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The theory of the mean first passage time is developed for a general discrete non- 
Markov process whose time evolution is governed by a generalized master equation. 
The mean first passage time is determined by an adjoint matrix f~+ in a form anal- 
ogous to the Fokker Planck case. The theory is illustrated by two examples: A one- 
dimensional unit step non-Markov process and a non-Markov process with two-step 
transitions. Explicit expressions for the mean first passage time are derived. 

1. Introduction 

The calculation of the mean first passage time of 
stochastic processes is of great practical interest. For 
example, its value can be used to estimate switching 
times in electronic devices and more generally it 
gives the rate of escape from a domain of attraction. 
The latter problem occurs in various fields of science 
as e.g. chemical reaction rates, adsorption on sur- 
faces, optical bistability etc. Results for the mean 
first passage time have been formulated first for 
Fokker-Planck processes [1, 2]. In one dimension, 
the corresponding equation can be integrated ex- 
actly to yield a closed expression for the mean first 
passage time in terms of the diffusion coefficient and 
stationary probability El, 2]. Quite recently, various 
authors succeeded in deriving explicit expressions 
for the mean first passage time of one-dimensional, 
discrete unit-step (birth and death) Markov processes 
[3-5]. 
Compared with a Markov description, the concept 
of a non-Markovian description presents generally a 
more realistic modeling of the dynamics of the sys- 
tem under consideration. The reason that a non- 
Markov modeling is commonly not used is partly 
because of its complexity. For  time-homogeneous 
Markov processes it is rather straightforward to ob- 
tain dynamic information about the system via an 
eigenvalue analysis of the probability evolution op- 
erator, the time-independent master equation opera- 
tor. There is no such direct counterpart for non- 

Markov processes, because of a time-memory in the 
corresponding probability evolution operator defin- 
ing the generalized master equation. 
The goal of this work is to derive a practical ex- 
pression for the mean first passage time of time- 
homogeneous (discrete) non-Markov processes. This 
mean first passage time contains nontrivial dynamic 
information about the system. The main results of 
the paper can be summarized as follows: 
(i) We develop the theory of the mean first passage 
time for a general discrete one dimensional non- 
Markov process whose dynamics is governed by a 
generalized master equation. The main result, (2.9), 
for the mean first passage time can be cast in terms 
of an adjoint operator f2 +, (2.10), into a form anal- 
ogous to the Fokker-Planck case. The generalization 
to higher dimensions and to continuous state spaces 
is immediate. 
(ii) As an example of the main result, (2.9), we 
study a one-dimensional birth and death non-Mar- 
kov process. We obtain an explicit closed expression 
for the mean first passage time. The result contains 
the case of a unit-step Markov process [3-5]. 
(iii) For a one-dimensional non-Markov process 
with unit-step transitions and two-step "birth"- 
transitions, i.e. the process does generally not obey 
detailed balance, we derive an explicit result for the 
mean first passage time which can be evaluated re- 
cursively. 
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2. The Mean First Passage Time 

We consider one-dimensional non-Markov processes 
x(t) on a discrete state space 2;. The time rate of 
change of the single event probability p~ is governed 
by a generalized master equation (GME) 

t)t = i Kt-~ P~ ds (2.1 a) 
0 

where 

Kt_~p~(i)= ~ {Kt_~(i,j) ps(j)-Kt_,(j,  i) p~(i)}. (2.1b) 
j~2 

In the theory of (nonequilibrium) statistical me- 
chanics the transition kernels Kt_~(i,j ) are derived 
from micro-dynamics. In the theory of continuous 
time random walks the memory functions Kt_~(i,j) 
are given in terms of a pausing time distribution via 
an integral equation [6]. Note that the memory 
functions are not necessarily positive. However, in 
order for the probabilities pt(i) to remain positive for 
all times t there must exist certain relationships. In 
what follows we assume these relationships to be 
granted and merely consider (2.1) to characterize a 
certain non-Markov process. We shall consider an 
interval I =  [0, N] of the state space. If initially the 
random variable assumes the value j e I  the first pas- 
sage time z(j) (a random variable) is the time which 
elapses before leaving the interval I for the first 
time. By ft(ilj) we denote the probability to be in 
state i at time t under the condition that the random 
variable x has started at initial time t o=0  at site j 
and has not left the interval 1. Then, Ft(j) 

