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The paper discusses the connection between the deterministic and stochastic description of nonlinear, generally
nonequilibrium systems. The fluctuations are treated in terms of a Markov process (master equation or Fokker-
Planck equation). For processes obeying the symmetry of generalized detailed balance (GDB), the deterministic flow
is cast into a form exhibiting the maximum amount of information about the stochastic dynamics. The deterministic
flow contains information about Kramers-Moyal moments of order n &2. A semipositive definite, symmetric
transport matrix is introduced which satisfies generalized Onsager relations. In terms of this transport matrix the
deterministic flow of processes obeying GDB can be cast into the standard form of thermodynamics. Some of the
results are elucidated using a nonlinear birth and death master equation with nearest-neighbor transitions. Given the
deterministic flow, the focus is on the problem of reconstruction of the original stochastic dynamics. The
information contained in the deterministic flow of processes obeying GDB is not sufficient for a reconstruction of
the stochastic dynamics. Given only the information of both, the stationary probability and deterministic flow, we
identify a class of Fokker-Planck processes for which the stochastic dynamics can be uniquely reconstructed.

I. INTRODUCTION

An important problem of statistical mechanics
is the derivation of the macroscopic evolution of
a many-body system. From the viewpoint of
statistical mechanics, the macroscopic evolution
is governed by a stochastic process rather than
a deterministic flow. However, in many situations
the influence of the fluctuations plays a rather
minor role. The common approach then is to
study the evolution in terms of deterministic,
generally nonlinear flow equations. It should be
understood, however, that these flow equations
are generally not identical with the mean value
equations of the stochastic process. As has been
emphasized for example, by Green' and Van Kam-
pen, ' the deterministic flow should emerge from
the stochastic flow. Throughout this paper it is
assumed that the macroscopic process can be
modeled by a Markov process. Starting from a
general master equation, the question of the cor-
responding deterministic limit has been clarified,
about twenty years ago, by Van Kampen. ' The
deterministic limit emerges as a by-product in his
fundamental work on the expansion of the master
equation. Near critical points his original ap-
proach needs to be suitably modified.

From a physical point of view, there is usually
good confidence in the form of the deterministic
equations. A scientist interested in the role of
fluctuations faces then the following crucial ques-
tion —how does one account for the fluctuations?
Statistical mechanics offers two basic approaches:
the microscopic and the phenomenological ap-
proach. For obvious reasons most scientists do
not choose the first very ambitious path. Making
no approximations, the first path can clarify only

the relevant structures and symmetries, but
generally does not allow an explicit calculation of
the stochastic expressions. Being left with a
phenomenological approach, there are two ex-
treme cases. If the system is subject to "external"
noise, i.e., noise which can be arbitrarily struc-
tured by the experimentalist, the answer to the
above question is usually quite transparent. Our
focus here is more on those systems with "inter-
nal" noise, i.e., the fluctuations which emerge
from the huge number of microscopic degrees of
freedom. Generally the stochastic system will be
of a mixed type. For the case of internal noise
there is considerable argument and confusion about
the relationship between the deterministic flow and
the phenomenological modeling of the macroscopic
process."' The origin of the confusion is that
often "reasonable" assumptions are made either
tacitly or explicitly, but are not always consis-
tent.

