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We have investigated the relationship between Markovian master equations (m.e.) and the
corresponding stochastic differential equations (s.d.e.) for closed systems, i.e., systems not
subjected to external pumping. We show that the form of the fluctuations in the s.d.e., i.e.,
additive or multiplicative, depe6ds upon the properties of the kernel of the m.e. and the range of
the state space of the stochastic variable(s), i.e., bounded or unbounded. The knowledge of these
two properties of the m.e. permits the determination of the way in which the fluctuations enter
into the s.d.e. (i.e., additive or multiplicative) and the calculation of their statistics. Several
examples are presented to illustrate the general theory.

1. Introduction

There has been a significant increase in recent years in the interest in and
the study of stochastic differential equations with multiplicative noise. These
equations describe (or are supposed to describe) stochastic processes where the
fluctuations depend upon values of the system variables. This is in contrast to
the more familar additive noise where the fluctuations do not depend on the
values of the system variables. A clear and useful review of such multi-
plicative stochastic processes has been published recently by Schenzle and
Brand J).

Two important questions arise in the formulation of stochastic differential
equations (s.d.e.) as a phenomenological description of a stochastic
process:

(a) In the phenomenological modeling of a stochastic process by a s.d.e.,
how does one know a priori whether to use additive or multiplicative noise?;
and

*Supported in part by the National Science Foundation under Grants CHE78-21461 and
CHE79-23235 and by a grant from Charles and Ren6e Taubman.

                                                               

143



144                    

(b) In the usual absence of both experimental and basic theoretical in-
formation, how does one know (or guess) the specific form of the multi-
plicative noise?

In the simplest and most studied of stochastic process,  i.e., Brownian
motion, the answers to these questions are of course known. In the velocity
variable formation, the noise is delta-correlated, Gaussian and additive. In the
energy variable, it is delta-correlated, Gaussian and multiplicative2). In more
complicated examples of stochastic processes (chemical kinetics, laser prob-
lems, oscillatory systems with fluctuating parameters,  population biology,
etc.), the answers are not all that clear.

The most fundamental approach to answering the questions posed above
would be to start with the Hamiltonian of the systems under study and then
derive the s.d.e, via the appropriate Liouville equation. For obvious reasons,
we have not chosen this very ambitious path. Our starting point instead is the
master equation. For simplicity and to obtain analytic results, we have limited
our investigation, for the time being, to Markov master equations. The choice
of a starting point has several desirable features: From the work of van Hove,
Prigogine, Zwanzig and others 3) one understands the relation getween the
Liouville equation and the Markovian master equation. For many physical
and chemical processes there exists a simple and quite unequivocal*
methodology for the formulation of phenomenological  master equations in the
Markovian limit. In some cases it is possible to calculate explicitly the
transition rates which enter into the master equation. And finally, and most
importantly, the structure of the fluctuations (additive vs. multiplicative,
Gaussian vs. non-Gaussian) does not have to be introduced in an a priori
explicit manner - - i t  is contained implicitly within the formulation of the
master equation.

In this paper we investigate the passage from a Markovian master equation
to the corresponding stochastic differential equation. Specifically, we address
ourselves to the questions raised above,  i.e., what conditions lead to
multiplicative noise, what conditions lead to additive noise, and what is the
structure of the noise. The general theory developed in Sections 2 through 4 is
then applied in section 5 to a number of specific examples.

Our results can be summarized briefly as follows:
(1) Additive noise in stochastic differential equations will be a valid des-

cription of fluctuations if and only if the stochastic kernel B(x ,y)  of the
master equation, as defined in (III. 15), is translationally invariant, i.e., the
jump probabilities are functions of the jump distance u = x - y  only.

* By this we mean that, given a sufficiently well specified physical problem, independent
investigators will, with a probability approaching unity, write down identical Markovian master
equations.
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(a) If the state space of the stochastic variable x is unbounded, i.e.,
-oo ~< x ~<oo, translational invariance implies that B(x,y)= B(u) is non-nega-
tive for both positive and negative u and may be non-zero (i.e., positive) for
both positive and negative u.