Ft(j ) = ~ f ( i  ]j) (2.2) 
i~I 

is the probability that the system is still in interval I 
at time t given that it started at point j~l.  Clearly 
we have for the initial condition 
fo ( i l j )=~ , j ;  Fo(j) = 1. (2.3) 

Then, the probability wt(j)dt for the first passage 
time z(j) to lie in the interval (t, t+dt) is given by 

w~(j) = - ~ -  Ft(j ). (2.4) 

The mean first passage time T(j) is the average 
co co 

T(j) = ~ twt(j) dt = ~ 5(J) dt. (2.5) 
0 0 

Thereby we have integrated by parts and have as- 
sumed the natural condition that Fco (j) vanishes*. The 
dynamics of the conditional probability f ( i  ]j) is gov- 

* More explicit we have with F~(j)=0: 

l i m t F ~ U ) = l i m t  w~(j)dt < l i r a  twr(j)dt=O 
t~cc t ~  t t ~  t 

f o r  T ( j )  b e i n g  b o u n d e d .  

erned by the GME (2.1) with the boundary con- 
ditions at site 0 and N taken into account appro- 
priately. In the following we discuss the case where 
the interval I is left at the boundary N only. Then, 0 
is a reflecting boundary and in order that ft(i[j) 
counts only those trajectories which have not left I 
the memory functions K,_s(i[j ) must be modified 
such that N is an absorbing boundary. Explicitly, we 
must set Kt_s(ilj)=O for all ieI  and all j > N ,  that 
means that there is no back-flow into the interval at 
site N. Cases with other intervals or other boundary 
conditions can be treated analogously. Thus, we 
have for the time rate of change of the probability 
ft(i ]j) the equation 

ft = i t~t-~ f~ ds (2.6) 
0 

where ft denotes the matrix with elements f ( i  I J) and 
the matrix /( t-s  is defined in (2.1) with the memory 
functions properly adjusted at the boundaries as dis- 
cussed above. In order to arrive at an equation for 
the probability Ft(j) defined in (2.2) we transform 
(2.6) into the alternative form 

f~ = i f~ K~-~ ds. (2.7) 
0 

Observing the initial condition fo = 1 the equivalence 
of (2.6) and (2.7) is easily shown with help of the 
Laplace transformed equations (2.6), (2.7) (see also 
Ref. 7). By use of the definition of Ft(j) one finds 

=i R?_sFs as (2.8) 
0 

where F t is a vector_ with the components FRO_'), j 
=0, ..., N - 1 ,  and Kt+_s denotes the adjoint of K,_ s. 
Integrating (2.8) with respect to time t yields in 
virtue of (2.3) and (2.5) 

(2 + T =  -- 1. (2.9) 

Here T is the vector of mean first passage time 
components {T(j)} and f2 + is the matrix defined by 

co 

f2 + = ~ K~+ ds. (2.10) 
0 

The relations (2.9) and (2.10) represent the main 
result of the paper. Equation (2.9) gives the mean 
first passage time for a general discrete process on a 
line. The form in (2.9) is particularly suitable for a 
computer evaluation (calculation of inverse of the 
matrix f2+). The results in (2.9), (2.10) hold for any 
distribution of jump widths, i.e. the results are not 
restricted to nearest neighbor transitions only. As a 
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special case, (2.9) contains the recent result of Weiss 
for a continuous time random walk with nearest 
neighbor transitions [8]. This special result he has 
derived by use of a different technique +. With b- 
correlated Markovian transition functions 