Let us first discuss the situations for which all
parties agree. For macroscopic linear systems
describing thermal equilibrium the connection
between stochastic and deterministic theory has
been clarified by Onsager. " The form of the
deterministic flow completely determines the
linear stochastic process. General agreement
also holds for the class of nonlinear Fokker-
Planck equilibrium systems in which the dissipa-
tive part of the dynamics is governed by a linear
law (linear damping). In the latter case the non-
linear stochastics are modeled by a time-depen-
dent Ginzburg-Landau approach. The initial ele-
ment of the stochastic modeling is the linear fluc-
tuation-dissipation theorem (FDT) of the form of
an Einstein relation. ' For nonlinear systems
which do contain a nonlinear irreversible deter-
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ministic part, a phenomenological stochastic
modeling is much less obvious. In a first approxi-
mation one might describe only the small fluctua-
tions about the time-dependent nonlinear deter-
ministic flow. Such an approach corresponds to a
quasi-linearization of the nonlinear stochastic
equations in the sense discussed by Van Kampen, '
Kubo et al. ," and Grabert. " We will not consider
this case further but rather will focus on the con-
nection between deterministic flow and a stochas-
tic flow, which accounts for the large (may be
rare) nonlinear fluctuations. Such a theory is
necessary because those large fluctuations de-
scribe the deviations from a Gaussian behavior
as it is reflected in higher-order cumulants. Be-
cause the deterministic flow cannot completely
determine the stochastic dynamics, one is forced
to provide a "prescription" for the modeling of
the nonlinear macroscopic process. For non-
linear processes several such prescriptions have
been proposed. ""'"Most recently, a rather
detailed and interesting stochastic modeling pre-
se ription for nonlinear thermal Fokker-Planck
processes has been put forward by Grabert et
a) 15 ~ 16

The outline of this paper is as follows. In Sec.
II we give a critical discussion of the commonly
used prescription" "'"that identifies the deter-
~i~~istic flow with the conditioned stochastic flow.
If:1ot; stated explicitly otherwise, the results in
;his paper always refer to the case of a Markov
process satisfying the master equation (integro-
operator). Section III contains the main results
We discuss the deterministic limit of generally
nonequilibrium processes satisfying the sym-
metry of generalized detailed balance. " We
extract explicitly the maximum amount of infor-
mation about the stochastic dynamics which is
contained in the deterministic flow. Without ad-
ditional assumptions on the physical nature of the
stochastic process, there exists no unique sto-
chastic modeling prescription. This is so, be-
cause the nontrivial information contained in the
deterministic flow is not sufficient for the recon-
struction of the original stochastic dynamics. In
Sec. III C we identify a class of Fokker-Planck
processes for which the information contained in
the deterministic flow together with the a priori
known stationary probability is sufficient for the
reconstruction of the stochastic dynamics.

II. DETERMINISTIC FLOW-STOCHASTIC
FLOW MODELING

We consider a system described by a set of
macrovariables a =(a „a„.. . , a„). The deter-
ministic flow of the nonlinear (dissipative) system

is written in the form

d't
—=f(a).da (2.1)

The macroscopic stochastic process will be de-
noted by x(t) =(x,(t), . . . , x„(t)) Th. en the stochas-
tic flow is given in terms of a stochastic differen-
tial equation (SDE) for the Markov process x(t):

dt
—=P(x)+$(&). (2.2)

$(t) is a vector of stochastic noise sources. These
random perturbations may generally depend on
the macroscopic process x(t) Afi.rst problem of
a stochastic modeling is the establishment of a
relationship between (2.1}and (2.2). A stochastic
modeling prescription, which is widely used in
radio engineering'~ and physics, "" is given by the
following requirement: The stochastic flow A(x)

A(x) =S(x)+&~(f}(x(f}=x} (2.3)

ggt
ff(x) = 'f)(x)— (2.4)

On the other hand, for a Fokker-Planck process
the transformed stochastic flow A'(x) is given by

~x' ggl
A, (x) = '

A, (x) +-,' D.„(x)Bx~ " Bx~Bx„ (2.5)

Thus, the postulate in (2.3), valid in one system
of coordinates, is generally not valid in a dif-
ferent system of coordinates. This disturbing
effect is not present in the prescription of Grabert
et a)

Although the postulate in (2.3) does not neces-
sarily lead to a "wrong" macroscopic process, it
does not represent a convincing prescription
scheme for the treatment of nonlinear fluctuations.

given by the conditional averaging of (2.2}with
x(t) =x, equals the deterministic flow A(x) =f(x).
In the case that x(f) refers to a Fokker-Planck
process the modeling prescription is completed
by providing a prescription for the choice of the
diffusion matrix D(x) This i.s usually accom-
plished by postulating a nonlinear FDT.' ""'"

