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We consider the dynamical behavior of the (nonlinear) amplitude fluctuations in the transmitted radiation
of the optical bistability in the transition region. A Fokker-Planck model with nonlinear diffusion coeAicient
(multiplicative Gaussian white noise) is used to describe the system in the "good-quality" cavity limit.
Choosing a parameter set corresponding to a numerically small but tractable tunneling rate between the
stable and metastable states we study, as functions of the external coherent field and system size, the
spectrum and the respoi|se to a small additional injected coherent signal. The numerical calculations are
facilitated by the construction of complex-valued continued-fraction representations for the spectrum of
amplitude fluctuations and for the response function. This representation allows us to discuss the memory
effects caused by deviations from a simple Gaussian-Markov behavior around the transition region. In
addition, such a representation enables the construction of "a posteriori" error bounds on the power
spectrum.

I. INTRODUCTION

The phenomenon of the absorptive optical bista-
bility (OB) has recently attracted a great deal of
interest as a clear example of spontaneous order-
ing in a stationary system far from thermal equi-
librium. The GB was first predicted by Szoke
et al.' and subsequently studied theoretically by a
number of authors, ' both from a semiclassical as
well as from a fully quantum-statistical point of
view. The fundamental feature described by them
is that the transmitted light from a system of two-
level atoms in a cavity driven by a coherent,
quasiresonant external field varies discontinuous-
ly, exhibiting the characteristics of a first-order
transition, a hysterisis cycle, that was first ob-
served experimentally by Gibbs eI, al.3 These ex-
periments revealed a wide range of possible ap-
plications of the OB as an optical transistor, opti-
cal memory element, pulse shaper, etc. , and
stimulated a very active, still increasing interest
in the phenomenon. ~

It is customary (and convenient) to treat the OB
in a mean- fiejd ib "~'&""approximation which
amounts to requiring that the field b'e sufficiently
uniform over the length of the active volume. The
limits of validity of this type of approach have been
examined in Ref. 5. Most of the present research
is limited to the statistical mechanics of the static
behavior of the instability. One of the challenges
addressed by this paper is a study of the dynamics
of the OB such as the calculation of the spectrum
of the transmitted light and the response function
in the regime of a multiplicity of possible station-

ary states. For the spectrum of the transmitted
light, this problem -has been considered in the re-
cent work of Lugiato' and Agarwal et a$.' using ei-
ther an approach via the Fokker-Planck equation
linearized about a steady state or an equivalent ap-
proach based on a system-size expansion as devel-
oped for classical stochastic systems. ' These
methods amount to treating the stable and meta-
stable states on the same footing, thereby assuming
a very large (thus physically irrelevant) transition
time.
However, both these approaches work well only

in a regime of parameter values for which the
fluctuations obey Gaussian-Markov statistics. Fur-
ther, in order to calculate the t~e spectrum of the
stationary fluctuations, the relative weights of the
different locally stable states as well as the time
scale of the tunneling between different locally sta-
ble semiclassical stationary states becomes im-
portant. If the time scale of the tunneling from one
semiclassical stationary state to the other is not
extremely large (corresponding to a small system
size), the approaches mentioned above cannot be
used. ' Nn this case it is necessary to use an as-
ymptotic expansion for the process which incor-
porates the characteristics of the stable as well as
of the metastable state. }
The purpose of this paper is to investigate the

dynamics of the OB in the case of a "good-quality"
cavity in which the empty cavity width is much
smaller than the atomic linewidth. We study the
statistical properties of the amplitude fluctuations
for parameter values for which a non-Gaussian
statistical behavior as well as a numerically small
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but tractable tunneling rate play important roles.
In doing so, we shall use a continued fraction rep-
resentation for the various dyanmic correlation
functions. 'This continued fraction representation
allows further a construction scheme of "a post-
pziori" error bounds' for the frequency-dependent
transport properties which are not known exactly.
'The outline of the paper is the following. In Sec.
II, we present a simplified Fokker-Planck model
of a mean-field description for the amplitude fluc-
tuations in the OB for the case of a good-quality
cavity, this model having been originated in the
work of Refs. 2(e) and 11. We present the station-
ary dynamics of our chosen set of parameters and
discuss some asymptotic properties of the station-
ary probability as a function of the system size
(number of atoms). In principle, the correct dyna-
mic statistics of the amplitude fluctuations 5x(t)
may be obtained by performing an exact coarse-
graining over the phase fluctuations (5p) in a
Markovian master equation for the joint process
z(f) =[x(f),p(t)]. This would lead to a, non-Marko-
vian dynamics. '2 In Sec. II, we give a discussion
of the physical time scales with the conclusion
that, for our chosen set of param eter s, the differ-
ence in the time scales for the amplitude and phase
fluctuations is sufficiently large so that the Fokker-
Planck model of the amplitude fluctuations is a
good approximation. The response of the system
to a small additional time-dependent modulated
quasiresonant coherent signal is investigated in
Sec. III. In Sec. IV we elaborate on the calculation
of dynamical correlations in terms of continued
fractions (the first six continued-fraction coeffici-
ents are given in the Appendix, these being ex-
pressed solely in terms of static quantities). As a
result of the deviation from a simple Lorentzian
behavior, the continued fraction coefficients c„for
~&2 describe memory effects,"these being most
pronounced in the regime of a multiplicity of sta-
tionary states. The results of the numerical cal-
culations for the spectrum of the transmitted light
and for the complex susceptibility are given in Sec.
V,

