoretical problem of the correct analytical
continuation. Further, in the application of the CF method it is also important to
have realistic estimates of the truncation error 1 F - F, 1 when, in general, the infinite
CF for the result F is approximated by its nth continued fraction approximant F,.

In Section 2 we review some basic properties of CF expansions with emphasis on
methods for obtaining truncation error estimates. In Section 3 we present an
algorithm for the summation of general series in terms of continued fractions. The
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method is then appl ied in Section 4 to various types of series: absolute convergent
series, conditional convergent series and asymptotic series. Finally we discuss the
possibility of an analytic continuation of series with the CF method. Our conclusions
are stated in Section 5.

2. BASIC PROPERTIES OF CERTAIN CLASSES OF CONTINUED FRACTIONS

Let K(a,/b,) denote the (infinite) continued fraction

a,,b,E @ .

This continued fraction remains unchanged in value if some partial denominator and
some partial numerator, along with the immediately succeeding partial numerator, are
multipl ied by the same non-zero constant. By use of such an equivalence transforma-
tion the continued fraction can be written either in the form

with the coefficients (p,,} defined by

/j2k+l zi~*b,,+,, k> 1,
1 3 ..’  a2kfl

or in the form

with

a,Cl*=----, ak

b,
ak= 5~~ k> 2.

(2.2)

(2.3 1

(2.4)

We remark that in the special case with a,, b, E R and a,, b, > 0 for n > 1 two suc-
ceeding approximants F, form lower and upper bounds, i.e.,

F 2n-, <F<F,,. (2.6)
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Moreover, we have the stronger relation

F 2n--1FF2n+1~FFzn~Fzn-z~Fzn-4. (2.7)

Next we will give some realistic error estimates for the truncation error (F-F,\,
which we believe has not been sufficiently discussed in the literature. A widely ap-
plicable result due to Merkes 191, using the information based on the sets (a,), {b,},
is: If for all n > 2

I I
$F <r(l-r), O<r<f, (2.8)

nn 1

we have the a posteriori bound

(2.9)

These results represent an improvement over the pioneering results of Blanch [ l].
Another, very useful result is due to Jones and Thorn [ 10, 111: Consider the CF in
Eq. (2.2) where

I artit P, I < i - 6, &>O VnEN,; (2.10)

then we obtain the a posteriori bound

IF-F,1 <IF,-F,-,I. (2.11)

These continued fractions have been proved to be convergent if and only if C ]&I
diverges [ 121.

3. OUTLINE OF THE METHOD FOR SUMMATION OF GENERAL SERIES IN TERMS OF
CONTINUED FRACTIONS

In the following we present a convenient method of summing a series

S= 5 ai, UiE c. (3.1)
i=l

This series can be recast in the form

with

S=S(y= 1).

(3.2)

(3.3)
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Considering S(y) as an asymptotic series, an analytical continuation is obtained by
transforming S(y) into the form of a continued fraction

(3.4)

The proposed method of summation consists in evaluating the series via the CF in
Eq. (3.4) at y = 1. The efficiency of this method lies in the fact that the continued
fraction coefficients (di} can be calculated from the set {ai} in a straightforward way
by use of a recursive algorithm [4]. For completeness we now sketch this P-
algorithm. Starting from the first coefficients

4 =D,, 4 =a,,
4 = - &ID,, D2=a2,
4 = - QID,, D3=a3+a2d2,

(3.5)

4 = - D,lD, , D, = ~4 + W, + 41,
the further coefficients D,, n = 4,5 ,..., can be determined recursively. Using the
vector X of dimension’

L = 2 . [(n - 1)/Z], (3.6)

we start from n = 4

X(1)=4, X(2)=d,+d,,

interchange

q2) +X(l), X(I) +X(2)

and work upwards: setting X(L - 1) = 0 we have for n > 5

X(k)=X(k- l)+d,-,X&-2), k=i,L-2 ,..., 4,
and

X(2)=X(l) +d,_,.

(3.7)

(3.8a)

Interchange after each recursion step the odd and even components

X(2)+X(l), X(4) -+X(3);
X(l) -+X(2), X(3) +X(4); etc.

Then the coefficient d, is given by

(3.8b) ‘r

(3.9)

’  Note that the notation [ ] implies the integer part.
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where

L/2
D, = a, + c a,_J(22- 1). (3.10)

i-1

In practice we generally have to break off the infinite CF in Eq. (3.4) at an ar-
bitrary order without knowing the exact truncation error. An approximate error es-
timate for the truncated CF can be obtained in the following way. In Eq. (3.4) setting

cn(y)= Y + C,+,(Y)

we obtain with En(y) = Cn+ i(y):

C,,(Y) = - ; (Y f (Y’  + 44)“*).