Here the following comments should be noted.
If the macroscopic process x(t) is physically de-
fined on a bounded domain, the resulting struc-
ture of the Fokker-Planck equation does not gener-
ally correspond to natural boundary conditions,
i.e., additional boundary conditions must generally
be supplied. A particularly disturbing feature is
given by the following observation. Using a non-
linear state transformation, x-x', the deter-
ministic flow transforms like a vector (a summa-
tion over equal indices is always implied}:
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f(a) =A(a, e =0) (3.6)

III. SYSTEMS OBEYING GENERALIZED
DETAILED BALANCE

A. Derivation of the deterministic flow

In this subsection we study the relationship
between the deterministics and the stochastics of
nonlinear, generally nonequilibrium macroscopic
Markov processes satisfying a generalized de-
tailed balance symmetry (GDB);""i.e., in terms
of a state transformation 9 we have for the joint
probability p "' the symmetry

In particular, one generally wouM expect that the
dissipative, nonlinear stochastic flow A(») depends
on a parameter e measuring the strength of the
fluctuations. Following Van Kampen, ' the deter-
ministic flow is then given by

Hx« —9«x«p ef -+~ (3.3)

W(X, Y) =c(e)[cpa(y+- Y)

for all components x&. Let e denote the parameter
measuring the strength of the fluctuations. In
chemical reactions c is likely to be identified with
the inverse of a reacting volume, in thermal dif-
fusion problems an obvious choice will be the
temperature c =kT (k: Boltzmann constant),
whereas in open quantum optical systems e ' is
proportional to the number of atoms which can be
excited. This parameter is generally not identical
with the parameter describing the limiting ap-
proach of a non-Markov process to a Markov pro-
cess. Our starting point is the master equation
written in "intensive" variables x. In terms of
the parameter e the transition probabilities
W(Y-X) =W(X Y) of the "extensive" variables X
=»/e generally obey a scaling'"

p»(x, ~;y, O) =p(»(ey, ~; ex, O). (3.1) +(y, (y;X —Y) + ~ ~ ]& 0. (3.4)

In the following we restrict the discussion to state
transformations 8 satisfying

(3.3)

For the sake of convenience only we also choose
an adapted coordinate system, i.e.,

The form in (3.4) is likely to hold for most sto-
chastic processes. The factor c(e) can always be
absorbed in a redefinition of the time variable.
Without loss of generality we set c(e) equal to c '.
In terms of the symmetric Kramers-Moyal mo-
mentsK„. ..«+ i, =I, . . . , N:

Kj i (x fl fUg Ug Ug (( (x U(+Ep (x U(+ (dU

=K,', ,„(x)+dff, ... ,„(x)+ ~ ~ ~ . (3.5)

The master equation has the form (summation
convention over equal indices)

p, (x, c) = I'p, (x, e)
(-1)" „, 8"K,,..., (x, a)p, (x, c)

n~l t ex« ''' &x««l «n

(3.6)

Jf P'(x, e) is the stationary probability of (3.6) the
necessary and sufficient condition for GDB reads"

P (x, e) =P'(ex, c) (3.7a)

and with the operator I'=P '~ ' I'P~ '

P(x, ~)K, ..., (8», ~)

=[( e, ) ~ ~ ~ ( e, )]
(-~) 8 K, ..., ..., (», a)p(», a)1 (( lltlll 3

mo m ~ ~ ~
«~l '

The relation (3.8) imposes severe conditions on
the structure of the Kramers-Moyal moments of
»(t) satisfying GBD. Further we define

K;(», ~) =-,'[K, (», ~) e,K, (e», &)]

= -8&K&(ex, g),
K;(x, &}=-,'[K, (», &)+e,K, (e», ~)]

r=o r*o, . (3.Vb) = 8,K;(ex, a), (3.9)
The superscript (~) denotes the transpose and Oe
is the transformation (operator) in probability
space induced by the state transformation e. In-
serting the Kramers-Moyal expansion into (3.7b)
we obtain a useful relationship among the mo-
ments (no summation convention over indices of
9,]):

and

S;(», g) =K;(», g)p(», g}

(3.10)[K„(»,«)p(», a)].ex f

The first moment K, (x, c) can be rewritten as



25 NONLINEAR FLUCTUATIONS: THE PROBLEM OF. . . ll33

K, (x, ~) =K, (x, ~)+—P '(x, e) 8 [K„(x,~)P(x, e)]
Xf

+p '(x, e) S;(x, c) . (s.ii)
With K, =—K, we obtain from (3.8) an important re-
lation for K;(x, c):

