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The master equation is derived for random systems under nonlinear time’dependent conditions. The (non-Markov) pro-
cess is of such a type thatwith a time-dependent state transformation thedynamics can be modelled by a nonlinearbut
drift-free Langevinequation. Thefocus is on the statistical content of resulting master equation. The existence of stationary
solutions and the quality of approximative results is discussed.

Most of the work on noise-induced transitions [1— the cumulant expansion [5], the projector method
3] has been concerned with stationary processes oc- [6] , the method of functional derivatives [7,8] or re-
curring in systems subject to time-independent exter- tarding response functions [2,9]. In order to under-
nal conditions. The statistical featuresof such systems stand the natureand quality ofvarious approximation
are independent of time, after the transients resulting schemes, put forward by the authors of the above
from the preparation have died out. In contrast we mentioned techniques, it is important to derive exact
focus here on systems driven by external forces vary- results for special systems [1,2,8]. The goal we pursue
ing in time. These systems are in contact with a gener- here is to derive exact results and to clarify the rele-
ally nonstationary fluctuating environment. As a conse- vant structures for colored-noise phenomena of gener-
quence we deal with time-inhomogeneous processes, i.e. ally nonstationary processes.
time-translation symmetry for the macroscopic transi- To start out we consider the example of determi-
tion probabilities is broken. Examples of physical in- nistically linear but time-dependent, damped relaxa-
terest are electric networks containing time-dependent tion of a macrovariable x,
fluctuating dissipative elements (e.g. capacitance in a dx/dt = — t~x
microphone), forced random oscifiator systems, spin /

relaxation in a time-dependent fluctuating magnetic Representing the effect of a fluctuating environment
field, lasers driven in a time-dependent way, process- by a fluctuating damping parameter (external random
ing of speech signalsetc. parameter relaxation) of the form

Problems of this kind are appropriately studied in 7(t) -÷70(t) — ~a(t)Ix ~(t) (2)
terms of stochastic differential equations of the
Langevin type containing a colored-noise source ~(t); with p denoting some real number, ~(t) a nonstation-
i.e. ~(t) is not idealized white noise. Because those ary colored-noise source and a(t) an amplitude, we
Langevin equations generate non-Markov processes it have the NMLE
is generally not an easy matter to extract the exact dx/dt = —‘y0(t)x + a(t) Ix IPx~(t). (3)
statistical mformation as e.g. the time rate of
change of probability. Useful methods * for tackling This NMLE may model the charge fluctuations in a
those non-Markov Langevin equations (NMLE) are RC-circuit with a time-dependent capacitance.

Another example of physical interest is the study of
*1 For an illuminating discussion of the various methods see oscillations in aRCL -circuit with fluctuating capaci-

ref. [4]. tance. For small temperatures one may neglect the in-
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fluence of the internal thermal noise by writing: we readily find from (7) and (9) (making use of the
~,2(t)= [LC(t)]~ c&,~(t)+~(t),l3R/L, Novikov theorem [7])

=—~(t)x— — x~(t). (4) ~jy) =D(t) [ag(y)/ayJ2p~(y), (11)

In the overdamped limit we obtain upon an adiabatic where
elimination of ~ eq. (3) with p = 0, y

0(t) = j34 ~ t
a(t) —~3— . D(t)c(t)fo(t,s)c(s)ds . (12)

Introducing the variable o
t Focussing on the results (11), (12) we can state the

y = x expf70(s) ds, (5 a) following additional exact results:
(a) For the nonstationary colored gaussian noise in

we obtain the “driftless” NMLE (10) we obtain for the class of NMLE in (6) a Fokker—
Planck type operator, eq. (11), which exists for all

dy/dt = a(t) exp (—of ~0(s) ds) Lv Py~(r) . (Sb) times t. Generally this isnot the case [10]. However,
this Fokker—Planck operator is not necessarily a

More general,we consider the class of NMLE’s which, “markovian” Fokker—Planck operator. The diffusion
generally after a time-dependent state transformation coefficient D(t)possibly can take on negative values

for a whole range of parameter values t. In other words,
y = T(x; t), can be cast into the drift-free form for t fixed, the Fokker—Planck operator T(t) r~is
dy/dt = c(t)g(y)~(t) . (6) not always a dissipative operator. Further note the