(b) If the state space of the stochastic variable x is bounded either from
above or below by natural boundaries, the kernel B(x, y) = B(u) must be of a
form such that B(u) -O for u positive if x is bounded from above and
B(u) =-0 for u negative if x is bounded from below. Such sets of transition
probabilities correspond to pure death or birth processes. The additive noise
will then be of a form which is bounded from above or below such as the
Poisson noise of example 1 in section 5.

(2) Multiplicative noise will be obtained whenever  the stochastic kernel
B(x, y) is not translationally invariant, i.e., when the transition probabilities of
the master equation are state dependent.

Our results pertain to stochastic systems with " internal"  fluctuations, i.e.,
the dynamics of the systems under study can be naturally described via two
widely separated time scales, with the rapid variations of the system vari-
ables treated as the fluctuations. We are not considering here systems sub-
jected to "external"  noise, i.e., noise which can be arbitrarily initiated and
structured by the experimenter.

2. Structure of stochastic differential equations for Markovian processes

From a mathematical point of view, there are basically two ways to
approach the description of fluctuations in physical systems. The first is the
use of master equations; the second is given by Langevin equations. It is only
recently that the general relationship between a Langevin description and the
corresponding master equation has been investigated4'5). In order for the
discussions below to be more readily accessible, we reformulate the basis of
this relationship in less mathematical terms than in ref. 5. In what follows we
outline the theory for stochastic systems described in terms of a finite number
of random variables in continuous state space.

We consider a system described by a Markov process X(t)  for  which the
probability density p(x, t) obeys the master equation

p(x, t) = f F(x, y)p(y, t) dy. (1)

We assume that the transition rate F and the probabilities p are of such a
form that one can formally expand the master equation into a Taylor  series,
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obtaining the (vector) Kramers-Moyal  expansion,

p(x, t ) =  '~ (-1)" r 0 1L°~ r e[A'(I)P(I")I (='~ l  n!

where the notation v ~nj stands for the n-fold dyadic product  of the vector  v
and the notation O stands for the n-fold contraction. The tensor An(x) is
given by

= f (z - x)[")F(z, x) dz. (3)An(x)

From (2) we postulate that the mean evolution of the macrovariables can be
described by the truncated equation

O ( x ( t ) )  = (4a)(Al(x(t))),

where

(x(t)) = f xp(x,  t) dx (4b)

and where

(Ai(x( t ) ) )  = f Al(X)p(x,  t) dx. (4c)
J

The process X ( t )  can also be formulated in terms of a so-called stochastic
differential equation (s.d.e.) or Langevin equation describing directly the
sample paths x( t )  of the process. Such a Langevin equation is then composed
of two parts: one part refers to the deterministic evolution, whereas the
second part accounts for the fluctuations. There exists no unique prescrip-
tion for the decomposit ion of the evolution into a deterministic (drift) and a
fluctuating part.

In the following we write a stochastic differential equation which is to be
interpreted using It6 calculus. The s.d.e, is

yc(t) = A,(x( t ) )  + ~(t), (5)

where ~(t) is a stochastic force which may depend on x(t) .  The average of eq.
(5) for fixed value of x( t )  = x is

(Jc(t) I x ( t )  = x) = Al (x)  + (~(t) I x ( t )  = x). (6)

We now use the It6 prescription

(~(t )  [ x ( t )  : x) = 0 (7)
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for all x and eq. (6) then becomes

<x(t) Ix( t )  = x)  = a , ( x ) .  (8)

When eq. (8) is averaged over all values of x ( t )  consistent with the initial
conditions, i.e., over all stochastic realizations, we obtain eq. (4a).