II. FOKKER-PLANCK MODEL FOR AMPLITUDE
'FLUCTUATIONS IN THE OPTICAL BISTABILITY

Vfe consider a homogeneously broadened active
medium of length L, and volume y composed of N
»1 two-level atoms of transition frequency &„
enclosed in a resonant ring cavity with transmis-
sion coefficient T. This cavity is then placed in a
ring laser cavity. A classical real, positive, and
coherent resonant signal of amplitude E~= nv T is
injected into the cavity in the longitudinal direc-
tion, thereby inducing a macroscopic atomic po-

larization 5. The system may then be described
in a semiclassical mean-field approximation in
terms of the (resonant) single-mode Bloch-Max-
well equations '"'

)=2gbo -r,S,
8 =-2gM —rg(c—N/2),
0
5 = -gS—z(b —&) .

(2.1a)
(2.1b)
(2.1c)

Here, /~~ and y~ are the homogeneous longitudinal
and transverse atomic relaxation rates, x =cT/L
(c is the velocity of light) being the cavity half
width; o = 2 (N, —N, ) where N, and N, are, respec-
tively, the lower and the upper atomic level popu-
lations; 5 is proportional to the transmitted elec-
tric field amplitude (Er =~pb) and g is the atom-
field coupling constant.
In the remainder of this work, we consider the

limit «& r,~, r~ (this corresponds to the good-qual-
ity-cavity limit referred to earlier). The atoms
follow the field motion adiabatically and decay rap-
idly to their stationary state. Hence, we may set
0S =0 =5 in (2.1) and obtain an equation of motion for
the transmitted field amplitude

x= ~[y- x- 2cx/(1+x)] .
ere we have defined'
C =g N/2gr~,

y = &Iv'N, , x =5/EN, ,

where

N. = r imari/4g'.

(2.2)

(2.3)
(2.4)

(2.5)

y and g are seen to be proportional to the incident
and transmitted field amplitudes, respectively, N,
being the saturation photon number. The static be-
havior of the system is described by the sthte
equation

2Cxy=x+, ,), x~[0,™].(1+x (2.6)

Equation (2.6) is plotted in Fig. 1 for a parameter
value Q =8. It is seen that a bistable solution exists
for y &y &ys for which the function in (2.6) takes
on a relative maximum at (x„,y„)-=(1.1589416,
9.072 6902) and a relative minimum at (x,y„)
=—(3.557 647 2, 7.725 6903). It should be pointed out
that for C = 0 in (2.6), we obtain a straight line y

'This is commonly referred to as the "one-
atom" solution in resonance fluorescence. ' &'
For Q&4, atomic cooperative effects come into
play, leading to the first-order-like phase transi-
tion seen in Fig. 1. We see that for a range of the
control parameter y & y & y„, we find three steady
states for the transmitted field. The steady-state
values of x corresponding to those segments of the
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9.0

6.0

The Fokker- Planck equation (2.8) is defined on the
state space x(t) C(0,~) and its solution is thus sub-
ject to boundary conditions. For our problem the
physical boundary condition is that no probability
is lost at the boundary x=0 (x=- 0, reflecting
boundary). As a consequence any solution P(x, t),
in particular the conditional probability, satisfying
the Fokker-Planck equation (2.8a) is subject to the
normalization condition on the interval (0, ~); i.e. ,

I I I

2.0 4.0 6,0 8.0
f r (x, t)dx= I .
0

(2.9)

FIG. 1. Steady-state behavior of the transmitted field
amplitude (g) as a function of the control parameter (y)
for C=S.

(2.7)

with egg(t) denoting the standard Wiener process
increment. In writing (2.7) we assume that the
fluctuations in x(t) are rapid enough to be modeled
as a white noise and manifest themselves as a
white-noise fluctuation in the parameter Q. 'To
make contact with the microscopic approach, we
set the variance of the C fluctuation equal to (C/
fthm, )' ' in (2.7). Introducing the dimensionless time
t- vt we have from (2.7), a Fokker-Planck equa-
tion for the rate of change of the probability
P(x, t):
sP(x t) s ' 2Cxy-x-, P(x, t)
Bt 1+x2