The derivation of the master equation for the proba- (non-Markov) property
bility Pt~Y)= (6(y(t) — y)) introduces the functional ~t=~~(Y) = 0 . (13)
derivative [8]

(b) In terms of the function D(t) we can introduce
(t) — y) = — -~j~--[60’(t)— ,~~ (7) the new time scale r= ftD(s) ds yielding the time-homogeneous Fokker—Planck relaxation,

Introducing formally the random time u, ku’) = ~ [_g(y) (d~(Y)) ~~(y)]
t

u f c(s)~(s)ds, i.e. dy/du =g(y), (8) a2+ — [g2(y)p~(y)], (14)
we obtain on varying (7) with respect to ~(r): ay2
&y(t) = a i.e. the (single-time) relaxation of the non-Markov pro-
6 ~(r) ~Y ([s(s) + X6 (r — s)] )i~=() cessy (r) equals the relaxation of the corresponding

time-homogeneous Markov process 5’(r)with the
Fokker—Planck operator (14).

= ~y (f c(s)[~(s) + X6(r — s)] ds)~x=o (c) Assuming f~ dy/~g~)i=N being finite the pro-
cessy(t) has a stationary solution ~(Iy)which is ap-

= c(r)g(y(t))8(t — r). (9) proached for r(t) -~ 00:

The fact that the functional derivative in (9) can be ~(v) =N1 Ig(y) ~ , (15)
expressed as a functional ofy (t) enables us to write ~ does not depend on the noise intensity,~
down a closed time-convolutionless master equation (~2(t)),and not on an asymptotic amplitude, i.e.
for the process in eq. (6) generated by any noise ~(t) limt..~,,c(t).
whose cumulant averages are known a priori (see eq. Assuming in eq. (4) that ~(t) is gaussian noise, (10),
(13.8) of ref. [8])!Sticking to nonstationary gaussian we obtain from eqs. (11) and (5) for the overdamped
noise of vanishing mean and correlation, motion the result
(~(t)~(s)) a(t,s), (10)
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= ~ w~(t)(~_~)pt(x) ~‘t(Y)= ~ c2(t)~b(t) [ag(y)/ay] 2Pt(Y). (20)
For a system, whichwith a transformationy = T(x; t)

/ a \ 2 can be cast into the form given in (6), we obtain from
+ j3_2 fcr(t, s) ds (j—x) p~(x). (16) eq. (19) a useful criterion: Ifc(t) is a constant [e.g.

0 a(t) = a, p = 0 in eq. (5)], the small-relaxation-time

Eq. (16) does not possess a stationary solution. Never- approximation yields for gaussian noise, (10), theexact result. For c(t) being smooth and slowlyvarying,
theless, the average ofx(t) satisfies the approximation made to arrive at eq. (19) consists

td(x) —1
= —~3 ~,.,~t)(x)+ ~—2(fa(t,s)dS) ~r , (17) with b(t) 0 in the substitution

0 t
i.e. limt...~,,.(x(t)),depending on w~(t),can still be D (t) c2(t) fci(t, s)ds . (21)
stable despite the nonexistence of ~ and despite the 0
destabilizing effectof the second (noise) term. The Further, we find that the exact results can be car-
higher-moment equations are closed also. ned over to (transformed) vectorprocessesy [e.g.

An important approximation scheme in the study spm relaxation in the time-dependent stochastic field
of colored-noise phenomena is the small-relaxation- ~(t)] of the type
time approximation [2,9] ,i.e. if the correlation a(t, s)
decays rapidly, the main contribution to (7) is from dy

1/dt = c~(t)g~(,y)~(t), (22)
6y(t)/6~(r) around r = t. By use of a Taylor expan- for all components i.
sion we obtain
6y(t) = 6y(t) I + d (ó~(t)\ References
6~(r) 6~(T)~~~-~ ~ (r—t)+...
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