Kt_s(i,j)= 2F(i,j ) 6(t-s) ,  (2.11) 

i.e.* D~ =F~i, we obtain the mean first passage time 
for a general discrete Markov process. The corre- 
sponding result (2.9) is readily shown to be equiva- 
lent to a somewhat formaI result derived by Weiss 
in his 1966 work for Markov processes [9]. Note, 
that if the time integrals (2.10) of the memory func- 
tions are transition probabilities of a Markov pro- 
cess, which then approximates the long time be- 
haviour of the non Markov process under conside- 
ration, the mean first passage times of the two pro- 
cesses coincide. 
Equations (2.9), (2.10) remain unchanged for a multi- 
dimensional discrete non-Markov process if only the 
matrix of the memory functions is adjusted to the 
corresponding boundary conditions. Moreover, the 
results still remain true for processes on a con- 
tinuous state space with generally nonlocal interac- 
tions. The matrix /(,_~ is replaced by an integral 
operator [10] which again must be adjusted to an 
absorbing boundary condition. For  example, we re- 
cover from (2.9) the well known formula for Fokker 
Planck processes [1-3] 

F + T=  - 1 ,  T (x )=0  for x~0f2 (2.12) 

where F + is the adjoint Fokker Planck operator and 
Og2 is the boundary of the domain from which the 
escape is studied. 
Finally, we emphasize that (2.7) has been essential 
for the derivation of (2.9); Equation (2.7) can be 
looked upon as the backward equation of a non- 
Markov process. 

3. Examples 

3.1. Birth and Death Non-Markov Processes 

As a first example for the theory developed in 
Sect. 2 we consider a birth and death non-Markov 
process 

+ Weiss's starting point is not the GME, but an equation for 
absorption probabilities 

* We use the relation i 6(s) ds= 89 
0 

t 

Dr(i) = S ds{Kt-~(i, i -  1)ps(i-  1) 
0 

+Kt_s(i , i+l)ps( i+l)  

- [ K  t_~(i - 1, i) + K , _ s ( i  + 1, i)] p~(i)} 
i=0,  1, .... (3.1) 

This type of a GME occurs for example in the 
modeling of exciton transport [6]. Because the tran- 
sition function K ( - 1 ,  0) equals zero (natural reflect- 
ing boundary at site 0) the process x(t) satisfies the 
detailed balance relation 

Kt_s(i+ 1, i) p(i)=Kt_s(i, i+ 1) p(i+ 1) (3.2) 

with p(i) being the stationary probability. Integrating 
the memory functions over the memory time s we 
obtain in terms of the matrix dements 

oo 

(2~+ 1,i= ~ Ks(i+ 1, i) ds=-f2+(i) (3.3a) 
0 

D~_I,  i -  Ks( i -1  ,i)ds=-f2 (i) (3.3b) 
0 

for the stationary probability p(i) 

i 

p(i) =p(0) 1-[ f2+ ( j -  1)/f2_ (j). (3.4) 
j = l  

With site x = 0  being a reflecting boundary and site 
x = N  being an absorbing boundary, the matrix D + 
in (2.9) has the explicit form 

=a+(0) a+(0) \ 
(1)  ;(11 

e + = \,\ , I 
x\ - \  Q + ( N - 2 ) ]  

o_ (N-  1) - [ ~  (N-  1)+ ~+ (N-  1)3 / 
(3.5) 

The mean first passage times T(j), j = 0, ... N -  1, are 
given in terms of the inverse of the nonsymmetric, 
tridiagonal matrix f2 +. In absence of an absorbing 
state* within the interval I, the tridiagonal matrix 
f2 + is nonsingular and its inverse can be found in 

- terms of recursive methods [-11]. In terms of the 
(non-Markov) matrix O +, the problem of calculating 
T(j) is mathematically equivalent of finding the 

* For an absorbing state {i} we have f2+(i)=f2_(i)=0 
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mean first passage time for a unit step Markov 
process. Thus we can make use of the results in [3- 
5]: Using the detailed balance relation 

p(i) _ Q+ ( i -  1) (3.6) 
p(i- 1) ~_ (0 
an analogous analysis yields the explicit result 

~oP(n) 
N-1  " j = 0 , 1 ,  . N - 1 .  (3.7) 