The s.d.e., eq. (5), represents a Markov process if and only if the stochastic
forces,  ~(t), have delta-correlated cumulants of all order. Eq. (5) is an
equivalent representation of the Markov process x ( t )  described by the master
equation in (4) with the Kramers-Moyal  moments given in (2), if, for given
x ( t )  =- x, the random force cumulants have the propertyS):

t+A t+A t+A

fl im~  dtl d t z . .  • d t , ( ~ ( t 0 . .  • g(t ,)  Ix( t )  = X)c
t t t

= A , ( x ) ,  n 1>2, (9a)

which is equivalent to

(g( t l ) "  • • g ( t , )  ] x ( t )  = x)c = A , ( x ) 6 ( t l -  tz) . .  • 6 0 , - , -  t,), n />2  (gb)

where t +A~>tl  . . . . .  t, ~>t. Here the subscript c denotes the cumulant
average and the average is taken for fixed x ( t ) .

The white noise source g(t) in (8) can be decomposed into a part composed
of delta-correlated Gaussian noise ~c(t) describing the continuous displace-
ment of a sample path and a part composed of delta-correlated Poisson noise
np(t, du) of vanishing mean describing discontinuous jumps of length between
(u, u +du) .  In this context  a possible delta-correlated Gaussian component
can be looked upon as the limit of a symmetric jump process with jump
frequency v---, oo and jump length u --,0 such that vu 2 remains finite6). In terms
of the components  ~c(t) and ~p(t, du), the delta-correlated noise g(t) has the
linear functional representat ion 7)

g(t) = g( t )~c( t )  + f f(t, u)'r/p(t, du), (10)
J

where the functions g( t )  and f(t ,  u)  are determined by the physics of the
problem. Here ~lc(t) denotes a vector of independent Gaussian delta-cor-
related processes -0g)(t), i = 1 . . . . .

In what follows, we call the noise g(t) mul t ip l ica t ive  noise if at least one of
the cumulant averages in (9) for n/> 2 is explicitly x-dependent ,  that is, if at
least one Kramers -Moyal  moment  A , ( x )  for n 1> 2 becomes a function of x.
As a consequence,  the functions g( t )  or f(t, u) are necessarily non-constant
functions of x. On the other hand, if A. is constant for all n I> 2, then the
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functions of g, f and ~ become independent  of x and one obtains additive
noise.

3 Markovian processes with additive noise

In this section we will diccuss the relation between the master  equation and
stochastic differential equations with additive noise. Throughout  this section it
is assumed that the stochast ic  variables x are defined on the unrestricted real
space. Given a specific master  equation, the previous discussion shows that
the necessary  and sufficient condition for additive noise reads

=- f (x - y)t"lF(x, y) dx = independent  of x, (11)A.

for all n I> 2. As a consequence,  i.e., in order for  (11) to hold for n/> 2, the
kernel F(x, y) must  be of the form

F(x, y) = A~(y)6'(y - x) + K ( x  - y). (12)

For ( x - y ) =  u, eq. (11) can be rewrit ten as

= f uL"~K(u) du, n ~> 2. (13)An

Note  that in order for  eq. (11) to yield the correc t  expression for A~ with the
kernel F(x, y) given in eq. (12), the kernel K must  be of a form such that

f ( x  - - dx = 0. (14)y ) K ( x  y)

For the kernel K(u )  defined in eq. (12), we can write

K (u ) = B(u ) - y6(u) (15)

where T is the total jump frequency,  i.e.,

T = f B(u)  du. (16)

Using eqs. (15) and (16), we can now rewrite the master  equation (1) with the
kernel F(x, y) given in eq. (12) in the usual "ga in - loss"  form as

f~(x, t) = - ~xAl(X)p(x ,  t) + f B (x  - y)p(y,  t) dy - Tp(x, t). (17)

The stochastic differential equation (s.d.e.) for  the master  equation (17) can
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now be written as

~t(t) = Al(X(t)) + ~(t), (18)
where f rom eq. (9) the additive noise ~(t) has the conditional cumulants

