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In this paper we continue to extend our previous investigation of continued fraction (CF)
solutions for the stationary probability of discrete one-variable master equations which
generally do not satisfy detailed balance. We derive explicit expressions, directly in terms
of the elementary transition rates, for the continued fraction recursion coefficients.
Further, we derive several approximate CF-solutions, i.e., we deduce non-systematic and
systematic truncation error estimates. The method is applied to two master equations
with two-particle jumps for which we derive the exact probability solution and make a
comparison with approximate solutions. The investigation is also extended to the case of
master equations with multiple birth and death transitions of maximal order R.

1. Introduction

The method of master equations is a generally ac-
cepted concept for the modeling of discrete statistical
systems [1-3]. In this paper we confine ourselves to a
discussion of the stationary solution of discrete mas-
ter equations of one-variable processes. These master
equations occur in many fields, such as in quantum
optics, spin-relaxation, chemical reactions or popu-
lation dynamics when the statistical system under
consideration can be assumed to be spatially uniform.
The spatial uniformity can arise, for example, because
the system is small (e.g., biophysical systems) so that
it cannot exhibit any phase boundaries. Alternatively,
it can be imposed by external boundary conditions
such as thorough stirring in chemical reactions.
In contrast to a one-dimensional Fokker-Planck sys-
tem, for which the stationary solution is easily ob-
tained by a simple quadrature, the solutions of dis-
crete (number space) master equations are generally
of more complicated structure. This is due to the fact
that except for the special case of a simple birth and
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death process (nearest neighbor transitions only) sat-
isfying automatically detailed balance, the master
equations with multiple transitions do in general
not obey a detailed balance relation.
In a previous paper [4] we derived for a discrete
master equation with one-particle and two-particle
jumps a continued fraction representation for the
stationary solution P~(n),n=0,1,2 . . . .  , which in ad-
dition is very appropriate for a computer evaluation.
In this paper we continue this investigation in more
detail. In Sect. 2 we first briefly review the general
results for the two-particle jump master equations
obtained in [4]. Using the continued fraction repre-
sentation for the transition function [4,5] in
=P~(n)/P~(n-1), we derive an equivalent reduced dif-
ference equation for the stationary probability. This
reduced form is of major importance because in
many cases it allows for an analytic solution (via the
method of Laplace [6]). In Sect. 3 we derive exact
explicit expressions, directly in terms of the elemen-
tary transition rates, for the continued fraction re-
cursion coefficients as well as for the stationary prob-
ability itself, if some type of transition rate (1-, 2-

                             



270                                                                                  

particle birth or death rate) vanishes identically. We
also demonstrate that solutions corresponding to ab-
sorbing states as well as an "explosion to infinity" are
naturally contained in the continued fraction for-
mulation. In Sect. 4 we elaborate on the important
problem of obtaining approximative solutions, i.e., we
deduce truncation error estimates for the continued
fraction relations. By use of the Lidstone expansion
[7, 81, we further develop a systematic approximation
procedure. The results in Sect. 3 and 4 are then
applied in Sect. 5 to the study of a population-
dynamical model and a nonlinear chemical reaction
scheme. Finally, in Section 6 we extend the discussion
of a continued fraction representation for the sta-
tionary solution to the case of multiple birth and
death transitions of maximal order R > 2 .  Such mas-
ter equations occur in models for population dy-
namics [9] and nonlinear chemical reaction schemes.

2. General Stationary Solution
of Two-Particle Jump Master Equations

In this section we review the stationary solution of
discrete onevariable master equations

P(n, t)= ~ W(n, m) P(m, t)- ~ W(m, n) P(n, t),
m in

n=0,  1, ... (2.1)

where the transition probabilities W(n,m) are re-
stricted to two-particle jumps only, i.e.,

W(i,j)=O for ]i-j[ >2

In the following we use the notation

(2.2)

W(n+ 1, n) =2 , ,  n=0 ,  1, ... (2.3 a)

W(n-l,n)=#,, n = l ,  2, ... (2.3 b)

W(n +2, n)=v,, n=0,  1, ... (2.3c)

W(n- 2, n) = co,, n = 2, 3,.. .  (2.3 d)

In [4] we derived for the transition function 4, of the
stationary solution P~ of (2.1)

~(n)
~" =Ps(n -  1) (2.4)

the continued fraction representation

4 , -  a " - i  (2.5)
b , §  + co,+ a 4,+1)

with

a _ 1 = 1, a 0 = [-0], a 1 = [1] [0] --#120 (2.6a)