3.2. Non-Markov Process with Two-Step Jumps 

Let us consider a non-Markov process x(t) with f2- 
matrix "birth" elements 

~'~i+l,i~---2~i i=0,  1, ... 
~'~i+2, i~-Yi i=0,  1, ... (3.8a) 

and simple "death" elements only 

~~i_l,i~#i i=1,  2, ... 
f21_2,~ =0  i=2,  3, ... (3.8b) 

In virtue of (2.2), (2.5) we can write for the mean 
first passage time T(j) 

N--1 
T(j)= ~ f~(j) (3.9) 

,=o 
where 

oo 
f~(J) = I ft( i I J) dt (3.10) 

o 
and x=O, x = N  again denote a reflecting and an 
absorbing boundary respectively. In the following 
we drop in the function ~(j) the index j which gives 
the dependence on the starting value x = j  at time t o 
=0. From (2.6) we obtain for f~ (Laplace transform 
at z = 0) the set of equations 

[o] io = +~  L 
[1 ] f  i =0 -I-2o/o +#2/2 

[ j l f j "  = V j - 2 f j - 2  " ~ - ' ~ j - l f j - ; '  - ~ # j + / f j + l  -1-1 

[ N - - I ' ] L _ I - = V N _ a L _ 3 + 2 N _ e L _ 2 A - O .  (3.11) 

Hereby we introduced the notation 

[i] = 2, + #i + v,. (3.12) 

The set of (3.11) can be solved recursively. We in- 
troduce 

f ~ = o , f  o i=1,  . . . j  (3.13a) 

f~=O, f o - b  , i = j +  1, ... N - 1 .  (3.13b) 

Solving for fx we obtain 

01 = [0] _- ao., 0 o - 1. (3.14) 
#i #i 

The first j equations are satisfied if we write 

a, (3.15) On+ I - -  n+ i 
lq #, / = l  

where {a,} satisfies the recursion relation 

a,=[i] a , _ l - # , 2 , _  1 a i _ 2 - # i # , _ l  v,_ 2 ai_ 3 (3.16a) 

(3.16a) can be simplified to give 

ai=(2i q- Vi) ai_ 1 q- #i vi_ 1 a,_ 2 (3.16b) 

with 

a_1=1,  ao=(2o+vo) (3.16c) 

The (j + 1)-st equation gives 

#j+ 1 bj+ 1 = 1 (3.17) 

and successively 

#j+2 bj+2 = [J+ 1] bj+ i (3.18 a) 
#j+ 3.bj+ 3=U + 2] bj+ 2 -2~+ 1 bj+ 1 - 0  (3.18b) 

#.  + I "b. + i = [ n ]  b. - 2 ._  i b ._  i - v,,_ z b,,_ 2 
n = j +  3, ... N -  1 (3.18c) 

The initial value fo is determined from the last equa- 
tion in (3.11) to be 

N 
fo = bN 1-I #,/aN-1 = bN/ON. (3.19) 

/=1 

Therefore, in terms of the functions f~ = 0, fo - b, with 
0, given in (3.15) and b, given by (3.18), we obtain 
from (3.9) for T(j) the explicit result 

T(j)= ~ 0,+ • O,-b,  . (3.20) 
/=0 i = j + l  

In case that all h - 0  (birth and death process) we 
have 

~2+ ( n -  1) _ p(i) (3.21) ~ ~_(n) p(o) 
and 

i 
b,=p(i) ~ (p(n-1)  f]+(n-1)) -1, 

n = j + l  j < i < N - 1  (3.22) 
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y ie ld ing  in  v i r tue  of  (3.20) the  resul t  in  (3.7). I t  
shou ld  be  n o t e d  however  tha t  v i = 0 ,  for all  i impl ies  
a lways  de ta i led  b a l a n c e  whereas  the  two-s tep  p ro -  
cess in  (3.8) genera l ly  does not obey  de ta i led  b a l a n c e  
[12]" The  resul t  in  (3.20) ho lds  i n d e p e n d e n t  of  a n y  
specific form of the  f2-matr ix  e l emen t s  {21,/~i, vi} 
a n d  i n d e p e n d e n t  of  a de ta i led  b a l a n c e  re la t ion .  
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