<g( t , ) .  . . t:,(tn)l x ( t ) =  x ) o =  ( f  u~n'B(u)du) '
x ~(tl - t2)" • • ~(tn-! - t,), n I> 2. (19)

The K r a m e r s - M o y a l  moments  An of eq. ( l l )  are thus given by

A. = f ut"JB(u) du, n I> 2, (20)

consistent  with (13).
By use of the propert ies of white Poisson noise 5) we find further  for  g(t)

f rom (19) the explicit representat ion [see eq. (10)]

= , , o ( , )  + f u,p(,, du) (21)

The results of eq. (17) and the corresponding s.d.e. (18) with the noise given
by eqs (19) and (21) are one of the principal results of this paper.  Additive
noise in the stochastic differential equation formulation will be obtained if and
only if the corresponding master equation has a kernel K(x,y) ,  which is a
function only of the jump distance u = x - y .  Conversely,  any stochastic
process whose transition probabilities are state dependent ,  i.e., the kernel
K(x ,y )  is an explicit function of x (or y) in addition to ( x - y ) ,  cannot  be
formulated by a stochastic differential equation with additive noise*.

The above discussion shows that the phenomenological  modeling of a
statistical system in terms of additive noise is certainly limited. For a physical
sys tem whose bare dissipative t ransport  coefficients are given by the
K r a m e r s - M o y a l  moments  An(x) with n I> 2, the generally non-linear depen-
dence of the t ransport  coefficients on the state variables must  be small as
measured by  some dimensionless expansion parameter  for  modeling in terms
of additive noise to be approximately  valid. In this context ,  it is presently
very popular  to model phenomenological ly the order parameter  in a dynami-
cal system by a t ime-dependent  stochastic equation of the Ginzburg-Landau

* It should be noted that additive noise is not a convariant property. Any non-linear,
time-independent change of representation of the type x--, x' = g(x) will transform the additive
noise g(t) into a multiplicative noise. Conversely, for a system with multiplicative noise there
may exist a non-linear inverse transformation which changes multiplicative noise into an additive
oneS'9). Such a transformation, for example, always exists in the case of a s.d.e, in one
dimension2'8).
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type ~°) in which the noise g(t) is usually assumed to be additive delta-
correlated Gaussian noise. The strength of the noise is usually fixed via a
fluctuation-dissipation theorem (of the second kind) which relates the linear
dissipative transport  coefficient with the correlation of the noise. We would
like to remark that the application of this approach is generally limited; it is
based on a priori specification of the noise structure whose (approximate)
validity should be checked independently. Moreover,  knowledge of the
deterministic dynamical equations is not sufficient to fix the noise structure
uniquely~l).

However ,  although the stochastics of the system dynamics is generally
non-linear in the sense of multiplicative noise, this might show up only in the
form of nonlinear dissipative transport  laws, whereas the behavior of small
fluctuations about the average behavior may be quasi-lineara'~z-t4). An important
result in this context  is the work of GraberP2). Starting from non-linear
macroscopic transport  laws, he was able to derive a linear generalized Langevin
equation for the fluctuations of the macrovariables around the t ime-dependent
mean-value behavior. In the Markov limit, this equation will, under certain
conditionsS), reduce to a Gaussian-Markovian process with renormalized
transport  coefficients, thus providing a statistical foundation of the
phenomenological  approaches developed by Van Kampen j3) and Kubo et al.~4).
Such an approach can be looked upon as one in which the effect of multiplicative
noise is incorporated into the renormalized non-linear mean-value equations.

4. Stochastic processes in restricted state space

Stochastic processes on a restricted state space are basically of two types:
(a) those with natural boundary conditions (i.e., the master equation as written
is valid for all values of the state variable within the restricted space); and (b)
those where boundary conditions must be explicitly supplied (i.e., the master
equation for the process is not valid for all values of the state variable and a
separate equation(s) must be written for the state variables at or near the
boundaries). For  processes described by master equations of type (b), such as
Brownian motion in coordinate space with a reflecting boundary at x = 0, we
do not presently see how to construct  the equivalent stochastic differential
equation. In what follows, we restrict ourselves to processes of  type (a).