(3.11)

(3.12)

In order to obtain the correct asymptotic limit (C - y-’  for y % 1) select the minus
sign in Eq. (3.12).

4. APPLICATION OF THE CONTINUED FRACTION METHOD

The numerical evaluation of the series in this section is done by using double-
precision arithmetic with 72 bytes on a UNIVAC 1110.

4.1. Summation of Absolute Convergent Series

We start the numerical investigation of the CF method with the absolute con-
vergent series

G(x)=x+&+L-1.3,5+.- XE IR,

which is connected with the complementary error function erfc(x) by [ 111:

G(x) = exzi2 1' epy212 dy
0

=(~)“2ex2~2( 1-erfc(+)).

(4.1)

(4.2)

Expanding the integrand in I@. (4.2) we obtain for G(x) the alternating series
representation

Q”(x) = &*
X3 X5 X7

x---+~~-~r-i+““  l!. 2.3 (4.3)
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Furthermore, the complementary error function can be written for x > 0 in the form
of the explicit CF [ 131

1 l/2 1 3/2=--- --...
t+ t+ t+ t+

1 1 1 = _- __--- -
b,t+ b,t+ b,t+ ’

with

b, = 1, b, = 2;

b
2k

2k+2 = b2k 2k + 1 3

b zk+,=bzk--1
2k- 1

2k 3 k> 1.

TABLE I

Evaluation of the Series G(x) Given by Eq. (4.1) for x = 1 and x = 5, Respectively ’

(4.4)

(4.5)

x n A B C D E

1 2 1.3333333 1.5000000 1.3739344 1.4131897
5 1.4105820 1.4106667 1.4107226 1.4106888
8 1.410686 1 1.4106861 1.4106861 1.4 10686 1

11 1.4106861 1.4106861 1.4106861 1.4106861

8’2

1.5663656
1.3740580
1.4223866
1.4061236

1.4106861

5 2
5
8

11

20
29
38
47

4.6666667 (1) -6.818 (-1) -4.202 (6) 2.591 (5)
3.0658465 (3) 8.45 1 (0) 1.061 (8) 4.093 (5)
3.1851683 (4) 1.093 (1) -5.042 (8) 3.271 (5)
1.1780459 (5) -2.901 (2) 8.532 (8) 3.359 (5)

3.2853;5 1 (5) 2.854 (5) -7.36 l(7) 3.3631067 (5)
3.3630674 (5) 3.3631075 (5) 2.884 (5) 3.3631072 (5)
3.363 1072 (5) 3.3631072 (5) 3.3636 (5) 3.363 1072 (5)

3.363 1072 (5) ;

3.3631071 (5)
3.363 1072 (5)

‘Column A: direct summation of Eq. (4.1); Column B: summation via the CF representation (3.4);
Column C: direct summation of the alternating series in Eq. (4.3); Column D: summation via the
corresponding CF (3.4); Column E: summation using Eq. (4.7) with the analytic CF representation
(4.4). The correct values are given by the last values of each column. For the case x = 5 the entry is
given by a number and the power of 10 by which it should be multiplied.
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From Eq. (4.4) with Eq. (2.11) it follows that the truncation error is bounded by

I G(x) - Gn(x>l G $T 1 F, (+z) - F,- I( $T) 1. (4.6)

Here, G,(x) denotes the nth continued fraction approximant of

l/Z
G(x)= ; &2--fF

0 (4.7)

The convergence behaviour of the different evaluation schemes of the series for G(x)
is illustrated in Table I for the values x = 1 and x = 5. We deduce from this table that
the continued fraction evaluation (Eq. (3.4)) h s ows only a slight improvement of con-
vergence compared with the direct summation method. For small x-values we note
that the continued fraction representation in terms of E!q. (3.4) converges more
rapidly than the analytic continued fraction representation given in Eq. (4.4).