( 1)ns+1
K„(a)=K„(a,~=O)+

( K„„,...„,(n, e=o)
15~2

&& X' (a) X' (a) =K„(a)
(s.i7)

and
K;(x, ~) = 2 p '(x, e)

~ (-1) " 8 K, ..., (x, ~)p(x, ~)
mtm 1

2 3 '1+m

X', (a}= lim
8 Inp(a, ~)

I 0 ~a]

sfo(a)
aa&

(3.18)

(s.i2)

Obviously, K'(x, e) and thus S'(x, e) contain con-
tributions of higher-order Kramers-Moyal mo-
ments.

For a Fokker-Planck process (K& ..., -—O, n &2),
the conditions in (3.7) reduce in terms of the quan-
tities (3.9) and (3.10) to the equivalent relations"

and

8
Pq(x, c)p(x, e)]=0,

Xf

S;(x,e)=0,

(s.isa}

(s.isb)

K„(»,e) = e,e,K„(e», e) . (3.13c)

-~ in/(x, e) =y, (x)+ ~&,(x)+ ~ ~ ~ .
We assume a noncritical behavior and set

»(t) =a(f)+~"'t'(f) .

(s.i4)

(3.16)

Following Van Kampen' we readily transform the
master equation to the new stochastic process
$(t) Collecting .the lowest-order terms (singular
terms proportional a ' ') we find the deterministic
flow

dt
' =K, (a, ~ = 0) =f, (a) (S.16a)

=K, (a, e = 0) + z K,&(a)X&(a) (3.16b)

with E being a symmetric effective transport ma-
trix

The relation (3.13c) holds on the support of P. For
the case that 8 denotes the usual time-reversal
operation, the relations (3.13) reduce to the well-
known potential conditions. ""Moreover, the
quantities K, (x, e),K«(x, c) and the stationary
probability P' completely determine the dynamics
of a Fokker-Planck process obeying GDB.

With the relation (3.12) we are now in a position
to study the stochastic information contained in the
deterministic flow of a master equation process
(3.6) obeying GDB. In view of the scaling in (3.6)
the stationary probability obeys"

Equation (3.16b) is the macroscopic determin
istic florio of the process in (3.8) obeying GDB
saith 8 =g. In terms of the transport matrix K the
deterministic flow does contain information of
Kramers-Moyal moments of order n ~ 2. How-
ever, except in an a priori Fokker-Planck case,
it is generally not possible to disentangle informa-
tion about the higher Kramers-Moyal moments
from the effective transport matrix K. The deter-
ministic flow contains two contributions; a "re-
versible" part f, and an "irreversible" part, f ':

f, (a) =K, (a, e =0) = -e,f,. (ea),
f;(a) = 2 K,&(a) X&(a) = 8,f; (ea) .

(s.i9)
(3.20)

The quantities f' and f possess specific trans-
formation properties under 8. As a result, the
"circulation" r(x)=f(x) —f '(x) can never contain
"irreversible" components if the system obeys a
GDB symmetry. In virtue of (3.20) and (3.7a) and
the symmetry of E, we obtain that K satisfies gen-
eralized Onsager relations:

K„(a)=8,8, K„(ea)~

Observing P,(a) =Q, (ea) and the transformation
property of K (a, & = 0) we obtain

(s.2i)

K, (a, & =0)x', (a}=0
and

di' = ——,
' Q a(t))K, ,(a(t)) X', (a(t))

= —X',.(a(~))f;(a(i)) -0.