In] = 2, + v, + #, + co, (2.6 b)

bl = 0 ,  b2 =-co22o (2.6c)

and {a,}, {b,} satisfying the coupled recursion re-
lation [4]

an - 1 sa, = In] a, _ 1 - co. v,_ z
a, _ 2

bn-l+#'-lan-3 )- ( b , + # , a , - 2 )  , 2 ~ n - 1  (2.7a)
an_2

bn=con(v,_3[bn_z+#,_2a,_r (2.7b)

By use of the definition of the transition function ~,
the continued fraction in (2.5) ultimately yields a
reduced difference equation for the stationary proba-
bility

a._2con+ l Ps(n+ 1 )+(b .  +a._2#n)Ps(n)

- a ~ _ l  P , (n-  1)=0 n=1 ,2 ,  . . . .  (2.8)

Compared with the difference equation given by the
master equation (2.1), the difference equation in (2.8)
is reduced from order 4 in (2.1) to one of order 2!
However, despite the fact that (2.8) is of the form of a
difference equation for a simple birth and death
process (nearest neighbor transitions) the solution for
(2.1) does not generally obey detailed balance. In
other words, the coefficients in (2.8) are not transition
probabilities corresponding to a stochastic matrix
structure and consequently (2.8) should not be looked
upon as a master equation.
In terms of the transition function 4, the stationary
solution of (2.1) is written as

~(n)=~(0)  f i  ~i (2.9)
i = 1

with P~(0) determined by the normalization. The pro-
duct solution in (2.9) can be recast in the form of a
continued fraction [4]

a~ (2.10)Ps(n)=P~(0) .  .
dn-~-dn- l an-2con+ t ~n+l

with {d.} satisfying the recursion relation

d.=(b.+a._z#.)d._l +co.a._la._3dn_2. (2.11)

and

d o = 1, dl = #1" (2.12)

3. Exact Solutions for Special Cases
In this section we study the simplifications which
arise from the exact solutions of the recursion re-
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lations of the continued fraction expressions and of
the stationary probability (2.10) if some of the tran-
sition rates vanish identically.

a) Transition Rares v , -O

For the special case where all the two-particle jump
birth rates v, vanish, the recursion relation for a,
(2.7a) simplifies considerably, giving

a.=()~. + #.  + c%)a._ 1 -- 2n_ 1 ,~n_2Onan_ 3
--#n,'].n_lan_2 (3.1)

with b, given by

b,=c%2, 2an_3 . (3.2)

By virtue of a 1 =1, we easily verify that the so-
lutions of (3.1) and (3.2) are given by

a , =  f l  2i, n=0,  1.., (3.3)
i=O

n - 2
b n = co, [-[ 2> n = 2, 3, .... (3.4)

i=0

As a consequence we obtain from (2.5) for the tran-
sition function 3, the explicit result

3. - - - (3.5)

as, equivalently, for the reduced difference equation
for P~(n)

co,+~ P~(n+ 1) + (~o, + #,)P~(n)- 2,_ ~ P~(n- 1)=0
n = 1, 2 . . . . .  (3.6)

This reduced difference equation can be solved ad-
vantageously by use of the method of Laplace [6]
(see Sect. 5).
By virtue of (3.5), we obtain for the stationary so-
lution (2.10)

20 ...2,_1P~(n) = P,(0) , (3.7a)
Cn q-Cn- l (Dn+ l ~-n+l

where

c,=(#,+%)c,_~ +c,_22 . ~c%,
c 0 = 1, ca =#1- (3.7b)

If 2, =0  we obtain from (3.5) ~,+1= 0 yielding P~(i)=0
for all i>n. In particular, if 2o=0 the stationary
solution is

P~(i) = 6o, i (3.8)

i.e., the state n = 0  is an absorbing state. Further, if
with v n - 0  there are also no two-particle jump death

rates present, i.e., co,-=0,,>2, we immediately find
from (3.5) the well-known detailed balance result

~ n  -- 1~,, = (3.9 a)
#n

P~(n) = P~(0) /~i-1 (3.9b)
i =  1 # i

b) Transition Rates oo n-- 0

In the case of identically vanishing two-particle jump
death rates ~o,-0  the continued fraction coefficient b,
in (2.7b) is zero and the recursion relation for {dn}
simplies to

d,=p,a,_2d~_ ~, (3.10)

yielding in virtue of (2.12)

d, = #1-.. #, ao.-. a,_2. (3.11)

As a consequence, we obtain for the stationary so-
lution P~(n) the explicit result

