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Abstract. Using the recent statistical mechanical theory for nonlinear irreversible processes of 
Grabert, Graham and Green, we re-examine the fluctuations in an electric circuit containing a 
nonlinear dissipative resistance. We explicitly establish the relationship between the nonlinear thermal 
fluctuations and the deterministic irreversible transport law. In particular, we verify their choice of the 
metric in frames where the macrovariables are sums of molecular variables. In a second part, we 
discuss the connection between the stochastic differential equation description and the deterministics. 
We show that neither the Ito-drift nor the Stratonovitch-drift coincides with the deterministic flow. By 
use of the example of driven Brownian motion with nonuniform damping we further demonstrate the 
usefulness of the nonlinear transport theory for the problem of adiabatic elimination in stochastic 
nonlinear equilibrium systems. 

1. Introduction 

At present the theory of thermal fluctuations in nonlinear systems is receiving 
a great deal of attention. In what follows, we will not study steady nonequilibrium 
states but rather the nonlinear relaxation of systems initially far from equilibrium. 
On a macroscopic level, the description of a dynamical process is either considered 
as stochastic or as deterministic, depending on the strength of the noise. If there is 
a clear-cut separation between the time-scale on which the macrovariables, a, 
change significantly and the time-scale of the microscopic memory characterized 
by the correlation time of external (relative to a) influences, the stochastic 
dynamics can be modeled by a Markov process. However, the deterministic and 
stochastic approaches are connected because they emerge from the common 
statistical mechanics of all microscopic degrees of freedom. For linear systems 
such a connection between deterministic theory of irreversible processes and 
stochastic theory of fluctuations has been clarified by Onsager [1-3]. A great deal 
of such a connection is presently also known for the class of nonlinear systems in 
which the dissipative part of the dynamics is given by a linear law [ 4-5]. The 

· initial element of the stochastic theory for this latter class of nonlinear systems is 
the (linear) fluctuation-dissipation theorem (FDT) [4, 5]. For Markovian processes 
characterized by a Fokker-Planck equation, this relationship is given by an 
Einstein relation between the constant diffusion and the constant damping coeffi
cient (Ginzburg-Landau approach) [ 4]. For nonlinear systems which do contain a 
nonlinear irreversible dynamic part, this connection between deterministic and 
stochastic formulation is much less obvious [6, 7]. The stochastic formulation of 
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such nonlinear systems has been developed from the principles of statistical 
mechanics by Green [8]. He derived a generally nonlinear Fokker-Planck equa
tion which for a single macrovariable a in the absence of a reversible drift 
component is of a form which intrinsically reflects detailed balance [8] 

. a { a } 1 a2 . 
p(at) = -- !p;1(a)- (D(a)p,(a)) p(at) +-

2 
-2 D(a)p(a, t). 

aa aa aa 
(l) 

Here p. denotes the equilibrium probability. The main problem in irreversible 
thermodynamics is the identification of the kinetic coefficients like drift or 
diffusion in such equations. In general there are two approaches possible: the 
rigorous model-microscopic and a phenomenological approach. For obvious 
reasons, most workers in statistical mechanics do not choose the rather ambitious 
microscopic approach. On the phenomenological level, there have been put 
forward many different approaches [6, 7, 9-12] which generally lead to different 
results and consequently generate a lot of confusion. The problem is that in the 
presence of nonlinear fluctuations, the drift coefficient in ( 1) will contain nonlinear 
effects of the nonlinear noise, and it is not clear how the relationship between 
deterministic and stochastic evolution appears. For example, if one simply neg
lects the nonlinear diffusion, the corresponding (deterministic) drift approximation 
leads to different results in different coordinate systems. 