8'™ x+q. . . P(x, t),~x +x (2.8a)

where we set
q= C/2N, . (2.8b)

curve having negative slope are unstable. The low-
er leftportion of the curve is commonly referred to as
the cooperative branch. '& ' For x-y&y„ the curve
approximates the single-atom case referred to
above.
In order to describe fluctuations in this system

in general, we have to make use of the methods of
quantum statistical mechanics. ""' For the de-
scription of the amplitude fluctuations, we follow a
more phenomenological approach as pioneered by
the work of Ref. 11. Assuming the phase of the
transmitted field to be locked in to the phase (p =0)
of the real, positive, incident field, we may de-
rive the following (Ito-)stochastic differential equa-
tion" for the real amplitude fluctuations x(t),

2Cxd (tt x( xxX=, dt-1+x'

Further, the probability "current" as defined by
the Fokker-Planck equation (2.8a) must vanish at
x=0 and the diffusion term in (2.8a) should also be
zero at this point [as is readily seen to be the case
in (2.8a)], thereby implying the existence of a nat-
ural boundary at x=0.
Equation (2.8a) leads to the stationary solution

U(x)P, (x) =—exp—S g (2.10)

Z being a normalization constant corresponding to
the interval (0,~). It must be pointed out here that
the nonlinear diffusion term in (2.8) [which is a
result of the multiplicative nature of the stochastic
process (2.7)] makes it impossible for one to guess
the "true" nonthermodynamic potential U(x) from
the semiclassical deterministic equation. 'This is
in contrast to the well-known situation for a single-
mode laser in which the (delta-correlated) noise
term enters the deterministic equation additively. "
'This nonlinear diffusion term reflects the influence
of a quantum-statistical foundation which is a nec-
essity for this problem. The potential U(x) for our
problem is given by"'

3 4
U(x)= +(x-y) +C—x — +x 3 4

+(2C+ 1) lnx- 2qln 1+x'l
x j

(2.11)

In general, the probability P, (x) may possess dif-
ferent extrema, these being given by the real posi-
tive roots of the polynomial equation, "'"
(y—x)(1+x ) -2Cx(1+x ) —2qx(1- x ) =0. (2.12)
It is apparent from (2.12) that the range of the ex-
ternal control parameter, &stoc"& & & &sto0" for
which the stationary probability has three extrema,
depends on the parameter q. It is only in the q-0
(i.e., N-~) limit that the range of ys'"" corres
ponding to a bimodal probability distribution agrees
with the corresponding range of y for which Eq.
(2.8) has three roots. In this context let us stress
that the bimodal form of the probability P, (x) does
not imply that the system shows metastability. In
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other words, one cannot conclude from the bimodal
form that a first-order phase transition actually
has takenplace between different locally stable steady
states. Such a transition is characterized by a rate
constant A, =1/1", for the fluctuation relaxation be-
tween the stable and metastable state which under-
goes, as a function of the systems sizg, a softening
transition. " Indeed, it has been shown"'" that for

I I I

I.8—

I.2-
y =7.80

0,6-

C ~4 one may obtain a bimodal stationary probabil-
ity (through a suitable choice of the variance pa-
rameter of the fluctuations in C), whereas it is
well known from the microscopic theory that,
physically, the system may be bistable only for C
&4. Figure 2 shows the shape of the stationary
probability for different values of the control pa-
rameter y. It is seen to be asymmetric for lower
y values, indicating a strongly non-Gaussian be-
havior. The two locally stable steady states occur
with equal probability for y =7.942. . . . Due to the
nonconstant diffusion term in (2.8), this value does
not coincide'"' with the thermodynamic-Maxwell-
rule value y =8.16 which is obtained by requiring
the areas enclosed by y(x) and the line y =y to be
equal.
In Fig. 3, we plot the stationary statistical mean

value (x) and the normalized variance

I.8—

l.2—

0,6—

l.8—

I I

2.0 4.0

I I I

y =7.94226I7

4.0

ya8. 5

(b)

8,0

8.0

((&x)') ((x- (x)) ')
(x)' (x)' (2.13)

(2.14)
C being independent of&. This scaling is reflected
in the form for the stationary probability P,(x) de-

The mean value (x) exhibits a first-order-like
phase™transition behavior with a narrow transition
region, the gradient of the curve for (x) in the
transition region providing a measure for the time
scale of the fluctuations between the metastable and
stable state.
Let us now return briefly to Eq. (2.11) and ex-

amine the scaling of the different terms with re-
spect to the number of atoms N (i.e. , the system
size). Noting that the coupling constant g is pro-
portional to N '~' we find

4C'gb~N', N, = y~~N/8Cx~N, q= ~N

l.2—

0.6—

I

2.0
I I

4.0
I I

6.0 8.0

6.0—

4.0—

2.0—

rrrrrr
/I

(x)
((&x) )
(x)

FIG. 2. (a) The stationary probability distribution
P~ (x) of the transmitted field for C= 8, q = I, andy
=7.8. (b) The stationary probability distribution P~ (x)
of the transmitted field for C= 8, q= l, and y
=7.9422617. . . . The distribution is bimodal with peaks
centered around the deterministically stable values. (c)
The stationary probability distribution P~ (x) of the
transmitted field for C=S, q=l, and y=8.3, corres-
ponding to the single-atom branch.