Ps(n) = Ps(0) an-x n = l , 2 ,  . . .  (3 .12)
#1 ... #. '

and

~ , -  a" - i  . (3.13)
#nan_2

The evaluation of the stationary probability is re-
duced to the calculation of the (n-1)- th order con-
tinued fraction coefficient a ,_l  which obeys from
(2.7a) the recursion

a,=(2,+#,+v,)a,  1--#,#n_lVn_2an_3
--#n2,-la, 2' (3.14)

Using the transformation f ,
n

~,, =f .  I I # ,  (3.15)
i =1

(3.14) can be recast in the form

= f n - , - - ~ - f n - 2 - - - - f n - 3  (3.16)
\ # n # n  -- 1 /An -- 2

with

f_3=f_2=O,  f _ ~ = l ,  f 0=v0+2o  . (3.17)

Summation of the relation in (3.16) from n = 0  to n=i
equals

~ =  (~,+Pi)f~ ~ +/~,-~f~-2 (3.18)
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where

cq=~' fii=~. (3.19)

The recursion relation in (3.18) written in terms of the
coefficients {a~} yields for (3.14) the considerably
simplified recursion

a ,=(2 ,+v , )a ,  l +#nVn_lan_2 n = l , . . . .  (3.20)

An analytical solution of this recursion relation is
advantageously investigated by using the more
simple relation in (3.18).
Finally, let us assume that the birth rates #i are not
all strictly positive. Then for #~=0, ieN,  we have
from (3.13) an undefined transition rate ~

~ _  P,(i) = oo (3.21)
P~(i- 1)

which indicates that Ps(i-1) equals zero and sub-
sequently

Pss(i- 2) = P~(i - 1)/~i_ ~ = 0, etc.
P~(j) =0, j = 0  . . . .  i - 1 .  (3.22)

Clearly, for #~-0,  i = 0, 1 . . . .  the system undergoes an
explosion to the infinity state.

c) No One-Particle Jumps, th-O,  2i=-0

Where there are only two-particle jump birth and
death transitions present (for example, the stochastic
modeling of a two-photon laser [10]), the recursion
relation for {a,} can be solved explicitly, yielding

a , = ~  v i n=0,  1,... (3.23)
i = 0

and recursively

b~=0 n = l , 2 ,  ....

The transition factor ~, reads

(3.24)

~ -  v"-i  (3.25)
( D n + l  ~ n + l

which consequently has the product representation

4, = v"-l  o)"+ z v"+ l"'" (3.26)
(Dn+ 1 Vn (Du+ 3 �9 -.

The continued fraction coefficients {d,} are from
(2.12) calculated to be

dzn+ 1 = 0 (3.27 a)

d z n  = 09 i a 2 a l . . . a z n _ 3 a a n _ l  �9
.= t 2

By virtue of (2.9) and (2.10), we find for the stationary
solution P~(n)

P~(2n)=~(0) l~[ v2i-2 (3.28)
i=  1 (D2i

P~(2n+ 1)=P~(1) f i  v2i-1. (3.29)
i = 1  (D2i+ 1

These explicit solutions exhibit a detailed balance
structure which holds separately for the even sub-
lattice {n=0,2 ,4 , . . .}  and the odd sub-lattice {n
= 1, 3, 5, ...}. First we note that for a finite number N
of states, the ratio

~ _P~(1) VOC%...VN 1 (3.30)PA0) co2vl...~oN+~N+~
remains undefined because the value of IN+ ~ is not
defined. This behavior exhibits the fact that for any
f inite stochastic matrix introducing only two-particle
jump transitions the even and odd subb-lattices do
not couple. This is reflected in a degenerate zero-
eigenvalue of the corresponding stochastic matrix.
The infinite many stationary solutions are character-
ized by the two parameters occurring in (3.28-3.29)
where with one arbitrary parameter 0_-<Ps(i)_<_ 1, i = 0
or 1, the remaining parameter is fixed by the normali-
zation.

