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Memory effect on thermally activated escape rates
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Non-Markovian thermal Brownian motion of a particle over a barrier is studied using
thermal noise with a small but finite bath-memory correlation time. Starting from the
corresponding non-Markovian Smoluchowski master equation, valid in the over-damped
limit, the rate of escape A, is evaluated, and it is shown that a renormalization of the bare
damping occurs. The modeling of the rate A, for a special class of bistable, driven non-
Markovian nonequilibrium systems is sketched.

There is a multitude of processes in physics and
chemistry that involve activated escape of a "parti-
cle" over a barrier. This important problem has
been tackled by many others with different meth-
ods. Treating the effect of the coupling with the
"heat bath" by a friction coefficient y, the results
in K.ramer's original 1940 paper' represent a mile-
stone. Kramers showed that equilbrium theories
generally overestimate the reaction rate (for a more
modern discussion of the problem see Refs. 2 and
3). Efforts to generalize Kramer's formulas to
multidimensional systems have been discussed by
Brinkman, Landauer and Swanson, and Langer.
Some other recent generalizations include the dis-
cussion of moderate damping, ' catalysis at metal
surfaces, and the effect of a rate enhancement via
parametric fluctuations. ' Common to all those
various treatments is the assumption of a clear cui-
separation of time scales ofparticle and heat bath
motion. In practice, this assumption amounts to
the use of a thermal white noise, i.e., noise which
is delta correlated in time. In many situations this
assumption can be justified. However, for prob-
lems like the desorption from solids, impurity dif-
fusion in solids, " or biophysical transport, ' the
coupling of the particle motion to physically
relevant but often not clearly preceivable slow phy-
sical modes plays an important role. In the latter
case, the friction becomes nonlocal in time
(memory) implying via the fluctuation-dissipation
theorem of the second kind a nonwhite thermal
noise. For the problem of impurity diffusion in a
solid, in which the heat bath moves slowly com-
pared to the particle, Rezayi and Suhl" have re-
cently presented an interesting attempt at solving
the problem of the escape rate in such a situation.

Dur goal in this report is somewhat more mod-

est. We consider a heavy Brownian particle in an
external field P(x), as, for example, sketched in
Fig. I, which still moves slowly compared with the
degrees of freedom of the bath. However, the par-
ticle does not move so slowly that the persistence
effects of the random noise can totally be neglect-
ed. In other words, after having extracted the non-
linear slow motion of the particle the residual mo-
tion on the particle, exerted by the bath, decays on
a fast but finite time-scale a. This approach pre-
sents an improvement over the usual Brownian
motion theory with thermal white noise' ' and
consequently provides some insight into the validi-
ty of the white noise approximation. A main
mathematical complication associated with such an
improved Brownian motion theory is the loss of the
Markovian character present in the white-noise
limit and thus also loss of the ordinary well-known
Fokker-Planck description. '

For a phenomenological modeling of a non-
Markovian Brownian motion theory with a fast
but finite bath-memory correlation time o, =1/2v
we start from the microscopic theory of Brownian
motion in external fields as investigated by Kim
and Oppenheim. ' With a unit particle mass
M=1, the nonlinear generalized Langevin equation
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FIG. 1. Potential field used in text.
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in coordinate, x, and velocity, u, phase space can
be cast into the form' ' (we restrict the discussion
to a one-dimension reaction path)

X =Q

tu= —p'(x) —f y(r)u(t r)d—r+g(t) .

(g(r)g(0) ) =kTy(r) . (2)

Here, y(r) denotes a nonlocal friction coefficient,
g(t) is a nonwhite stationary thermal random noise,
and the prime denotes differentiation with respect
to the coordinate x. The nonlinear generalized
Langevin equation in (1) can only be regarded as a
model in the absence of any rigorous derivation.
Generally, the nonlocal damping will depend func-
tionally on the phase-space variables. ' The noise
g(t) satisfies the fluctuation-dissipation theorem of
the second kind':

Owing to the finite correlation time of the thermal
noise g(t), the Langevin equation (6) does not
correspond to the Fokker-Planck-Smoluchowski
equation describing the rate of change of the
probability

p, (x)= (5(x (t) x) )—.
For a general noise g(t) satisfying (2), it is general-
ly impossible to derive a closed equation for the
rate of change of the probability p, (x). ' In what
follows, we model the thermal fluctuations by a
stationary telegraphic random noise. In other
words we set g(t) =ri(t), with

q(t) =a( —1)"'",
where n (t) is a Poisson process with counting
parameter v, a denotes a step random variable of
vanishing mean, and probability p,

p, = —,[ 5{a (2vkTy—)'~ )

Here, k is Boltzmann's constant, T the tempera-
ture, and the expectation ( ) is over the ran-
dom realizations. With

u = —p'(x) — f y(r)dr u
0

+ 5{a+(2vkTy}'~ )] . (9)

For the fluctuation-dissipation theorem (2), we ob-
tain with (8) the explicit result

(g(r)g(0)) = (rt(r)g(0})
+ pwvdt u+ . + t

and neglecting on the rhs of (3) terms of order
O{y(u)a) (small bath-memory relaxation time a)
as well as transient effects we obtain

u = —P'(x ) —yu +g( t),
where j& presents a renormalized damping

oo

y=y a= = y(r)dr
2v

(3) =2kTy(a)vexp( —2v
~
r

~
) . (10)

In the limit v~ 0D, the noise rt(t) approaches
Gaussian white noise and (10) reduces to the fami-
liar Einstein relation