(3.22a)

(S.22b)

A birth and death master equation with nearest-
neighbor transitions has useful application in a

The inequality in (3.22b) follows from the result
that the matrix K is semipositive definite (see Ap-
pendix A). Because $0 is bounded from below,
(3.22b} shows that p, is a Liapunoff function for the
deterministic flow in (3.16b) of the master equation
process in (3.6} obeying GDB. The Liapunoff func-
tion is of a type as constructed by Graham ' for
Fokker-Planck processes [K,.&(a) =K,&(a,e =0)).

B. Example
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variety of nonequilibrium problems as, e.g. , in
quantum optics, electronic transport, chemical
reactions, etc. ' In terms of the transition rates
W(N-N+1) =W'(N) and W(N-N 1)-=W (N) the
master equation reads

j,(N) =W'(N- 1)P,(N 1)-+ W (N+1)P~(N+1)
—[W'(N) + W (N) ]P,(N), N =0, 1, . . . . (3.23)

The structure in (3.23) implies that the process
N(t) satisfies generalized detailed balance with
8N=N. The stationary probability p(N) is well
known to be given by

N-1

p(N) =p(N= 0) Q
W'(0) W (0) '" " t'W'(M)=p(N =0),(+ ( exp dM ln~

(3.24}

We further assume the scaling

w'Wi = & 'y'(»)
with g denoting the "intensive" variable

x =&&.

(3.25)

(3.26)

(3.27)K (x, e = 0) =y'(») + (-1}'Y(x) .
From (3.24) and (3.26) we obtain for the potential
$0(x) the result

4,(x) = —J ln~ )dy,
0

or in terms of the "force" )1 (x)

(3.28a)

(3.28b))f'(x) = lny'(x) —lny (») .
For the calculation of K(x), (3.17), we introduce

o = lny'(x), P = lny-(»} . (3.29)

Inserting the Kramers-Moyal moments into the
expression (3.17) we have

The Kramers-Moyal moments K„(x,E = 0) (index
n = 1, . . . denotes the order}, are readily evaluated:

K(x) =e'+es- -'(e' —e )(&—p) +—(e'+e )(~ —p) —+ ' ' '
31

2
e' —e'

2 y (x) —r(x)
& —p lny"(x} —lny (x)

In terms of the nonequilibrium transport coeffi-
cient K(x) the deterministic flow consequently
reads

—„=—,K(a) )1'(a) = y'(a) —y (a}, (3.31)

which equals the expected result.

C. Problem of reconstruction of the stochastic
dynamics —Fokker-Planck case

The structure of the deterministic flow (3.16b}
exhibits several interesting facts: Without further
information about the stochastic functions of the
process x(t}, i.e., information about the macro-
scopic transition probabilities, the information
contained in (3.16b} is not sufficient for the recon-
struction of the macroscopic process x(t). Any
reconstruction procedure must involve additional
information on the physical nature of the process.
It often happens that the stationary probability
is known g priori; but that information with the
information contained in (3.16b} is generally not
sufficient for a unique reconstruction of the ori-

(3.30)

I

ginal stochastic dynamics.
In the following we restrict the discussion to

Fokker-Planck processes obeying GDB. The de-
terministic flow in (3.16b} contains valuable in-
formation about Fokker-Planck drift and diffusion
coefficients: K (», & =0), K,&(x) =K,.&(», e =0). Next
we introduce the class (H) of Fokker-Planck pro-
cesses x(t) defined by the following constraints:
(1) x(t} is a Fokker-Planck process obeying a
scaling (3.4} and satisfying GDB with 8'=1. (2)
The (scaled) diffusion coefficients K,&(x, e) of x(t)
are e independent. (3) The "reversible" drift
K (z, a) is either identically zero with the station-
ary probability being p(x, e) =p(8», c), or (4) if
K (x, e) e0, the reversible drift of x(t) equals the
deterministic reversible drift, K (x, &) =f (») o 0
with f (x) being source free, (8/Sx, )f, (x) =0, and.
P(x, e) =(1/2) exp[- $0(x)/e] [see (3.13a)].