II. A short summary of the theory in Refs. 13, 14 

An attempt at solving this important problem, i.e., the question of the 
relationship between the deterministic and stochastic description of nonlinear 
systems has been put forward in two very recent publications [13, 14]. The 
deterministic equation is written as a generalization of Onsager's form as [13] 

ti = L(a)x(a) = f(a) (2) 

which also has been shown to emerge from statistical mechanics [15]. Hereby, 
L(a) is the (nonlinear) transport coefficient satisfying the generalized Einstein 
relation [13, 14] 

D(a) = 2kTL(a), k: Boltzmann constant (3) 

x(a) T
aS(a) = aF(a) 

aa aa 
(4) 

is the thermodynamic force driving the system towards equilibrium. S denotes the 
entropy of the equilibrium probability, whereas in this paper I prefer to work in 
terms of free energy F = - TS, which is connected with the equilibrium probability 
by 

p,(a) ex: g(a)-II2e-F(altkT. (5) 

Thereby, g(a) is the determinant of the metric in state space [13]. The connection 
between deterministic description (k � 0) and the stochastic Fokker-Planck 
equation is then given in terms of the Fokker-Planck drift v(a) [term in braces on 
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right-hand side of (1)] by [13, 14] 

a 
v(a) /(a)+ kTg112(a) (L(a)g-112(a)). a a 

(6) 

The crucial point of this connection is of course given by the definition of the 
entropy S or equivalently of the metric g. In Ref. 13 the metric has been 
identified with the diffusion matrix. However, discussions with the advocates of 
these papers [13, 14] revealed that such a definition may lead to inconsistencies.1) 
A much more physical definition of the metric g has been put forward in Ref. 14. 

III. Thermal ftuc:tuations in a nonlinear electric drc:uit 

The first purpose of this paper is to elucidate the theory of the authors of 
Refs. 13 and 14 by a simple example: We reconsider the old problem of the 
nonlinear Brownian motion, i.e., we consider an electric circuit consisting of a 
linear capacitance C in series with a nonlinear dissipative resistance which is in 
contact with a heat bath at temperature T [9]. The stochastic dynamics will be 
described in terms of the macroscopic charge fluctuations a on the capacitance. 
For the transport coefficient L(a) we choose the symmetric conductance function 
of MacDonald [9] 

1 
L(a) = 

R 
(1 + ea2) (7) 

where R denotes the linear part of the resistance and the fixed and k-independent 
coefficient e denotes the nonlinearity parameter. In terms of the voltage U = a/C, 
which constitutes the thermodynamic force -x(a) for our problem, we can write 

a 
a f(a) =-

RC 
(1 + ea2). (8) 

By virtue of (4), we immediately read off the free energy of the equilibrium 
process 

a2 
F =

2c <� 

which just represents the energy on the linear capacitance. The normalized 
equilibrium probability is given in terms of this energy by 

a2 
Ps(a) = (27rkTC)-112 exp-

2kTC 
(10) 

which on the other hand determines via (5) the metric g to be a constant 

g (a) = const. (11) 

1) For example, the definition for the metric g in Ref. 13 yields via (7) and (10) a very unphysical 
expression for the free energy and as a consequence an unphysical thermodynamic force 

x(a)f -a/C. 
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With (6), (8) and (11) we ultimately obtain for the Fokker-Planck drift v(a) the 
result 

a 
v(a)=-

RC
(l+e[a2:-2kTC]) 

whereas the diffusion is from (1) consistently given by (see (3)) 

2kT 
. 

D(a)=R(1 +ea2). 

(12) 

(13) 

Several comments are now in order: The macroscopic charge a clearly gives a 
natural representation of the state of the system, i.e. the total charge a is just the 
algebraic sum of the microscopic charges on the capacitance. The metric for this 
choice of representation has been shown in (11) to be constant. This result is just 
in accordance with the physical definition given in Ref. 14 where the metric for a 
natural representation has been defined to be constant. 