Of necessity, numerical approximations are always finite processes. For the alter-
nating series in Eq. (4.3) the (n + 1)th term 1 a, + , (x)1 gives an upper bound for the
truncation error of the actual truncation error of the power series. In Table II we pre-
sent the actual truncation errors with a comparison of the a posteriori truncation
error estimates of Eq. (4.6). As indicated in Table II, the a posteriori error bounds

TABLE II

Actual Truncation Errors and Truncation Error Bounds for the Series G(x) for x = 1 and x = 5,
Respectively”

X n

1 2
5
8

11

100

5 2
5
8

11

20
30

A B C D
___- _______

2.50 (-3) 4.91 (-3) 1.56 (-1) 5.00 (-1)
2.66 (-6) 3.90 (-5) 3.66 (-2) 9.23 (-2)
3.44 (-10) 7.92 (-8) 1.17 (-2) 2.84 (-2)
1.08 (-15) 8.77 (-14) 4.56 (-3) 1.07 (-2)

*.;4 (-9) 1.69 (-8)

--~-__
7.66 (4) 2.10 (7) 1.76 (-2) 5.32 (-1
7.34 (4) 3.10 (8) 1.25 (-5) 1.19 (-4)
8.93 (3) 1.17 (9) 5.17 (-8) 3.37 (-7)
5.89 (2) 1.70 (9) 2.76 (-10) 6.28 (-10)

4.96 (-2) 1.;7 (8)
1.44 (-9) 6.70 (4)

’  Column A: exact CF truncation error 1 Gait(x) - G”,“(x)l; Column B: (a,,+, 1; Column C:
J G(x) - G,(x)(; Column D: (l/2”‘) IF,(x/2”*) - F,-,(x/2”‘]. The entry is given by a number and the
power of 10 by which it should be multiplied.
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give very good estimates for the exact truncation errors and compare, for large x-
values, favourably with the upper bounds IQ,+ ,(x)1. The summation method in
Eq. (3.4) has been tested for various types of absolute convergent series. As a rule,
the continued fraction summation method shows for alternating absolute series an ef-
ficient improvement of convergence, whereas for absolute convergent series with
terms of equal signs the improvement is in general not dramatic. This is demonstrated
for the typical case of the zeta function, defined by [ 131

C(z) = g $9 Re(z) > 1,

or, alternatively by

Re(z) > 0, z # 1. (4.9)

In Table III the results for the direct summation and for the continued fraction
method are shown for z = 2 for the two representations given by Eqs. (4.8) and (4.9).

It is worthwhile to emphasize that the series summation technique presented may
not be applicable in certain cases. As as counterexample we study the power series
(cf. Ref. [ 141)

1 + 6x + (I - 24x3)l’*P(x) = -
2(1+x) tl=O

(4.10)

This series converges absolutely for 1x1 < l/(24)“”  and the coefficients {c,} are
calculated to be

co= 1,

TABLE III

Evaluation of the Zeta Function for z = 2”

(4.11)

n A B C D

5 1.464 1.55161 1.67722 1.645 1804035
10 1.550 1.61517 1.63592 1.644934035 1
15 1.580 1.63037 1.64908 1.6449340669
20 1.596 1.63635 1.64256 1.6449340668

IO0 1.634 1.64345 1.64483 I.6449540668

’  Column A: direct summation of Eq. (4.8); Column B: summation via the corresponding CF (3.4);
Column C: direct summation of Eq. (4.9); Column D: summation via the corresponding CF (3.4). The
correct value is given by the last value of Column D.
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It is easy to verify that the fifth term d, of the corresponding continued fraction,
Eq. (3.4), equals zero. The continued fraction so obtained clearly does not equal the
correct value in (4.10). This difficulty can be circumvented by presumming the first
term in the original series, Eq. (4.10), and then applying the continues fraction expan-
sion to the remaining series. The resulting continued fraction coincides with the
periodic fraction first discussed by Perron [ 141:

P(x)= 1 + 2x-x-3x2x~~~~ . . . .
1+ l+ 1+ l+ 1+ l+

(4.12)

This fraction shows normal convergence behaviour for Ix] < l/(24)“’  from a
numerical viewpoint except at the value x = $, where the continued fraction in (4.12)
is seen to be mathematically not convergent.

4.2 Conditional Convergent Series

As a first example of conditional convergent series we study the series of the
logarithm

log(1 +z)= 5 (-,n+t$, JZI < 1, zf-1,
n=1

(4.13)

for the case Re(z) = 1.
Our method of summation for the logarithm coincides up to an equivalence

transformation with the following explicit CF representation [ 131 for:

12z 12z 2*z 2*z 3*z F(z) E log( 1 + z) = z - - - - - . )
1+ 2+ 3+ 4+ 5+ 6+

z 6L (-co, -11. (4.14)

By use of the results of Jones and Thorn [lo], the a posteriori truncation error
estimates for the CF in Eq. (4.14) read

Ihdl + z> -F&l G IF,(z) - F,-,(z)1
if Iargz) <n/2

<=4w4-742)l~,(~)-~~-,(z)l
if r~/2 < )argzl< 7~.