4. A p p r o x i m a t i o n  M e t h o d s

Although expressions for the stationary solution de-
scribed in the previous sections are already in a very
appropriate form for a computer evaluation, analyti-
cal solutions of the continued fraction solutions gen-
erally cannot be obtained (except in special cases).
The investigation of approximative solutions is valu-
able because of the interest in obtaining analytical
approximative results as well as because of interest in
solutions requiring a minimum of computer time.
A first method of approximatively evaluating the
expression for the stationary probability in (2.10) is
based on the observation that the transition factor ~,,
varies generally on a slower scale than the probabili-
ties themselves I-4, 5, 11]. Assuming ~, to be slowly
varying we may set in (2.5) ~ n ~ n + l  yielding

{ ~  4c~ 1} (4.1)b"+a" -2#"  1+ (bn+a, 2#,) 2 .~"~2a,_  2 co,+ 1

Noting ~,>0,  we have hereby chosen in (4.1) for the
solution of the quadratic equation the (+)  sign for
the square root expression.
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With {n given in (4.1), we obtain from (2.10) the
approximative solution

a 0 . . .an_ 1

dn+ ~ (b,+a, ~#,) 14 (b,+G_z#n) 2
(4.2)

Moreover, the extrema values {g} of the probability
solution are approximately given by setting ~,=1
and solving for ~, i.e., an approximate extrema value

obeys

an_ 2 ~oa+, 4"(b~ +ae_~ #~)--a~_ 1 =0.  (4.3)

Assuming ~ to be an extremal value, we may expand
{n around

( G ]  (n-~)+ (4.4a)~ n ~ l +  \8n/~ "'"

such that with (2.9) and by use of the Euler MacLaurin
summation formula we have in lowest order the
Gaussian approximation of (4.2)

(n-fi)  2
P~(n)~P~(~) exp 2~; ' (4.4b)

where

a =  - [ 8 g .  q [ - 1  (4.5)
k Sn n=~J

2a~_2 co,+ 1 4,a~ 2 #~ + b~
= 8 (4.6)

~ ( a . - 2 c ~  + a . - 2 # n + b n - a .  1)].=~

For example, if v ,=0  (Sect. 3a), we obtain the sin>
ptified relations

2c% + # e -  2e = 0 (4.7)

3o~+#~
a =  8 (4.8)

~-n(2O),+#, - 2,)1,=,

and if co n = 0 (Sect�9 3 b)

#n -- 2e -- 2 V~ = 0 (4.9)

#h 4" V~
0-= 8 (4�9

~ ( # n - -  2n-- 2V,)I.=,

This Gaussian approximation is known to give very
satisfactory results when the transition rates cor-
respond to a large system size [12, 13].

We further note from Sect. 3 that if either the tran-
sition rates COn=0 or v,=0,  the calculation of the
transition factor ~n is reduced to the evaluation of the
explicit expressions in (3.5), (3.13). We may utilize this
fact in developing an approximation scheme in terms
of a parameter 0; we write (2.5) in terms of the new
rates

~n=2Ovn, 0< 0_< 1 (4.11)

&,,= 2(1 0 ' - ) (o,=20 co n (4�9

and denote the resulting continued fraction by
~'n(0, 0'). Clearly for 0=0, i.e., ~n-0, &.=2c%, we can
make use of the results in Sect�9 3a and for 0 = 1, i.e.,
&,=0,  ~,=2v,  of those in Sect. 3b. The solution in
(2�9 is obtained by setting 0=0'=  89 Thus, by
evaluating ~,n at 0 = 0 and 0 = 1, we may construct an
approximative interpolation solution for ~n=Cn( 89  89
By virtue of the Lidstone expansion [7, 8], we can
write for the value of the fraction ~"n(0, 0') at an
intermediate point 0

n(0,  0') =G(1, 0) 0 + G(0, 1)(1-0)

4, ~ {ci(O)~#~ O)+ci(1-O)~,2~ 1)}. (4.13)
i = 1

In (4.13)~z~ denotes the 2i-th derivative
~2i  ~ (~2i 0 = 08 ~ " 0 = 1  and ~'~~ the derivative ~--0~C,

and the coefficient c n is given by

[ d a" s inh0x]  ~=o (4.14)
Cn(0)=~,,,: [dx 2n sinhx _1

22n+ 1 [1 4- Os
- (2n  + 1)! ~b2"+~ 1 ~ } '  n>  1 (4.14b)

where q~, is the Bernoulli polynomial of order n [14].
For example, we find for 0 -  2 -

1 1c0(5)= 5 (Linear interpolation) (4.15)

c~ (~) = - 1/16 (4�9

c2( 89 = 5/678. (4.17)

In contrast to the Taylor expansion, there occur no
odd derivatives in (4.13).This is because, unlike the
Taylor series, we evaluate the derivatives of ~'n(0, 0')
at the two points 0=0. 0 '=0. In the lowest order
(linear interpolation) we obtain the approximation