The class (H) processes possess the following
useful property. Given only knowledge of p(x, e)
together with the information contained in the de-
terministic flow (3.16b), the stochastic dynamics
of class (H) processes can be consistently recon-
structed by writing
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&(», &) =-p '(», e) [K,((», g =0)p(», g)]
8

and for K (», e}=f (») e 0,

K,(», c) =f~(») ——,'K, ,(x, e =0)

(3.32)

A discussion of this rather delicate problem is be-
yond the scope of this paper, where we have re-
stricted ourselves to save statements only. We
hope to return to this problem in a future com.-
munication.

IV. SUMMARY

+2 [K,j(x, e =0)], (3.33)

where

K~((», e) =K()(», a =0) =8,8)Ki,(8», v. = 0) (3.34)

satisfies generalized Onsager relations.
Among physical systems which likely can be

modeled by a class (H) Fokker-Planck process are
Fokker-Planck systems with I, (3.7b}, being a
Hermitian operator (e.g. , one-dimensional Fokker-
Planck processes}. In this case we always have a
GDB symmetry with even variables only, i.e.,
8», =x,. and K (x, c) = 0. Examples are Risken's
Fokker-Planck treatment" of the single-mode
laser without detuning, models of absorptive opti-
cal bistability, "'"or overdamped thermal Brown-
ian motion with nonuniform damping in an external
field. Physical class (H) systems which do contain
a consistent reversible drift K (», t) =f (x) are
various equilibrium problems" "or certain (non-
equilibrium} Gauss-Markov processes. Another
nontrivial but somewhat mathematical example is
presented in Appendix B.

Whereas class (H) Fokker-Planck processes are
not restricted to describe thermal equilibrium
only, it should also be noted that the class of ther-
mal Fokker-Planck processes with K,&(», c) =

K,&(») (Ref. 16) is not fully contained as a subclass
of class (H) processes.

In view of the relations in (3.32)-(3.34) a word
of caution is appropriate. Given p(», &) and the
deterministic limit (3.16b), one always can write
down the Fokker-Planck dynamics in (3.32)-
(3.34). However, the physics of the system under
consideration is generally not consistent with such
resulting (approximative) Fokker-Planck dynamics.
An interesting problem in this context is the study
of the conditions under which the correct physics
of a system can be modeled consistently by a class
(H) Fokker-Planck process and, in a related way,
how and to what extent one can "approximate"
master equation dynamics obeying GDB with
K (», e) =0 by class (H) Fokker-Planck dynamics.

I

We have examined the deterministic limit of gen-
erally nonequilibrium master equation processes
obeying GDB symmetry. In terms of a semiposi-
tive definite (nonequilibrium) transport matrix
K(a), which satisfies generalized Onsager rela-
tions, the deterministic flow can be cast into a
form exhibiting the maximum amount of informa-
tion about the stochastic dynamics. The deter-
ministic flow does contain information about Kra-
mers-Moyal moments of order n) 2. The quantity
P,(»), (3.14), which gives in the limit of small
noise the probability for steady states, serves as
a Liapunoff function for the deterministic flow of
master equation processes (3.6}, obeying GDB.
Given the information of the stationary probability
together with the information contained in the de-
terministic flow, (3.16b), we identified a class of
Fokker-Planck processes for which the stochastic
dynamics can be reconstructed.

Recently, the question of the deterministic limit
of general discrete master equations has attracted
attention among the mathematicians. "'" Compar ed
with the van Kampen' result, (2.6}, these papers
do not predict a different deterministic flow. How-
ever, in those papers the limiting procedures are
made more precise. In particular, the question
of the type of convergence of stochastic process to
deterministic process is clarified on a more rigor-
ous level.
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APPENDIX A

The result that the matrix K is semipositive de-
finite follows from the definition (3.17). It is suf-
ficient to show that K can be recast as a covariance
matrix over the semipositive measure y, (», U},
See (3.4). With