(4.15)

In Table IV we give the a posteriori truncation error bounds for the calculation of
log 2 and log(2 + lOi). These bounds compare well with the exact truncation error
bounds. Further, compared with the a priori upper bounds obtainable for real z-
values from the (n + 1)th term of the alternating series, Eq. (4.13), we find a
remarkable improvement.

Conditional convergent series tend to any given value if they are suitably
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TABLE IV

Actual Truncation Errors and Truncation Error Bounds for lo& I + z) for z = 1 and z = 1 + lOi,
Respectively”

Z n A B C

3 2.50 (-1)
6 1.43 (-1)
9 1.00 (-1)

12 7.69 (-2)
15 6.25 (-2)

3 2.55 (3)
6 1.48 (6)
9 1.05 (9)

12 8.21 (11)
15 8.77 (14)

20
30

5.29 (19)
3.76 (29)

6.85 (-3) 3.33 (-2)
2.55 (-5) 2.12 (-4)
1.52 (-7) 9.15 (-7)
6.73 (-10) 5.08 (-9)
3.75 (-12) 2.37 (-11)

1.62 (0) 2.36 (0)
2.07 (-1) 6.97 (-1)
6.49 (-2) 1.40 (-1)
1.27 (-2) 3.71 (-2)
3.59 (-3) 8.23 (-3)

2.92 (-4) 8.i2 (-4)
2.59 (-6) 7.00 (-6)

2.81 (-10) 5.31 (-10)

“ColumnA: la,+,/; ColumnB: exact CF truncation error llog z -log n z 1; Column C:
Jlog, z - log,_, z 1. The entry is given by a number and the power of 10 by which it should be
multiplied.

rearranged. So we obtain from the series for log 2 = 1 - i + 4 - 4 + i - . by adding
~log2=O+~+O-~+O+~+O-~++~~ thenewrearrangedseries

+1og2= l++-;+f+:-:+$.+“~. (416)

To test our method we have applied the CF method to this series. Although the con-
vergence is less rapid than in the series discussed above for log 2, the CF expansion
converges to the exact result: after 40 terms its relative error is less than 10P6.

Next, as a typical example of a conditional convergent series, we discuss the eta
function [ 13 1

Re(r) > 0,

which is connected with Riemann’s zeta function (see Eq. (4.9)) by

(4.17)

v(z) = (1 - 2”  -“) C(z).

5x1 37 ? x

(4.18)
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TABLE V

Evaluation of the Eta Function for z = 0.5”

n A B

5 0.817 0.605043537436285
10 0.45 1 0.604898627352368
15 0.732 0.604898643424325
20 0.494 0.604898643421630

”  Column A: direct summation of Eq. (4.17); Column B:
summation via the corresponding CF (3.9). The correct value
is given by the last value of Column B.

This function can be easily evaluated by its integral representation

r(z) = g&s”  -g dt, Re(z) > 0. (4.19)

The series Eq. (4.17) is conditional convergent for 0 < 1 z 1 < 1 and obviously we have
~(1) = log 2. The dramatic improvement of convergence with the CF method for the
series (4.17) is shown in Table V for the value z = 0.5. An accuracy of 15 significant
digits is obtained after only 20 terms using the CF method, while the direct summa-
tion does not even give the first significant digit. The same behaviour is obtained for
all other values of 0 < /z/ < 1.

We have investigated numerous other types of conditional convergent series, all
showing the same dramatic improvement of convergence as in the case of the eta
function.

For example, let us discuss the series

F C-Y --kO.924299
nyz np log n

897222939 for p=O

=0.526412246533310 for p=l, (4.20)

where the numerical values can be obtained by the contour integration methods
presented in Appendix A. Again, as shown in Table VI, for the two cases p = 0 and
p = 1, the CF method gives 15 correct digits after only 20 terms. Compare this con-
vergence behaviour with that obtained by direct summation. By checking the trunca-
tion error of this alternating series, one can see that for the case of p = 0 up to e””
terms are necessary to obtain an absolute accuracy of 10-15!