0
7.5 8.0 8.5 9.0

FIG. 3. Statistical mean value (x') of the transmitted
field (dashed curve) and normalized variance ((Bx)t)/
(x) (sold curve} as functions of the control parameter
(y) for C=S, q=l.
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fined in (2.10):

P, (x, Q) =—exp(-Q[C (x)+O(1/n)]j,1 (2.15)

0

Q, ' ' exp[-(Q, —Q, )
n,

x [@(x+ax)-e(x)]j .

where Q =1/q~N is a. measure of the system size
so that the 0(1/Q) term in the exponent refers to
the last term on the right-hand side of (2.11), 4(x)
referring to the remaining terms in (2.11). Let us
consider the ratio of the stationary probabilities &,
at two different points:

P,(x„n)
P.(~,n)

= exp(-Q[C (x,) —e(x, )+ O(1/n)]j. (2.18)

As 0-~ on the x scale, this quantity may become
infinite or vanish, except at 4(x, ) =C (x, ). Let us
consider a small fluctuation Ex=0(1/Q) about some
value xo. 'Then we may write

P.(x, +ax, Q )
P, (x„n)

= exp[-Q~W'(x, )+O(1/n)), ~«=O(n ').
(2.17)

The behavior of R about a maximum x ofP,(x)
(i.e. , a minimum of the potential U) is obtained by
setting 4 '(x) = 0 and 4"(«) &0, with P = vQ x CC b:

p, (p+~p) (~p)'*
(@ =exp — 2 4 "(x)+0
S 0)

d,p =0(1). (2.18)
Hence, P, (b) is a Gaussian on the (b—b) scale.
whereas on the ~ scale it displays a 5-function be-
havior in the 0 -~ limit. We now investigate the
change in the height of the probability P, at the
global maximum as a function of Q. From (2.18)
we find

full quantum-statistical treatment is not important.
The exact solution P,'(x) vanishes identically for x
&y, expressing the fact that the transmitted field
can never exceed the incident field. Our approxi-
mation in Eq. (2.10) yields for x&y a finite but
vanishingly small value as may be seen from Fig.
2. The approximate validity of the Markovian de-
scription in (2.8) for the dynamical behavior of the
amplitude fluctuations is based on the assumption
that the phase fluctuations occur sufficiently rapid-
ly that we may eliminate the phase variable adia-
batically in a master equation giving x(t) the Mark-
ovian description of (2.8). In a corresponding
Langevin picture for z(t) =(x(t), P(t)), this amounts
to setting p =0, which then yields the assumed
phase-locking description {Q= 0) used here I.n
principle, the correct stationary behavior of the
amplitude fluctuations may be obtained by per-
forming an exact coarse graining in the master
equations for the joint process z(t) =(x(t), Q(t)).""
However, this would yield a non-Markovian de-
scription for «(t) in which the aged conditional
probability of the (non) stationary process x(t) de-
pends in a nonlinear way'3 on the initial state «(0).
A linear stability analysis of the complex-valued
mean-field equations gives

a, =1+2C/(1+x'),
dy(x) 2 1—x'
dx (1+x')' '

(2.20')

(2.20")

A@= A,»= j. , (2.22)

indicating that the phase-locking assumption may
be invalid. However, for our chosen set of pa-
rameters, C = 8 and y u(7.5, 9.25), we find from
(2.20)

where ~@ and g are the normal-mode frequencies
of the phase and amplitude, respectively. Figure
4 shows the behavior of g„as a function of y for C
=8. For y«C, (2.20) gives

(2.21)
and for y»y„we get

(2.19) 1A»= g Ag ~ (2.23)
At the maximum itself we find

P.(x,Q, )
P (« Q ) Q,

(2.20)

We conclude this section with a more detailed
discussion of the quantum-statistical foundation of
the Fokker-Planck model. (2.8) for the amplitude
fluctuations. Such a discussion has been given pre-
viously '" for the stationary behavior. It was found
that the difference between the stationary solution
(2.10) and the exact solution P;(x) obtained from a

The expressions (2.20) give correct estimates for
the physically relevant time scales only for a set
of control parameters (yj describing a Gaussian.
behavior of the fluctuations. In the transition re-
gion (which we consider in this paper), A,, under-
goes a system-size-dependent softening transition'

x.-o(e '"), (2.24)
where b is a constant, giving Xz»A., (see also Sec.
V). Hence, we can conclude that for our chosen
set of parameters the adiabatic elimination of the
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= [r,+r'"((t)]I (x, t)
=r(t)S(x, t).