The important point to realize for stochastic processes on a restricted state
space is that the fluctuation in the s.d.e, must not drive the system beyond the
boundaries. For processes of type (a) above,  one has to distinguish between
two cases: (i) pure birth or death processes and (ii) processes with both
positive and negative transitions. For case (i), it is possible, as we shall show
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in the next  section, to have purely additive noise if such noise is properly
bounded from below or above. An example of this type of behavior is
furnished by a birth or death process with constant transition probabilities
which leads to properly bounded additive Poisson noise. On the other hand,
as we shall also show in the next section, pure birth or death processes with
state dependent transition probabilities will lead to multiplicative noise. For
case (ii), natural boundary conditions willl obtain only for master equations
with state dependent  transition probabilities. This implies that the cor-
responding s.d.e, will necessarily have multiplicative noise. Thus, for in-
stance, the s.d.e, for a quantum system described by a Pauli-type master
equation must necessarily have multiplicative noise since (a) the quantum
states, characterized by their quantum numbers, are bounded from below and
(b) the requirement of detailed balancing for such systems leads to state
dependent  transition probabilities. This multiplicative noise structure for the
s.d.e, will also necessarily obtain for all "gain- loss"  stochastic descriptions of
rate processes in particle number space since the state space for such systems
is obviously bounded from below at n (particle number) = 0. The next section
contains some examples of such systems which demonstrate the points made
above.

A word of caution is in order here about the relation between master
equations (whether in discrete or continuous state space) with natural boun-
dary conditions and the Fokker-Planck  equation obtained via Kramers -
Moyal expansions which are supposed to be approximations to such master
equations. Care must be taken in the criteria used in terminating the K-M
expansion with A2(x) in that these criteria must result in a Fokker-Planck
equation with corresponding natural boundary conditions. Thus, for instance,
if there is a reflecting boundary at x = 0, it is necessary that A2(x) be of such a
form that A2(x = 0) = 0. We return to this point in some of the examples of
the next  section.

5. Examples

As our first example we study a Poisson process N(t)  >i 0 with jump length
u = 1. Specifically, we will investigate the connection between the master
equation and the corresponding s.d.e, for radioactive decay. Let  P(N, t) be
the probability that N a-particles have been emitted from the nuclei in the
time interval (0, t). The master equation governing this process is 15)

[9(N, t) = h [ P ( N -  1, t ) - P ( N ,  t)], N = 1,2 . . . .  (22)

P(0, t) = - A P ( 0 ,  t), N = 0, (23)
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with the initial condition P ( N ,  O) = 6N,o. This is a pure "b i r th"  process  with the
constant  transition rate F = constant  = h. The solution to eqs. (22) and (23) is
the Poisson distribution

(Xt)~ e ~' P (N ,  t) = ~ (24)

to which we make reference again below.
Writing the probabil i ty P ( N ,  t) in terms of the probabil i ty density p(x, t) as

N+I/2

P ( N , t ) =  I p ( x , t ) d x ,  (25)
N 1/2

we can write the master  equation for p(x,  t) as

/i(x, t) = h [ f  6 ( x - y - 1 ) p ( y ,  t ) d y -  p(x, t)]

0 ~, ( -1)"  O"p(x, t)= - h-f~p(x,  t) + 1 z ,  . (26)n=2 n ! OX n

Note  that the K r a m e r s - M o y a l  expansion of a discrete master  equation must
be handled with great care. This is particularly true if the discrete variable
cannot  take on all discrete values between - w  and +oc. For a discussion of
these points,  see ref. 16. In our development ,  we shall use eq. (26) only to
obtain the s.d.e.