~n ,~,  89 "~n - 1

(2 co n + p,) -t

a. 1
/in an  - 2

2o0,+ ~ 2 n
(2o0.+, + ~t,,+ l) + 209n+ 2 )~n+ 1

(4.18)
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(4.19)

with 4, satisfying

4_ 1 = l ,  f io=2o+2V o
c~ =(2 ,+2v , )a ,_~  + 2 # , v , _  1 a,-2-

With (4.1) we may write further

1 ~ n - t

V 82ncon+ 11 ~ 1)2)2co ,+# ,+  89  ( - 1  + (2co,+l + # ,  +

~-~ 7 �9
#nan --2

(4.20)

Substitution of (4.18) or (4.20) in (2.10) yields a closed
simple approximation solution for P~(n). In contrast
to the approximation in (4.1), the approximative solu-
tion in (4.18) can be successively improved by calcu-
lating (e.g., by numerical computer evaluation) some
of the even derivatives of ~,(0, 1 -  0) at 0 = 0 and 0
= 1. There exist, of course, other possibilities of ap-
plying the Lidstone expansion. For example, the Lid-
stone method has been used to obtain time-depen-
dent solutions of nearest neighbor master equations
describing vibrational relaxation and intramolecular
decay [153.

5. Applications
As a first example, we investigate a population dy-
namical model with constant simple birth rates 2~ = 2.
n=0,  1,... and simple linear death rates # , = a n ,  n
= 1, 2,... The transition factor for this nearest neigh-
bor process is from (3.9a) given by

2 a 2
4,  = - - =  , a = - .  (5.1)

a,gt  n a

The stationary probability is easily evaluated to be a
Poissonian

a n
P~(n)=P~(0)n Y (5.2)

a n
= - - e  -~. (5.3)

n!

The statistical mean value (n} is calculated to be

(n 5 = a (5.4)

and the variance a is given by

a = a . (5.5)

We observe that for this example the Gaussian ap-
proximation in (4.3) and (4.5) for the mean and

variance coincide with the exact values in (5.4) and
(5.5).
Next we investigate the process obtained by substitut-
ing for the simple death rate a two-particle death
mechanism with linear transition rates co, given by

a
(9, =~  n, n=2,  3, .... (5.6)

a
Clearly the process with 2~-2,  c%=~n, # , - 0 ,  v , - 0

does not satisfy detailed balance. However, it is inter-
esting to investigate whether the Poissonian form is
conserved with the linear transition rates in (5.6). By
use of (3.5) we find for the stationary transition factor

2
41 - =a{21  (5.7)

a~2

P
~ = n + ( n + l ) ~ , + l ,  f l=2a

1 np (n+l)/~ n=2,  3, ....
n n+  ( n + l ) + ' "

(5.8)

Setting

1 u(n+l)r (5.9)u(n)

u(n) satisfies the difference equation

u(n + 2) + n u(n + 1 ) -  f i nu (n )=O.  (5.10)

We find the solution to this difference equation by
using a method originated by Laplace [6]. With a
continuation to complex variables n ~ z ,  we set for
the unknown function u(z) the transformation

P
u(z) = ~ t ~-  l f (t) dt  (5.11)

q

with {q,p} being parameters determined below. In-
serting (5.11) in (5.10) we obtain with a partial in-
tegration

i t z -1  [ t2 f ( t )  - t d ( f ( t ) ( t -  fl))] dt
q dt

= -- I t : f  (t) ( t - -  fl)]~. (5.12)

The integration limits {q,p} are now fixed by im-
posing

[ t z f ( t )  (t - fl)] ~ = 0. (5.13)

The integrand on the left-hand side of (5.12) [first
order differential equation for f (t)] is then integrated
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to give (up to a multiplication constant A = 1)

f ( t )= (~fif-)(~ 1)et, f l>0.  (5.14)

As a consequence we find for the parameters {q,p}
from (5.13), (5.14)

q=O, p=~.  (5.15)

The unique solution in (5.11) for z e N  is then written
in the form

u(n) = ! t"- ~ e ~ dt (5.16 a)

1 t
=fl"~s("-l)(1-s)(e-1)eeSds, s = ~  (5.16b)

0

=ff'B(13, n)M(n, 13+n, 13), n=2,  .. . .  (5.16c)

Hereby, B(13, n)-B(n,  fi) denotes Euler's Beta-func-
tion

1 v(n)  v(13)B(fi'n)=~s"-l(1-s)(e-*)dSo V(n+fl) (5.17)

where F(n) is the Gamma function and M(n, fl+n, fl)
denotes Kummer's confluent hypergeometric function
[16]. Insertion of the solution in (5.16c) into
(5.10) yields the well-known recursion for the con-
fluent hypergeometric function [16].
The stationary transition function ~, is from (5.9)
given by