To first order in j""(, the solution of (3.4) is
(3.4)

dy(x)

dx

P(x, t) =P, (x)—f R (t s)-P"'(s) P, (x)) ds,
0 dx

(3.5a)
where

Z (~)=e""
with kernel

ft, (x, y; 7 ) = exp(r, ~)6(x- y)
(3.5b)

FIG. 4. Slope of the deterministic curve (Fig. 1) as a
function of the control parameter for C= 8. The ordin-
ate is equal to the normal-mode frequency of the ampli-
tude fluctuations [see Eq. (2.20")].

&6x(t)) = &
x(t))"""*""-&x), . (3.6)

The mean values in (3.6) are evaluated using the
appropriate probability functions P(x, t) or &,(x).
Then we find from (3.5a), for the linear response,

is the unperturbed propagator.
Let x(t) be a variable of interest in the system
[in the present case, x(t) is the transmitted field
amplitude]. Then, the response of x(t) to the per-
turbation is defined as the change in its mean value
under the perturbation. This is written as

phase variable is sufficiently justified in order to
model the amplitude fluctuations via the Markovian
Fokker-Planck equation (2.8).

III. LINEAR-RESPONSE THEORY

&6x(t)& = „x[I(x, t)—I.(x)]dx
X t- s E'"'s ds,

0

where we have defined a response function,

(3.7)

Ne consider the linear response of our system
to a small additional coherent resonant classical
i'ield n'"((t) where it will be assumed that the non-
stationary amplitude fluctuations in the presence
of this perturbation remain Markovian. It readily
follows from Eq. (2.7) (with n replaced by o. +a'"()
that the total perturbed system is described by the
stochastic operator y(x) = „ Inp, (x).d (3 9)

„(t) 8(t) ff dt (g=, -,; 1)- .P.(X)dgdx, (8.8)
QP

(()(t) being the step function. Note that
f r'")(t)Z, (x)dx=0, since the perturbation r'"'(t)
cannot change the normalization of the probability
function. We define the state function (t)(x):

r(t) =r, +r'"'(t) =r,—z'"' „
where

(3.1) The response function )t(t) may now be expressed
in terms of a generalized fluctuation-dissipation
lat ion 12(c),17

Fex((t) ~8 ((t)ygN (3.2)
Here, I'0 is the Fokker-Planck operator defined by
Eq. (2.8):

(3.10)y(t) =—8(t)&6x(t)(t)( x(o))), .
The function (t)(x) may be calculated for this case,
using (2.10) and (2.11):

2Cx 8' & x
sx i 1+x' s ')(I+ ' (3.3) y(x)=-—ix -x y+2x(I+C)1I'3

so that the presence of the additional signal is
manifested only in the drift term as seen from
(3.1) and (3.3). In terms of (3.1},we may cast the
Fokker-Planck equation for the total perturbed
system in the operator form

2&+1 y 1- g~
+ — -~ +2/g g g(1 +x )) (3.11)

where we have omitted constant terms due to the
structure of (3.10}. It should be noted that the
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average ( ~ ~ ~ ), is over the unperturbed steady-
state, joint-probability distribution. In the follow-
ing section we introduce the method of continued
fractions which will be used ultimately to calculate
the complex-valued Laplace transform of g(t) (this
quantity is referred to as the generalized suscepti-
bility).

A(~) = (g(x(7'))f(x(0)))

g h R0 h, y', 7 yP, ydydh ~

Expanding A(i ) in a Taylor series we have,

(4.1)

A(~) Q " 7", ~)0,„() n1 (4.2)

IV. DYNAMICAL CORRELATIONS

In this section we describe a calculation scheme
for time-homogeneous correlations A (t) of a sta-
tionary Markov process x(t) with stochastic opera-
tor I' (as defined in Sec. III). We define

bg = cz, og = c2

Anger C2nC2n+1 & +n+1 ~2tf+XC2np2 o

(4.8a)
(4.8b)

An alternative procedure for evaluating the coef-
ficients in (4.7) has been used by Grossmann and
Schranner" using projection-operator techniques.
The lowest-order truncation of Eq. (4.6) leads

to the simple Lorentzian

A(&&(~)— b
-i+a, (4.9)

The continued-fraction coefficients (c„]may be
calculated from the set of moments fp„) in a very
efficient manner, by use of the recursive algorithm
presented in Befs. 1V and 18. The explicit expres-
sions for the first six coefficients are given in the
Appendix. In terms of the coefficients (c„], the
coefficients f f&„] and (a„}of the contracted form
in (4.7) are simply given by

where A"&(T) = f&,e a&' -~ )0 (4.10)

d "A (~)
Pn g&n

(4.3a)

gh r" Z, hCh
0

(4.3b)

(4.3c)
Note that in Eq. (4.3b) the integration limits for x
take care [with p, normalized in (0,~)] automat-
ically, of the reflecting boundary condition at h=o.
Equation (4.3c) expresses the moment p„as a sta-
tionary expectation, I' denoting the transpose op-
erator with kernel I"(x, x') =I'(x', x). The Laplace
transform of Eq. (4.2) is,