IV. Connection between stochastic ditlerential equations and macroscopic ftows 

A better physical insight into the nonlinear Fokker-Planck equation is gained 
when we study the corresponding stochastic differential equation (SDE) or 
Langevin equation. With b2(a) D(a), we obtain from (12) and (13) the Ito-SDE 

(14) 

where w(t) denotes the standard Wiener process. Alternatively, the equivalent 
Stratanovitch-SDE is calculated to be 

da (15) 

From (14) and (15), it is worth emphasizing the following: Neither the Ito-drift 
nor the Stratanovich-drift coincides with the deterministic evolution in (8). In 
particular, the fact that the Stratanovitch-drift does not equal the deterministic 
flow f(a) is rather interesting and somewhat in contrast to the common opinion of 
many statistical physicists. Moreover, for kT approaching zero, both the Ito-drift 
as well as the Stratanovitch-drift reduce to the deterministic flow in (8). Thus, the 
common phenomenological concept of simply adding a random force to the 
deterministic equation and interpreting the resulting SDE, e.g. in the 
Stratanovitch sense, is subject to pitfalls. Independent of the underlying stochastic 
calculus, the corresponding drift terms will generally contain already k-dependent 
effects of the nonlinear fluctuations [see kT-dependent terms in (14), (15)]. 

Let us next consider the average of the current. From the Ito-SDE, (14), we 
ultimately find 

(a) (16) 

If the fluctuations are small in the sense that the variance u(t) of the process a(t) 
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remains very small compared with the nonlinearity scale un1 

(17) 

i.e. if for all times t the probability p(a, t) is very sharply peaked we can write as 
an approximation for equation (16) (neglect of, in virtue of equation (17), small 
effects of 2-nd, u(t), and higher order cumulants) 

. · (a) 2ekT 
(a)= --[1+e(a)2)+-- (a) RC R (18) 

Equation (18) has to be looked upon as a bare [16) 'phenomelogical law' valid 
only as an approximation to equation (16) when u(t)« un1 for all t. It is not the 
deterministic flow because any macrostate a(t) within the margin set by the 
fluctuations would be equally acceptable. The correct way to obtain the deter
ministic description is by focussing on the parameter k which permits to scale 
down the fluctuations and studying the limit k ...-.. 0 in which the fluctuations 
vanish. Also the result of this limiting scheme does not depend on the special 
choice of coordinate system [13, 14). 

Also, it is obvious from the foregoing discussions that none of the drift 
expressions is proportional to the gradient of the free energy in (9) (invalidity of 
the Ginzburg-Landau hypothesis because of the nonconstant diffusion). 

The nonlinear transport theory put forward in Refs. 13, 14 has very useful 
application to the problem of adiabatic elimination in nonlinear stochastic 
differential equations describing an equilibrium system. For example, let us focus 
on the problem of contracting the description of the Brownian motion in phase 
space into that of position space. In presence of a nonuniform friction y(x) this 
problem is not tnvial [17]. The deterministic flow equations for a Brownian 
particle moving in a potential field c/>(x) read in coordinate, x, and velocity, u, 
phase space (unit mass assumed) 

i 
u 

. act>(x) 
u = -y(x)u ---

ax 

(19) 

In the large damping limit we can eliminate adiabatically the velocity yielding the 
deterministic contracted flow 

i 
=

-1 (
-

act>(x)) 
y(x) ax 

(20) 

From (20) we read off immediately the nonlinear transport coefficient L y -1(x) 
which via the generalized Einstein relation in (3) determines the diffusion coeffi
cient D(x) of the corresponding Fokker-Planck description 

D(x) 2kT/y(x) (21) 

The Fokker-Planck or Ito-drift v (x) is with the constant metric g = const. readily 



496 

evaluated via (6) 

v(x) _1 [_aq,_(x_) +-kT_iJay..:...<� ..:...� )J y(x) iJx y(x) 
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(22) 

The results in (21) and (22) coincide with very recent independent studies 
[17, 18], which, however, utilize somewhat more complex methods. In particular, 
the use of nonlinear transport theory put forward in Refs. 13, 14 avoids the 
ambiguous stochastic calculus present in the adiabatic elimination from the 
stochastic differential equations. Again, neither the Ito-drift in (22) nor the 
corresponding Stratonovitch-drift coincide with the deterministic flow in (20). 
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