~ _  fi M ( n + l ,  f l+n+l,fi) . ,  n=2 ,3 , . . .  (5.18)
fi + n M (n, fi + n, fi )

and in virtue of (5.7)

13+2 M(2, fi+2, fl)
~ -  2 M(3, fi+3,13)" (5.19)

For the stationary probability (2.9) we obtain in
terms of the parameter c

c = P~ (0) 2 fi- [M (3, 13 + 3, fi)] -* (5.20)

p~(n)=c13 o 2 c(13+3+)1) M(n+g (13 + n 1,13+n + 1, 13)

n = 1, 2, .... (5.21)

The constant c is being determined by the normaliza-
tion condition

c = {~M(3, fl+3, fi)+F(fl+3)

13~-2 }-1
�9 n = l  f F(F+n+l) M(n+l'fl+n+l'13) (5.22)

The exact solution in (5.21) is not of Poissonian form.
However, in the Gaussian approximation, we find
that the statistical mean value remains unchanged �9
The approximate variance ~ is from (4.8) given by

a =3c~ (5.23)

which is seen to be broadened by a factor 1.5.
In the second example, we consider the nonlinear
chemical reaction scheme originated by Nicolis [17]
for the variable X

A k, ~X, 2X kz-*A.

By use of the combinatorial mass-action kinetics, we
obtain the master equation

15 (0) = 2 k 2 P (2) - k 1 NAP (0) (5.24 a)

P(n)=k,  N A P ( n -  1)+k2(n + 1)(n+ 2)P(n+ 2)
- (k 1N a + k 2 n(n - 1)) P(n), n = 1, 2, . . . .  (5.24 b)

N A denotes the number of A-molecules which are
held constant. With the notation

k l  N A
a - -  k2 (5.25)

we recast (5.24) for the stationary solution in the form

0 = 2 P~ (2) - aP~(O) (5.26 a)

O=aP~(n-1)+(n+ 1) (n +2) P~(n +2)
- (a + n(n - 1)) P~ (n), n = 1, .... (5.26 b)

The stationary transition factor {, is then from (3.5)
given by

a
~,,- n = 1, 2, . . . .  (5.27)n ( n -  t) + n(n + 1) ~,+~

In contrast to (5.8) the relation in (5.27) also holds
"naturally" for n = 1. As before in (5.9) we write

1 a a 1 u ( n +  1)C= . . . . =  (5.28)n ( n - l ) +  n+ n u(n)

where the quantity u(n) obeys the difference equation
(n --, z)

u ( z + 2 ) + z u ( z + l ) - a u ( z ) = O ,  a > 0 .  (5.29)

Setting for u(z) the (Laplace)-transformation
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-[

Fig. 1. Path of integration for (5.35)

Re

p
u(z) = ~ t : -  i f (t) dt (5.30)

q

we obtain

it:-l [f(t)(t2-a)-t~]dt=-K(t) I
q

where

(5.31)

K (t) = t ~ + ~ f (t). (5.32)

Setting the integrand on the left-hand side equal to
zero and solving for f(t), we find

f (t) = t exp

acto   an e  sentia

singularity. However, noting that

,,o (5.34)

for t negative and real, we can choose the point z = 0
as an integration limit. Denoting the integration path
by 5f (see Fig. 1), we can write for the solution in
(5.30)

( a )  u(z)=y t ~ 2 exp t +  t dr. (5.35)
s

By use of the transformation t = i l / a s  and the rela-
tion for the generating function of the Bessel function
[18]

n =  - c o  e~ 9 " S n

we obtain for the solution u(n) the result
n--1

u ( n ) = ( - 2 ~ ) i ' a - Y - . 3  (, 1)(2i1/a). (5.37)

With the relations g_ , (z)=(-1)" .~ , (z)  and t , ( z )
=I,(z)  =(i)-" .~,(i z) with I , (z)  denoting the first mod-
ified Bessel function, we recast (5.37) in the form

n - i
u (n) = - 2 ~ i a~--  I ,_  t (21~). (5.38)

The stationary transition factor ~, is with (5.28) given
by

~, =va'- In-1 (2Va) " n =  1,2, .... (5.39)
n I , , _ 2 ( 2 ~ ) '

Setting a = 2 X  g (X0: deterministic stationary state
[17]), the stationary probability P~(n) reads

22X~ I,_a(21/2Xo)
P~(n)=P,(0) ni  i~(2]//2Xo) n=0,  1 . . . .  (5.40)

where P~(0) is determined by the normalization

1 .~ 2 2  n I n - l ( 2 l f 2 X o )
- 2. - - X o

P~(0) ,=o ni I1(21//2Xo)