Truncation of (4.6) at higher orders (n &2) allows
us to take memory effects" into account; these ef-
fects result from the nonlinear coupling of the
macrovariables yielding a deviation from a simple
Lorentzian relaxation behavior (these memory ef-
fects are not to be confused with those arising in a
stochastic process due to the non-Markovian be,
havior of the system). Setting b„(n ~ 3) =0 in (4.7),
we obtain the lowest-order contribution to the
memory effects:

A(ra)= lim f A(v)e"' "'dv coo
q~0 0

(4.4)
where

(4.11)

and may be written as a high-frequency expansion
(generally an asymptotic series) &), , = —,

' (a, + a, + [(a,—a, ) ' + 4f), ]'~'), (4.12)

A(~) =g „"„,z = i~. -
0 Z

(4.5) (4.13}

A(~) = cg
C2

C3

cg

We now perform an analytic continuation of this
series using a continued-fraction representation
for A(~) (Hefs. 13, 17, 18):

Hence, the deviation of n from zero reflects the
influence of the memory effects. In this context,
it should be stressed that the actual values of the
poles &)., and &)„as well as o. , become renormal-
ized by higher-order truncation approximations.
Thus, the expressions in (4.12) and (4.13) may be
looked upon as the base memory coefficients.

z + ay

+ ~ ~ ~

b,
z+a +.

(4.6)

(4 7)

V. CALCULATIONS

In order to evaluate the continued-fraction coef-
ficients (c„) in Eq. (4.7), we must first calculate
the static moments (p„]. The stationary probabil-
ity (2.10) is seen to vanish as x-0':
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P,(x=0') = lim exp[—(y/qx)+ 0(lnx)] =0. (5.1)
x~0

Using. Eq. (3.3), the transposed operator ro in
(4.3c) is then given by

2Cx }( d x' d'
(5 2)r = y- —1+, &Id„ 'q (1+. ) d

Moreover, due to the one-dimensional character
of the amplitude x, the operator I 0' is symmetric
with respect to the scalar product (f,g) defined by

where g'"', $'"' denote the ygth-order truncated con-
tinued-fraction approximations to (4.6) obtained by
setting c„„=g„„=~ ~ ~ =0.
Using Eq. (5.5) and the relations given in the Ap-

pendix, we find for the coefficients b„a„g„a,of
the contracted form (4.7) the explicit expressions

(5.10a}

(5.10b)

(f, ) ff(*)-( ) .( ) = (f ). .
In other words, we have the property

&(rof)g) = (f r:g}= &f(r:g}}..

(5.3)

(5.4)
+

4C x~x 4C' xax '

(5.10c)

A. The spectrum of amplitude fluctuations

From the autocorrelation S(r}of the amplitude
fluctuations,

S(T)=S(-r) =&6x(r)6x(0)). ,
we obtain the spectral function S(co):

(5.6)

S(~) = S(&)e' 'dr =2ReS(w) ~ 0, (5.7a,}

where

K(~) = f S(r)e'"dv .0
(5.7b)

The set of static moments {s„)corresponding to
the autocorrelation S(r) are calculated via Eq. (5.5)
with f(x) =g(x) =x—(x). Since I'o satisfies the sym-
metry property (5.4), the sequence of moments
(s„) may be shown to form a Stieltjes sequence. "
Hence, the continued-fraction coefficients (c("]
corresponding to the autocorrelation function are
positive semidefinite, i.e.,

(5.8)
his allows us to construct a Posterion error

bounds'0 which in our case read

]S(~}—S(")(~)( - 2 (S(")(~)—S'" "(~)(, (5 9)

This property considerably simplifies the calcula-
tion of the static moments {t„)in the form given
by Eq. (4.3c) since we readily observe

p„=((r,')'l™g,f) =((r,')"g, (r,') f), (5.5)
m and n denoting integers. The relation (5.5) is al-
so very useful for checking the accuracy of the nu-
merical calculations. In the following subsections,
we discuss in detail the calculations of the auto-
correlation function of amplitude fluctuations (to-
gether with the associated spectrum), and the eval-
uation of the response function and complex sus-
ceptibility introduced in Sec. III.

( 2Cx—Qg &g I)» —Qg
~ y—x—I 1 2 1 1+ 2

+ y-x- 2 1+2C 1 22

+4Cq
~ y—x- », , (5.10d)

2Cx x'-3x' ")