The K r a m e r s - M o y a l  moments  A, are thus constant,

A , = A ,  n1>l ,  (27)

and the corresponding s.d.e, can be writ ten as

= h + ~ ( t , u = l ) = h + n p ( t , u = l ) ,  (28)

with initial condition x ( 0 ) = 0 .  The noise ~( t ,u  = !) is a delta-correlated,
additive Poisson noise satisfying

(~(t)> = 0, (29)

(~:(t,). • • ~(t,))c = h 6 ( t , -  t2) • • .6(t ,  1-- tn), /'l 7> 2, (30)

~( t ,u  = l ) =  ~ 6 ( t - t ~ ) -  A, (31)
i

with t~ a Poisson arrival time. The realizations of the Poisson noise ~(t) are
thus bounded from below at - h .

We are dealing here with the restricted state space 0 ~< N ~< No, where No is
the number  of a-par t ic les  emitted in the time interval (0, ~), i.e., No is the
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initial number of a particles in the nuclei. As we will show below, eq. (22) is a
valid representat ion of radioactive decay only in the limits No is sufficiently
large and that the total time-interval (0, t) of data acquisition is sufficiently
short such that N o - N - ~  No. Under these conditions, it is clear from the
structure of the s.d.e. (28) and the lower bound on ~(t) that the additive
Poisson noise cannot drive the state variable x outside the boundaries
(o, N0-~ ~) of the state space.

For our next  example, we consider the first order chemical reaction

B ~ C where a substance B is converted to C with a rate coefficient )t

without back reaction. If we let ~ (N ,  t) be the probability that N molecules
of species B are present at time t, the master equation for this reaction can be
written as 15)

~ (N ,  t) = A[(N + 1)~(N + 1, t) - N ~ ( N ,  T)], N = 0, 1 . . . .  (32)

with the initial condition ~ (N,  0)--~iN.N0. This is a pure death process with
natural boundary conditions and state dependent  transition probabilities.
Proceeding by the methods discussed in sections 2 and 3, one can readily find,
using the definition of p(x ,  t) in eq. (25), that the s.d.e, corresponding to the
master equation (32) is

~(t) = - Ax(t) + ~(t), (33)
with x (0 )=  No, i.e., we now obtain multiplicative noise as expected. The
delta-correlated noise ~(t) obeys the statistical properties

(~(t) Ix(t)  = x) = 0, (34a)

([~:(x(t,)) • • •/5(x(t.))] Ix( t )  = x)~ -- ( -1)"Ax~( t l -  t 2 ) "  " " 8(tn-!- t . ) .

t + / t / >  t~ . . . . .  t ,/> t. (34b)

We are dealing here with a restricted state space 0~< N ~< No. Since N is
bounded from below at N = 0, the noise must not drive N below N = 0. This
is explicitly taken care of by the multiplicative nature of the noise, which is of
the form that ~(t)-~ 0 as x ~ 0. Van Kampen 17) has treated this problem using
different techniques but our results are equivalent.

It should be noted that eq. (32) can also be interpreted as the master
equation for radioactive decay if we define ~ (N ,  t) as the probability that
there are N a-particles (radioactive nuclei) remaining at time t if there were
No at time t = 0. The solution of eq. (32) subject to the initial condition
~ (N ,  0) = ~N, No is 15)

~ (N ,  t) = (N°)  (1 - e-~')No-Ne -N~' , (35)
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i.e., ~ ( N ,  t) is a binomial distribution. The relationship between P(N,  t) and
~ ( N ,  t) is ~ ( N ,  t) = P ( N o -  N, t). In the limits N0-~ zc, At ~ 0  such that NoAt
is finite and No ~ N, this binomial distribution converges  to a Poisson dis-
tribution. In this limit, eq. (32) gives rise to a stochastic differential equation
analogous to that in eq (28) with additive, deltacorrelated Poisson noise. It
should also be noted that in the limit N ~ % the state variable N is essentially
constant  over  some sufficiently short time interval (0, t). For this case the
factor  AN(= Ax) in front  of the delta function product  of eq. (34b) can be
replaced by a constant  transition rate A'. As discussed above,  the master
equation (22) for radioactive decay which leads to additive Poisson noise is
thus valid only (a) for a very large initial concentrat ion No of radioactive
atoms and (b) for a sufficiently short time interval (0, t).