Noting the relation [19]

(5.41)

i- j
I j (4Xo)=22_ ~. 2~X~ Ii j(2]f~Xo )

i=o i!
(5.42)

the sum in (5.41) can be evaluated explicitly to give

( 2 ~ X ~  (5.43)
ps(0 ) = llif~I 1(4Xo)"

The normalized stationary probability is consequent-
ly given by

, - 1  y .  I .  1(21/2Xo)P~(n)=2~ - ' ~ ~  - n = 0 , 1 , 2 , . . . .  (5.44)
n! I i(4Xo) '

The probability in (5.44) is not a Poissonian although
the transition probabilities in (5.26) obey combinato-
rial mass-action law kinetics [see also the result for
the variance o- in (5.49)].
The factorial m o m e n t s  ( n J ) f

(nJ)~ = (n (n - -  1)... (n--j + 1)) (5.45)

are from (5.42) and (5.44) easily calculated to be

( r l j ) f  = x j / j - 1  (4Xo)
I i  (4Xo) '

(5.46)

The exact statistical mean value (n)  is consequently
given by

( n ) = X o  I~176  1 1 0(Xo2) )
I1(4X1 ) :X~ + 8 ~ o  q-

(5.47)
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The result in (5.47) compares with the Gaussian
approximation (4.7)

1 +] /1  +2a  (1 1
2 ~ X ~  + 2 X o  + ' ' ' ] "  ] (5.48)

The variance r is exactly given by

~r=Xo Io(4Xo)_ { l _Xo lO(4Xo) ]+X  2
I1(4Xo) \ I1(4Xo)]

= 3 Xo + Xo (161xo + O(Xo2) ) (5.49)

which coincides up to order 0(1) with the Gaussian
approximation in (4.8). The exact values in (5.48),
(5.49) are identical to those calculated by Mazo [201,
who used the technique of the generating function. In
this context, it is worthwhile emphasizing the fol-
lowing: A numerical or even analytical evaluation of
the stationary probability in terms of the continued
fraction relations is straightforward in all those cases
for which either all or a finite set of transition rates do
not obey an analytical relation of the form in (5.6), (5.26).
For example, explicit results of the form in (5.18) can
be obtained for an arbitrary two-particle death rate
c% >0. In contrast, the generating function for such a
case (non-analytical rates) can almost never be evalu-
ated explicitly and a corresponding numerical evalu-
ation is rather cumbersome.

6. Exact  Solutions of  One-Variable Master  Equations
with Many-Part ic le  Jumps

In this section we extend the discussion of exact
stationary solutions to the case of maw-particle
jumps of order j, i.e., to transition probabilities W(n
+j, n) with 1 < j  < R.

a) Simple Death Rates Only
The simple solutions in (3.12), (3.13) with no multiple
deaths of order j > 2  suppose a generalization for the
case of multiple births v~

vJ, = W(n+j, n) ; j=  1, 2 . . . .  R. (6.1)
With n varying between 0 < n <  0% the stationary
probability P~(n) obeys the set of equations

- [01P~(0) + #~ P~(1) =0  (6.2a)

- [1] P~(1) + #2 P~(2) + v~ P~(0) (6.2b)=0

R - 1

-[R]P~(R)+#R+~Ps(R+I)+ ~ V{Pss(i) =0
i=0

j = R - i

n - 1

+[n]g(n)+#.+,Ps(n+l)+ y~ V{Pss(i) =0,
i=n R
j = n - - i

(6.2c)

n=R, ... (6.2d)
where

R R
,i[o1= Z  o,[nn  S i ' = v , + #  n, n = I , 2 ,  . . . .  (6.3)

i = l  i = 1

Solving equations (6.2a), (6.2b) for the stationary
transition factor yields explicitly

[01~t = , (6.4)
#1
[1] [0]-v~#~

~2 = (6.5)#2 [0]
Observing (3.13) we try the ansatz

~ n -  a ~ - i  (6.6)
# n  a n  - 2

with the coefficients {a,} satisfying the recursion rela-
tion
an=in]an_l_ ,i 2Yn 1 # n a n - 2 - - V n - 2 # n # n  1 a n - 3  - -  " "

(6.7)- -  Vn--R # n  "'" # n  - R +  1 a n - - R +  1

a 1 = 1, a 0 = [0], a 1 = [1] [0] - v~ #1. (6.8)