1+x' 1+x' '

a~ op ~ y""o y &0 (5.11)
where "ren" stands for a renormalized value. The
relaxation rates show the critical slowing down in
the transition region around y=7.9. . . . For val-
ues of the control parameter y ~ 8.1, where the
stationary probability P, (x) has its main weight on
the single-atom branch, we find that the relaxation
rates a, and ~, are remarkably close in value to the
Gaussian relaxation parameter in Fig. 4 given by
the gradient of the slope of the state equation (2.6).
For our chosen set of parameters (q, C), the val-
ues of a, and X, corresponding to the stable state
on the lower cooperative branch (y ~ V.V5) are
found to lie below the Gaussian values. Such a be-
havior is expected because the influence of non-
linear corrections, stemming from the nonlinear

where we recall that 6x= x—(x) and the averages
above are taken with respect to the stationary prob-
ability distribution P, (x) defined in (2.10).
The numerical calculations have been performed

by use of a Romberg-integration scheme requiring
for all integrals a relative accuracy of 10 '. The
results of the numerical calculations using two dif-
ferent parameter values of the system size 0 are
given in Figs. 5-8.
In Figs. 5(a} and 5(b) we have plotted, as func-

tions of the external control parameter (y), the
exponential decay rate a, [defined in (4.7)-(4.9)]
and the bare-memory-relaxation rate x, defined in
(4.12). Note that due to the fact that S(&u) consti-
tutes a Stieltjes continued fraction, the relaxation
rates denote upper bounds" to the first nonzero
eigenvalue X„of the Fokker-Planck operator I', :
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FIG. 7. The "bare"-memory strength parameter n
[see Eq. (4.13)) for the spectrum of amplitude fluctua-
tions with C= 8 and q = 1 (solid curve), q =0.4 (dashed
curve).

sharpening of the transition. This behavior re-
sembles that of a first-order chemical reaction
discussed in Ref. 13(a). Note also that the values
of e in the region with the stable state on the co-
operative branch are dominantly larger than those
on the high single-atom branch. 'This behavior
once again reflects the deviation from a Gaussian-
Markovian behavior for which e—=0. In Fig. 8, we
show the second-order continued-fraction coeffici-
ent a . The graph shows a fluctuation around the
transition region which becomes enhanced for in-
creasing system sizes.
The spectrum S(&o) has been calculated via the

continued-fraction representation of Eq. (4.6), with
8(te) defined in (5.7b). In this context, it should be
mentioned that the calculation scheme for the con-
tinued-fraction coefficients in terms of the static
moments is not stable against round-off errors, in
contrast to an algorithm for calculating the mo-
ments from a given set of continued-fraction coef-
ficients, which is stable. Consequently, in order

I I I

FIG. 9. The spectral density S(cu) tEq. (5.7a)J of the
amplitude fluctuations for y =7.793165.. . . The curves
represent the result of truncating the continued-fraction
expansion (4.6) at n =2 (dashed curve), n=4 (dashed and
dotted curve), n = 6 (solid curve), and n = 7 (dotted curve),
C=8, q=l.

~(odd)(+) ~ 16 +-g.co —ice+ v2
+ ~ ~ ~ . (5.12)

IO

to retain a relative accuracy of 10 ' for the nu-
merical calculations, all derivatives stemming
from expressions such as [(I")'g](x) have been
calculated analytically. In this way we have evalu-
ated the approximate spectral functions by calcu-
lating up to seven continued- fr action coefficients
c„i=1, . . . , V. The results of the numerical cal-
culations of the spectral density are shown in Figs.
9 and 10. We note that an odd truncated-continued-
fraction approximation to Eq. (4.6) has a poor con-
vergence behavior for low frequencies w. This
may be understood from the corresponding pole
representation. For pg odd, we obtain with the pole
frequency v, —= 0 and some general memory strength
P

12—
%1

Op

IO

0
7.5

i I i I

8.0 8.5 9.0

IO

IO IO

FIG. 8. The second-order continued-fraction coeffi-
cient a2 for the amplitude fluctuations, as a function of
the control parameter (y) for C=8 and q=l (solid curve),
q =0.4 (dashed curve).

FIG. 10. The spectral density S(w) Izq. (5.7a)J of the
amplitude Quctuations for y =7.98741. . . . The curves
represent the result of truncating the continued-fraction
expansion (4.6) at n =2 (dashed curve), n = 6 (solid curve),
and n=7 (dotted curve), C=8, q=l.
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which yields for (p «1 a very small real part (or a
very large imaginary part). Comparing the sixth-
order truncated fraction fthis corresponds to the
third-order truncated fraction in the contracted
form (4.7)) with the single Lorentzian obtained via
the second truncated fraction, we see that the
memory effects are most important for very small
frequencies (in this regime, a small frequency
perturbation is sensitive to the long time scale 7 '
=dy/d(x) where the stochastic-state equation for
(x) is plotted in Fig. 3). In this case we find from
(4.11),

24—

l6-
~(IO )

8-

0
7.5 8.0 8.5

I

9.0

1 &ren
S( ) = &r ren r &r ~

A.~
(5.13)

nrren~ren
cx2

(karen)2 + +2 (5.14)

becomes observable. Due to the small magnitude
of the memory coefficient a (see Fig. 7), the influ-
ence of this second Lorentzian is somewhat sup-
pressed but still quite perceivable in Fig. 9. The
high-frequency tail shows the usual w ' character-
istic.