For our next example,  we consider the Montro l l -Rubin-Shuler  model of the
vibrational relaxation of identical harmonic oscillators in interaction with a
heat bathlS'~9). The master  equation for the transitions between different
vibrational energy levels N = 0, 1 . . .  of the oscillator can be described as a
birth and death process  with the state dependent  transition rates j8'~9)

F+(N ~ N + I)= x ( N  + I)e ", O = hu/kBT, (36)

F ( N ~ N - I ) = n N ,  (37)

where x is the coupling constant  between the oscillator molecules and the
heat bath. For 0 ,~ 1, i.e., for sufficiently small energy level spacing hv or at
sufficiently high tempera ture  T, the above master  equation can be ap-
proximated by the Fokke r -P l anck  equation '8)

N + I/2

t) = I p(x, t) dx, (38)P(N,
N I/2

0
/~(x, t ) =  n~x [xe °X~-x e'Xp(x , t)] .  (39)

In terms of the dimensionless time r = ny, eq. (39) can be recast  in the more
familiar form

a 0 2
p(x, r )  = - 7 x  [(1 - Ox)p(x, O ]  + ~---x2 [ x p ( t ,  r ) ] .  (40)

The master  equation with the transition probabilities (36) and (37) has natural
boundary  conditions [F+( - 1 ~ 0) = 0, F (0 ~ - 1) = 0] which are preserved in
the Fokke r -P l anck  approximat ion (40). This is expressed therein by the
vanishing of the diffusion current  at x = 0. The It6-s.d.e. corresponding to the
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Fokker -P lanck  eq. (40) is

~ ( t )  = [1 - Ox(t)] + ~ "O~(t). ( 4 1 )

where ~ ( t )  is the delta-correlated Gaussian noise of eq. (10). The form of the
multiplicative noise insures that the fluctuations cannot drive the state vari-
able x below its lower bound at x = 0 since the fluctuations go to zero as
x ~ 0 .

As a final example, we consider the three-dimensional Rayleigh gas prob-
lem:°-2z). It describes the dynamics of a dilute ensemble of heavy particles
(mass m0 which undergoes collisions with light heat bath particles of mass
m2 ~< m~, which maintain a Maxwellian equilibrium distribution at temperature
T. Using the reduced kinetic energy x = rn~vZ/kT as the stochastic variable
(which is bounded from below at x = 0), the master equation for p(x, t) reads

,o(x, t) = f w(x, y)p(y, t) dy - A(x)p(x, t), (42)

where the stochastic kernel w(x, y) is given by z~)
m ,/2 ¢

w (x, y) = ½ZQ2~--2 - / e r f ( Q x  ,/2 + Ry ,/2) + C-x erf(Rx i/2 + Qy ,/z)

+- [erf(Qx ,tz _ Ry ,/2) + e y-x erf(Rx ,/z _ Qy ,/2)] }. (43)

(+ f o r x  < y; - for x > y).

The master equation (42) with the kernel (43) has natural boundary conditions
at x = 0. The quantity Z is a collision number and Q and R are related to the
mass ratio of y = mz/m~ < 1 by

Q = ~(V-1/z+ ym); R = ½(y-In_ y,/2). (44)

The notation eft(x) denotes the usual error function
x

erf x = 2-~ f e-S2 ds. (45)
0

The energy dependent total jump frequency )t(x) can be calculated from (43)
to be

r / 1 / 2
A ( x )  = Z~/-l/2[(2(yx)l/2+(yx)-ll2~--erf(~tx)ll2+e-'X)]. (46)