(ri(r)rl(0) ) =2kTy5(r),
with y denoting a bare friction

y= lim f y(r)dr= lim y(a= 1/2v) .
V~ oO V~ oo

Our interest is in the large friction limit, i.e.,
y » 2too (Refs. 3 and 12), with coo a typical un-
damped angular frequency of a locally stable po-
tential well. Assuming that the force —P'(x) does
not change appreciably over distances of the order
(kT/P)'~ (see Ref. 15) we can eliminate adiabati-
cally the velocity variable u yielding the nonlinear
non-Markovian Langevin equation

P'(x) g(t)X=— + (6

Also note that with a small relaxation time
a= 1/2v & 1/y, the telegraphic random noise ri(t)
is close to a physically more realistic nonwhite
Gaussian noise. With the notation f(x)
= —P'(x)/y, we obtain for the rate of change of
the probability p, (x) from (6) and (7)

p, (x)= — [f(x)p, (x)]
BX

( ri(t)5(x (t)—x ) ) .la
y Bx

(12)

Now, with R, (q(s)) =5(x (t) x) being a function--
al of the noise g(s), t & s & 0, the expectation in
(12) can be evaluated by use of a formula by
Klyatskin' which in our case reads
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( t(tt)R (tt(t)s)) 2k=T)v J ds( R, ( t(ts)8( s—s )))sxp —2v(t —s) .
5

o 5g(r)

6 is the Heaviside step function. By virtue of the functional derivative

~ a[5(x(r)—x)]= —— 5(x(r) —x),5g(r) y Bx

we obtain after elementary calculations the non-Markovian Smoluchomski master equation

(13a)

(13b)

j,(x)=— 2vkT 8 8 a[f(x)p, (x)]+ j exp —2v+ f(x) (t —r) p, (x)dr
Bx Bx o Bx Bx

a:j(x,t) .
Bx (14)

j=D=f(x)p(x) —2v+ f(x)2vkT

In the equilibrium state j=O, the stationary probability p(x) obeys
—1

p(x),a
Bx

(15)

yielding

Z ' 2( —()I)'(y)dy 2vkT
exp 8

[()I)'(x)] kT [P'(y)] /—2'
2v

P'(x) (16a)

With a =1/2v & 1/y' small, 2tT(x) is well represented by

p(x) =Z 'exp[ P(x)/kT] . — (16b)

The calculation of the rate of escape A, is accomplished following the ideas of Kramers. We inject parti-
cles at xo and remove them the moment they reach the second locally stable region around xo. The result-
ing stationary nonequilibrium current jo builds up a total integrated density proportional to the escape time
so= I/A, . Ifpo(x) denotes the nonequilibrium probability we have

Ixo
jo(I), ' - po(x)dx

xo (17)

Solving (15) with j=O substituted by jo+0 for the nonequilibrium probability density po(x) we have in vir-
tue of the boundary condition po(xo )=0 (xo.. absorbing boundary)

po(x)=g(x)p(x)

where

[»+f'(y)]dyg(x) = jo-"' r(y») [2vkT/9 f'(y')]—
I —P"(y) /2'&

P'(y)kT

With (17)—(19) we obtain for the rate A, our main result
I t

I dx exp I exp- dyP(y)
(20)

This main result holds independent of the specific shape of the external bimodel field ()I)(x), (e.g., also for a
domed barrier region). The result requires only that ro is much larger than the characteristic time for reach-
ing local equilibrium in each potential valley; i.e., ~o && 1/coo, so that the metastable equilibrium probabili-
ties near xo and xo are long lived yielding a well-defined rate A, . In the limit v~ 00 (i.e., a~O) the result in
(20) reduces to the Smoluchowski equation result
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f exp — dx f exp dy
kT "o (x) "o (y)

Setting

P'(y)=P'(x, ) =0, P "(x,) =co (x, ) ~0,

(21)

we can for approximately harmonic potential extre-
ma near {xo,x„xII ] considerably simplify the rate
in (20} to give the approximate result

co(xp)ia)(x, )i
2Iry(a }

bistable, driven nonequilibrium systems (e.g., opti-
cal bistability, ' '9 nonlinear Esaki diode ) of the
type x =p(x)+I)(t), with q(t) characterizing tele-
graphic external nonwhite noise, i.e., its strength
and memory-correlation time ca= 1./2v can be arbi-
trarily structured by the experimenter, is rather
straightforward by carrying through the ideas and
solutions, (14), (16), and (19), presented in this pa-
per: The escape rate A, is infiuenced by the ampli-
tude cr = (a )~, the memory-correlation time~a'
a =1/2v and related, by the corresponding form of
the stationary probability p(x). With (x1,x2)
denoting the stable states of the deterministic drift
P(x), we obtain

Xexp{ [y(x—, ) y(xo—)]/kT],

with

y(a) =y[1 P"—(x, )/2v j]=y(a) .

(22)

(23) where

[1+P'(y) /2v ]dxp x dp
p(y)[o —P'(y)]/2v

(24a}

The rate in (23) just coincides in structure with the
formula of Kramers. ' The bare friction y, (11),
is substituted by the renormalized friction
y(a) =j(a), which incorporates the effects of a
small but finite correlation time a of the nonwhite
thermal noise. Throughout the paper, we did not
specify any particular form for the renormalized
friction y(a }. A specific dependence of y(a ) on a
is a result of one (or possibly several different) spe-
cial physical mechanisms for the damping.

Further, a calculation of the rate of escape for

z-i x (y)dyp(x)= exp2v f e(o —P (x)},
o —P (x) IT—P'(y)

(24b)

with o large enough such that p(x) has a support
on [xI,xI]~

I am indebted to Hans Frauenfelder and Wolf-
gang Doster for enlightening discussions on the
subject and for stimulating my interest in the prob-
lem.
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