B. The response function

The static moments (r„) corresponding to the
response function [these are the analogs of the
1p„) introduced in (4.2)j in Eq. (3.7) are calculated
from the relation (5.5) with g (x) —= x- (x), and f(x)
—:—()))(x), (())(x}being defined in (3.11). Since fag,
the continued-fraction representation for the com-
plex-valued (polarization) susceptibility y((p),

x(&) =—f (rx(x)e(x(e))) x' 'er
0

(5.15)

is, in general, not of the form of a rapidly conver-
gent Stieltjes function. In the numerical ca,lcula. -
tions, we find once again for the relaxation fre-
quencies Qy py calculated from the set of moments
(r„f a, critical slowing behavior. However, com-
pared with the rapid convergence behavior ob-.

served for the spectral density S((p), we find here
a slower convergence rate. The "bare" memory
coefficient a for this case is plotted in Fig. 11. It
is seen that the memory strength in this case ex-
hibits the same general behavior as observed for
the spectral function (Fig. 7}with the difference
that the two peaks are less enhanced. For larger
y values, where the stable stationary state is on
the single-atom branch, the values of e approach
those for the autocorrelation. As mentioned earl-
ier, the amplitude fluctuations in this region may
be treated as a Gaussian-Markovian process to a

The memory effects are also important for ~~ X,
where the influence of the superposition of a, second
Lorentzian I.,

FIG. 11. The "bare"-memory strength parameter z
corresponding to the response function with C =-8 and
q = 1 (solid curve}, q = 0.4 (dashed curve).

good approximation. Hence, in the limit of a large
system size, the response function )((t) may be
represented asymptotically as an ordinary fluctua-
tion-dissipation theorem:

y(t) = 9(t)b, '(5x(t)5x(0)) . (5.16)

IB—

Op

l2

0
X5

I I

8.0
I

9.0

HG. 12. The second-order continued-fraction coeffi-
cient a2 for the response function with C = 8 and q =1
(solid curve), q = 0.4 (dashed curve).

'Ehe continued-fraction coefficient g, for this case
is shown in Fig. 12. In Fig. 13 we plot the real and
imaginary parts of the generalized susceptibility
y(cp} for y =8.138489.. . . This y value corresponds
to a region wherein the amplitude fluctuations are
approximately Gaussian. In this case, we observe
that the continued fra-ction expansion (4.6}may be
truncated at + =2 to a very high degree of accuracy
(reflecting the near total absence of memory ef-
fects in this regime). Indeed, for a frequency (p
=0.0252 for example, we obtain a percentage error
of 1.7% when we truncate the continued fraction,
Eq. (4.6), at n =2 rather than at n = 6. We also find,
in accordance with the statements made earlier in
this section, that the real part of the susceptibility



682 PETER HANGGI, ADI R. BULSARA, AND RALPH JANDA 22

~ I I I II II[ I I I I IIII[ I I I I IIII[ I I I I II/Q

y = 8,158489

IO

IQ
. I I I ~ (i ~ I

IO IO

is almost coincident with $(&o)/2b, (for &v=0.0252,
the percentage difference between these quantities
is 3.3+o for n =2 and 0.8(& for n = 6).
To conclude this section, we briefly comment on

FIG. 13. The real part tX'(cu)J and imaginary part
fx "(co)] of the generalized susceptibility X (co) )see Eq.
(5.15)J for y = 8.138489.... The amplitude fluctuations
are approximately Gaussian and the continued-fraction
expansion (4.6) may be truncated at n = 2 within the range
of .accuracy of this graph. In this case, p (cu) is given
approximately by the fluctuation-dissipation theorem
(5.16), C=8, q=l.

the physical meaning of the susceptibility y(o1). It
is well known~' that the susceptibility is a measure
of the response of the atoms to an externally ap-
plied electric field. In a linear theory (for not too
strong fields), the polarization induced by an ex-
ternal field is proportional to the field, g(ol) being
the constant of proportionality. In the system con-
sidered in this work, the additional small signal
e'"'induces a change in the polarization $ of the
atoms in the cavity. The susceptibility calculated
in this section is actually a measure of the atomic
response to this additional field. Since we have as-
sumed the incident field to be real (this is a conse-
quence of the phase-locking assumption), we have
x*( )=x(-
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APPENDIX

The explicit expressions for the first six continued-fraction coefficients of Eq. (4.6) are expressed in
terms of the stationary moments (pj as

Po ~

c2 Pl eo I

P2Po P 1
Po P1

PO Pl P3 P2
Pl(POP2 P I)

(A I)
(A2)

(A3)

(A4)

C5
POP1P2P4+POP1P4+POPIP2+ f OP1P3 POP1P2P3

PO(P1 P3 P )(PO2P2 P 1)

POP3 PlP2 + P3P2 POPOP4 P1P5 POPRP5 PlP2P4 P1P3
PO P2 P 1 (PO P2 P4 Pl P2 P3 P2 PO P3 P I P4)
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