The Kramers-Moyal  moments A.(x),

A , ( x ) = l  ( y - x ) " w ( y ' x ) d y '  n1>l ,  (47)
0



156                    

have been calculated by Andersen and Shuler 2~) to give
Z,~2 I/2

A,(x) = x---~Ty--I,(x). (48)

The function I,(x) has a rather complicated structure 2~) which will not be
reproduced here owing to its excessive length. The first moment A~(x) giving
the "bare"  drift is

+ ,  + exp(-,x)}

8 - x ) A ( x ) +  (49)= ~ , ( ~  ¢7(,x)

and the second moment is given by

A2(x) = ~j~ yxA (x) + C(yx). (50)

The higher moments A,(x) are small compared with Adx),  A2(x), with

A,(x)/Al(x), A,,(x)/Az(x) = G(3~x) or higher for n i> 3. (51)

From (48) it follows that the master equation (42) with the kernel (43) is
equivalent to an It6-s.d.e. of the form of eq. (8), i.e.,

~(t) = A,(x(t)) + ~(t), (52)

with A~(x) given by eq. (49) and ~(t) a multiplicative, delta-correlated noise
satisfying the relation (9) with A,(x) given by (48). It is clear that in this
general formulation the noise has a very complicated structure. A great
simplification can be achieved for ~-= m2/ml'~ 1 which corresponds to the
Brownian motion limit of very heavy subsystem particles in a heat bath of
very light particles. Using eqs. (49), (50), and (51) and introducing the scaled
time -r = 8/3~/A(x)t, one can rewrite the s.d.e, of eq. (52) as

X(~') = (3 - x(-r)) + V2x(~') aqG('r), (53)

where "0~ is the delta-correlated Gaussian noise defined in eq. (10). The
corresponding Fokker-Planck equation is

0 [xp (x, "r)]

in agreement with the results of Andersen and ShulerZl).
It should be noted that the last two examples considered here, namely the
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v ib ra t iona l  r e l a x a t i o n  of  h a r m o n i c  osc i l l a to r s  in the  l imit  0 ~ 1 and  the
r e l a x a t i o n  of  h e a v y  pa r t i c l e s  in a hea t  ba th  of  l ight  pa r t i c l e s  in the  l imi t  y ~ l ,
a re  pa r t i cu l a r  c a s e s  of  B r o w n i a n  m o t i o n  in the c o n t i n u o u s  e n e r g y  space  x
b o u n d e d  f rom b e l o w  at  x = 0. C o m p a r i s o n  of  the  s .d .e . ' s  (41) and (53) show
that  t hey  have  iden t i ca l  s t ruc tu re .  The  no ise  t e rms  are  iden t ica l  and  the  dr i f t
t e rms  are  bo th  l inear  in x a l though  of  s o m e w h a t  d i f fe ren t  fo rm ref lec t ing  the
d i f fe ren t  " p h y s i c s "  of  these  two p r o b l e m s .  E q u a t i o n s  (41) and (53) a re  a lso  of
the s ame  fo rm as the  s .d.e,  for  the  B r o w n i a n  m o t i o n  in e n e r g y  space  o b t a i n e d
in ref .  2.

H o a r e  22) has  s tud ied  the R a y l e i g h  gas  in ve loc i ty  space  - ~  ~< v ~< oo and  has
de r ived  the s t ochas t i c  ke rne l  w(v, v') c o r r e s p o n d i n g  to ou r  e x p r e s s i o n  (43). In
the B r o w n i a n  m o t i o n  l imit  y ~ 1 his m a s t e r  e q u a t i o n  goes  o v e r  to  the  usua l
L a n g e v i n  equa t ion  in ve loc i ty  space  wi th  additive noise s ince  (a) the  s ta te
space  is now u n b o u n d e d  ( - ~  < v < ~)  and (b) his ke rne l  w(v, v') is, in the  l imit
y ~ l ,  t r an s l a t i ona l l y  invar ian t ,  be ing  a func t ion  of  (I v - v '  I) only .
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