The result in (6.3) is easily proved by induction on n.
The generalization of (3.12) to multiple birth rates
vi,, i = 1 . . . .  R is from (6.6) given by

Ps(n)=Ps(0) a,_~ , n=  1,2 . . . .  (6.9)
#1 --. #,

with {a,} satisfying the recursion relation (6.7). With-
in the Gaussian approximation we obtain for the
variance a the result

R
1 ~ i(i+l) vi

i = 1
( 7 - -  ~ [ R " (6.10)

an ir176i=1 /fn
with ~ satisfying

R
# ~ = ~  - i _  ~v~-0. (6.10b)

i = 1

The simplicity of the solution in (6.9) is reflected in
the structure of the master equation for P~(n). The
relation (6.2) introduces, via a successive solution
from n = 0 up to n, only one further unknown quanti-
ty Ps(n+l) characterized by the simple death rate
#,+ 1. In other words, the explicit consideration of the
boundary conditions in (6.2) for n = 0  . . . .  R enables
the explicit form in (6.9).

b) Simple Birth Rates Only
Dealing with no multiple birth rates of order j >__ 2, we
find in terms of the multiple death transitions #J,
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J--w(rt-- j ,  ti); j =  1, 2, .R,n--j>=O (6.11)~ n - - ""

for P~(n) the set of equations

R
0 = -  [01Ps(0)+ ~ #{P~(i), (6.12a)

i = 1j=i
R + I

0 = - [ 1 ] P ~ ( 1 ) +  ~ #{P~(i)+20Ps(0 ) (6.12b)
i = 2

: j = i - - 1

R + .
0 = - [ n ] P ~ ( n ) +  ~ p{Ps ( i )+2 ,_ ,P~(n -1 )  (6.12c)

i = n + l
j = i - n

with

[o] =x0, [ I ]  =2~ + ~
n

2.+ S<,
In] = /  %~

/Z+ 2 <,
~, i = l

l < n < _ R

n = R , R + I  . . . . .

(6.12d)

(6.12e)

As before, we calculate first the transition factors 4,
= P~(n)/Pss(n - 1) giving

2~ (6.13)4, = ~I + 4~ [ ,~ + 43 [U~ +- . -4 ,  ~ ] - . - ] "

For 4 2  w e  obtain by virtue of (6.13)

2t
~ - (#~ + ~ )  + ~ [#~ + ~ + 4~ b ]  + ~ +...

+~RE#~ ~+#~+~R*,#~+']'"] (6.14)

2 1
#2 = #~ + / ~  + ~3 [#~ + #~ + 44 #~] (6.18)

n -- 14,=~1,, 2 3 ~ 3 3
+ P. + #,, + 4.+1 + P.+ #.+2][}/n+ I 1 q - 4 n + 2

n=3,4 ,  .... (6.19)

The continued fraction expression in (6.15) is equival-
ently recast in the form of a reduced difference equa-
tion

NI Nj

-2, , P~ ( ~ - 1 ) +  Z ~ . . . .  ~.P,(~)+ .. F~ ' ~,+jP~(n+j)+
i= I i ~ j

R+#,+R P~(n+R-  1)=0. (6.20)

Moreover, the approximation methods in Sect. 5 can
be extended straightforwardly to the case with mul-
tiple births or deaths. In particular, we find within the
Gaussian approximation for the variance a from
(6.15)

R
 89 ~ i( i+l)p~

__ i=  1 (6.21)
- i

- -  1 # n  - -  2n
0/~/ i fi

with ~ satisfying

R
2 , -  Z i#i, =0.  (6.22)

i = 1

# 6 R  setting 2 , = 2 , # , = ~ n  ~, we obtainBecause of the results in (6.13), (6.14) we suggest for For example,
4, the ansatz from (6.22)

2 .  1 2
~n : N1 N2 N 3  ~ - - - - ,  (6.23)

i = 1  i -  i _
and

(R + 1)).
a = - -  (6.24)

where 2#

~n+j - 1 ,  if n + j - l < R  (6.16)
N j  = ( R , if n + j -  1 > R.

The ansatz (6.15), (6.16) is verified by a somewhat
cumbersome but straight-forward calculation. In par-
ticular, we render for R = 2 the results in Sect. 3.a and
for R = 3 we have

2o (6.17)

Consequently, the stationary probability Pss(n) bro-
adens with increasing multiple death transitions n--,n
- R ,  R = l ,  2 , . . . .

J. A s h w e l l ' s  ed i t o r i a l  a s s i s t ance  is g r e a t l y  a p p r e c i a t e d .
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