( l))s'il X/2
0 =»+g & "& Xo (n) X' (u)m t &y &yt-y &m-X

(Al}
we obtain

boa, UU, U~ 1+
) U,. ' U, , a . , a dU.( I)ml

(A2)
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With z denoting an arbitrary vector we have

z,K,(a)z, =((z,f,)Q„o-0. (A3)
1 g, bI'(* v) =—"u ——* '-* ' )i' .
Z . 2 4 2 (B2)

APPENDIX B

The Fokker-Planck process

The process in (Bl) obeys the conditions (3.13a)-
3.13c) with respect to the transformation

8x =-x,
(B3)

8 8
p, (x,y) =-y —p, (x,y) +(ax+bx') —p, (x,y)

+ {[~+exp (y+y ))yp (»y)}

+ z —{[1+2y) exp —(y+y )p (x,y)}

82
+ ~ s .{ly+exp —(y+y'))p, (x, y)}

y&0, »0 (Bl)

Moreover, (Bl) is an example for a class (H)
process satisfying the conditions (1)-(4) in Sec.
IIIC. The reversible drift is evaluated to be

y

f„3 (-ax —bx

and the irreversible deterministic drift reads in
terms of the transport matrix fC, (x,y):

(f ~ 1(0 0 ~ ~ b~
(f') I 0 2[y+exp —(y+y2)]] ( -y

possesses the stationary probability p(x, y): (B5)

M. S. Green, J. Chem. Phys. 20 1281 (1952); 22, 398
(1954).

N. Van Kampen, Proceedings of the 12th IUPAP Con-
ference on Statistical Mechanics, Budapest, 1975,
edited by P. Stepfaluzy.
N. Van Kampen, Can. J. Phys. 39, 551 (1961).
D. K. C. MacDonald, Phys. Rev. 108, 541 (1957).
W. Bernard and H. B. Callen, Phys. Rev. 118, 1466
(1960).

M. Lax, Rev. Mod. Phys. 32, 25 (1960).
J. Keizer, J. Chem. Phys. 63, 5042 (1975); J. Math.
Phys. 18, 1316 (1977).
L. Onsager, Phys. Rev. 37, 405 (1931); 38, 2265 (1931).
L. Onsager and S. Machlup, Phys. Rev. 91, 1505 (1953).
R. Kubo, Rep. Prog. Phys. 29, 255 (1966).
R. Kubo, K. Matsuo, and K. Kitahara, J. Stat. Phys.
9, 51 (1953).
H. Grabert, Z. Phys. B34, 107 (1979).
M. Mangel, SIAM (Soc. Ind. Appl. Math. ) J. Appl. Math.
36, 544 (1979); Physica (Utrecht) 97A, 597; 97A,
616 (1979).
G. N. Bochkov and Y. E. Kuzolev, Radiophys. Quantum
Electron. 21, 1019 (1978).
H. Grabert and M. S. Green, Phys. Rev. A 19, 1747

(1979).
i6H. Grabert, R. Graham, and M. S. Green, Phys. Rev.

A 21, 2136 (1980).
P. Hanggi, Helv. Phys. Acta 51, 183 (1978).isFor an extended study of symmetry properties, see
P. Hanggi and H. Thomas, Phys. Rep. (in press).
R. Graham and H. Haken, Z. Phys. 245, 141 (1971).
R. Graham, Springer Tracts Mod. Phys. 66, 1 (1973).
R. Graham, in Stochastic Nonlinear Systems in
Physics, Chemistry and Biology, edited by L. Arnold
and R. Levefer (Springer, New York, 1981).

22For a review, see H. Haken, Rev. Mod. Phys. 47, 67
(1975).

23H. Risken, in Progress in Optics, Vol. 8, edited by
E. Wolf (North-Holland, Amsterdam, 1970).
P. Hanggi, A. Bulsara, and R. Janda, Phys. Rev. A 22,
671 (1980).
A. Schenzle and H. Brand, Phys. Rev. A 20, 1628
(1979).
N. Van Kampen (unpublished).
T. Kurtz, J. Appl. Prob. 8, 344 (1971); Stoch. Proc.
Appl. 6, 223 (1978).
L. Arnold, Adv. Appl. Prob. 12, 367 (1980).