As a last example of a conditional convergent series we mention the Fourier series

g cos nx-
n=l n

-; log(2(1 - cos x)). (4.21)
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TABLE VI

Evaluation of the Series Given by Eq. (4.20)
for p = 0 and p = 1, Respectively”

P ?I A B

0 5 1.191 0.924575821884318
IO 0.720 0.924299865 188788
15 1.103 0.924299897228137
20 0.76 1 0.924299897222939

1 5 0.567 0.526539505225282
10 0.509 0.526412230841441
15 0.537 0.526412246535892
20 0.519 0.526412246533310

’  Column A: direct summation of Eq. (4.20); Column B: summa
tion via the corresponding CF (3.4).

The CF method reproduces 15 correct digits after only a few terms. The behaviour is
quite analoguous to the cases discussed above and so we have not shown it in a
separate table.

4.3 Summation of Asymptotic Series

A very important class of series frequently encountered in applied mathematics is
asymptotic series. We study our method by applying it to the asymptotic series of the
incomplete gamma function [ 131:

r(a, z) w za-‘e-’
1

1 + - a-l+ (s-Ma-2)+,.,
Z Z2 i>

Z-CO in 1 arg z/ < F. (4.22)

In Table VII we have represented the improvement of convergence behaviour for the
typical case a = 0 and z = 5 and 10, respectively. (In this case the incomplete gamma
function is identical to the exponential integral E,(z).)

It can be seen that the CF method converges rapidly to 11 correct digits after
about 20 steps. On the other hand, only 2 digits for z = 5 and 4 digits for z = 10,
respectively, can be obtained by direct summation. We may compare our CF
expansion with the wel l-known analytic continued fraction for the incomplete gamma
function [ 131, valid for real values of x > 0:

r(a, x) = e-“x”
(

1 l-a 1 2-a 2
--------,.. .
x+ l+ x+ I+ xs i

(4.23)
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TABLE VII

Evaluation of the Incomplete Gamma Function for the Case a = 0 and
z = 5 and z = 10, Respectively”

2 n A B

5 3 1.185 (-3) 1.1550766284 (-3)
9 1.235 (-3) 1.1483018337 (-3)

15 1.540 (-2) 1.1482956273 (-3)
21 2.756 (1) 1.1482955918 (-3)
27 3.062 (5) 1.1482955913 (-3)

10 3 4.1768 (-6) 4.1616602282 (-6)
9 4.1578 (-6) 4.1569693101 (-6)

15 4.1593 (-6) 4.1569689300 (-6)
21 4.1792 (-6) 4.1569689297 (-6)

’  Column A: direct summation of Eq. (4.22); Column B: summation via
the corresponding CF (3.4). The correct values are given by the last values
of Column B. The entry is given by a number and the power of 10 by which
it should be multiplied.

Regarding the correspondent coefftcients d, in the CF (3.4) one again sees that both
continued fractions coincide up to a simple equivalence transformation. However, our
method is valid for all values of z E C and, more important, it can be used in all the
cases where no explicit continued fraction is known, e.g., for the case of Bessel and
Coulomb functions. In all these cases we obtain results analogous to the example just
discussed.

4.4 Analytic Continuation with the Continued Fraction Expansion

As a last application of the CF method we discuss the analytic continuation of
series. For this we may use any function which is defined by its series expansion only
in a restricted domain. So, from the examples given above we choose the series ex-
pansion in (4.17) for the eta function, which is convergent only for Re(z) > 0. On the
other hand, the eta function can be continued analytically into the left complex half
plane. Using the integral representation (4.19) one obtains [ 131

q(z) = ;-+ XL- ’  sinFr(l -z)q(l -z).

Especially simple is the case z = 0, -1, -2,..., where we have

q(O) = i, q(-2n) = 0 and v( 1 - 2n) = (2*”  - 1) 2, n E N. (4.25)



                                    255

Here the Bernoulli numbers are denoted by B,. Applying the CF method to the
corresponding diverging series

11(-p) = j!J (-)‘+I np, PEN,, (4.26)
?l=l

one can show that the coefficient dZn+, of the CF expansion equals zero. Therefore, it
terminates after this term, giving the result (4.25). This behaviour can be understood
by relating series (4.26) with the binomial series

(1 +z)9= 2 (;) Zn= 1 +qr+q@$z2+ . . . .
n=o

(4.27)

This series is absolutely convergent for lz/ < 1 and divergent for 1 z[ > 1 if q 62 No.
If we apply the CF method to (4.27) for the divergent case, Iz 1 > 1 and q = -n

(n E No), again the coefficient d,, equals zero and the terminated continued fraction
yields the correct result. In this case the binomial series is a rational function and
consequently the continued fraction has to be finite by construction. Now it can be
shown that v(-p) can be formally written as a finite sum over binomial series:

1
(1+ ;=,

MEN, (4.28)

with

(4.29)

By inverting Eq. (4.28) it follows that the continued fraction for v(-p) withp E /No is
also finite.

The CF method can also be used for the analytical continuation of the other non-

TABLE VIII

Evaluation of the Eta Function for z = -1.5”

n A B

5 6.55 0.12087268 17
10 -16.88 0.1186808255
15 30.62 0.1186808707
20 -46.28 0.1186808707

’  Column A: direct summation of Eq. (4.17);
Column B: summation via the corresponding CF (3.4).
The correct value is given by the last value of
Column B.
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TABLE IX

Evaluation of the Binomial Series for the Case t = $ and 4 = x”

n A B

5 31.70 19.6624787596506
10 31.47 3 1.5420409084769
15 31.83 31.5442810282513
20 29.24 3 1.5442806996167
25 57.91 31.5442807001975

a Column A: direct summation of Eq. (4.30); Column B:
summation via the corresponding CF (3.4). The correct value
is given by the last value of Column B.

trivial cases. In Table VIII, for example, we have chosen the case z = -1.5. The result
is that the CF method leads to the correct result after a few terms.

Furthermore, we mention that in many cases the analytic continuation with the CF
method is equivalent to the summation of an asymptotic series. Let us, for example,
use the binomial series Eq. (4.27). Setting t = l/z, we obtain the series

i 1
l+F “=,+z+q(q-l)

t t r+ .“Y (4.30)

which is convergent for 1 t 1 > 1. For 1 tl < 1 this series can be interpreted as an
asymptotic series. Therefore, as shown above, the CF method yields the correct
result, even if we choose, e.g., q = 7c and t = i (corresponding to z = 2). This is il-
lustrated in Table IX.

As a rule the CF method can be suitably used for the analytic continuation of any
series. Even if these series are not Bore1 summable, they can be summed in terms of a
continued fraction. For example the series

(4.3 1)

is not Bore1 summable for /z[ > 1 (cf. Appendix B). However, the terminating con-
tinued fraction yields for IzI > 1 15 correct digits after four terms.

5. CONCLUSIONS

We have presented a suitable summation method for various types of series using a
continued fraction representation. The terms occurring in the series can be looked
upon as coefficients of an asymptotic expansion S(y) which represents the starting
point for the construction of the continued fraction representation. Its evaluation at
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y = 1 yields the desired result for the summation of the series under consideration.
Henceforth, our method of conversion of the original series furnishes new properties
in the sense that an nth-order truncated approximation of the continued fraction does
not coincide with the nth partial sum but rather provides an approximately correct
analytical continuation of the series. The method of evaluation is based on a
computer-oriented recursive algorithm for the calculation of the continued fraction
coefftcients. Its practical application is thus lim ited only by a possible numerical in-
stability of this algorihtm due to round-off errors.

APPENDIX A

Many infinite series can be summed by use of complex integration techniques.
Using Cauchy’s formula we can write (see, e.g., [15])

T (-)”
II=& a’  = 2i c sin 712

l p a(z)& (AlI

The contour C is given by an infinite l ine parallel to the imaginary axis through the
point E, with N, - 1 ( E ( IV,, and is closed in counterclockwise direction in the right
half plane by an infinite half circle. Hereby we have assumed that a(z) has no poles
inside this contour.

Because in the cases discussed above the contribution from the infinite half circle
vanishes, we obtain:

Re{ a(& + iy)}.

For the series (4.20) we choose E = i yielding

F (-I”  = 3c 1
,yz np log n I ”  Re

,, cash ;rry I I (: + iy)”  log(: ’  
Re(p) 2 0. 643)

This integral converges rapidly and can be calculated with standard integration
techniques giving the values in Eq. (4.20).

Note however, that for many physically interesting series the analytic continuation
of the coefftcients a, is not known and therefore the series cannot be evaluated in this
way.

APPENDIX B

Considering the series

h(z)= f nz”-I,
n=,

(Bl)
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we introduce its first Bore1 transform

z-z(z)= f q.
n=1 -

Thus, we obtain for h(z) the representation

032)

h(z) =j”l xeeXH(xz) dx
0

= 1 +&+_3(xr)‘+ - . .
2! 3! (B3)

I
00 = xex(‘-”  dx = v-JzT ,V ye-”  dy

I
with y =x(z - 1).

0

Equation (B3) clearly demonstrates that for z > 1, h(z) is not Bore1 summable.
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