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Abstract:

We give a systematic survey of the theory of stochastic processes in systems described by a finite number of variables, with special emphasis on
time evolution behaviour, symmetry aspects, and linear response to external perturbations. The concepts and methods are elucidated by the
application to a number of specific systems.

Introduction

The theory of stochastic processes plays an important role in the description of systems which do not
behave in a deterministic way, but display statistical fluctuations of the system variables. Such systems
occur in many fields of science, in particular in physics and the applied sciences, in communication
theory, in biology and environmental sciences, and even in sociology [1—18].

Statistical fluctuations in classical systems always reflect a lack of knowledge about the exact state of
the system. A large system is described in terms of a few macrovariables obtained by “coarse-graining”
in phase space, and the loss of knowledge about the microscopic degrees of freedom gives rise to
“intrinsic” fluctuations of the microvariables [3,6, 14]. Further, the external forces in the equations of
motion, which describe the coupling of the system to the outside, have also to be considered as
fluctuating quantities, because they are produced by other macroscopic systems. They impose “exter-
nal” fluctuations on the system under consideration. The distinction between intrinsic and external
fluctuations will of course depend on where the boundary is drawn between “system” and “outside”.
Quantum fluctuations, on the contrary, occur even in a pure state.

On a microscopic scale, fluctuations play a dominant role in statistical mechanics. Fluctuations of the
macroscopic variables, on the other hand, are usually very small, but have nevertheless important
effects in certain situations. We mention in particular the scattering of light or of particles by the system,
the occurrence of critical fluctuations near phase transitions and instabilities, and the decay of
metastable states [1,5, 7—181.

We present here a review of the theory of classical stochastic processes, with strong emphasis on
pedagogic aspects. The theory is applicable to classical systems, and to such quantum systems which
allow an appropriate semiclassical description. In section 1, we give a survey of the basic concepts and
properties of stochastic processes, described in terms of the multiple-time joint probability distribution
functions. We introduce the important class of Markov processes for which the whole hierarchy of
multiple-time distribution functions is generated by the two-time conditional probability distribution.
This represents an enormous simplification, and most of the present review will be restricted to the
Markov class. The justification for this restriction rests on the separation of the time scales of
microscopic and macroscopic motion: If all slow variables of the system are included among the
macroscopic variables, the Markov description of the process is expected to be justified for macroscopic
times.

The time evolution of stochastic processes is discussed in section 2. For a Markov process, the time
derivative of the conditional probability has the significance of a “master operator” generating the time
evolution of the whole process. It is of as fundamental importance for a Markov process as the
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Hamiltonian for deterministic motion, and is therefore the object of stochastic modelling: Constructilig
a stochastic model for a given system is in the Markov case equivalent to constructing a master
operator. We discuss in some detail the master operators of jump processes and of continuous stochastic
processes (Fokker—Planck processes), and in particular the description of the latter by stochastic
differential equations.

In section 3, we review the spectral properties of a stochastic process. The spectrum of the master
operator completely governs the dynamics of a Markov process. yielding in particular the properties of
the correlation functions in the time and frequency domains. The asymptotic behaviour for long times
depends crucially on the ergodic properties of the process. which are therefore also discussed in this
section.

Section 4 is devoted to a discussion of symmetry aspects. Due to the inherent nonlinearities in the
macroscopic motion, it is in general not a trivial problem to obtain solutions of the master equation.
Symmetry considerations often provide essential information about the form and the properties of the
solution, and may even allow to construct the solution explicitly. In particular, the symmetry of detailed
balance involving an interchange of time arguments in the stationary multiple-time joint probability
distribution has proved to be very effective [3, 5, 8, 11].

The concept of linear response to external test forces has proved very useful for the study of systems
in thermal equilibrium as well as of driven systems. It yields valuable information about the dynamics of
the system, expecially about the stability and the normal modes. Of particular importance is the
fluctuation-dissipation theorem of equilibrium systems [7j. We therefore develop in section 5 the
linear-response theory for Markov processes. with special attention towards the existence of fluctuation
theorems connecting the linear response to external perturbations with the unperturbed fluctuatiotis of
the system.

Throughout the review, we demonstrate the application of the concepts and the methods by specific
examples in the subsections denoted by the letter E. In particular. the various subsections concerning
the two-state process and the n-component Gauss process comprise in themselves a fairly detailed and
selfcontained compilation of the properties of these two types of stochastic processes.

In section 6, we apply the theory presented in this survey to a number of physical systems: The
Brownian motion in an external potential, the nonlinear conductance, the bistable tunnel diode, the
single-mode laser, and the stochastic Ising model with a number of specific applications. These
problems, in addition to serving as demonstration objects for the general theory, are of considerable
interest in their own right.

I. Basic concepts

In order to make this report self-contained, we give a brief survey of the basic concepts of stochastic
processes.

1.1. Probability distributions, random variables, fluctuations

The stochastic systems considered may be of the following types:
Type A: Systems with a finite or countable number of discrete states a = 1,2
Type B: Systems described by a finite number of real or complex continuous state variables x1 forming
the state vector
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x={x1,x2,...},

Type C: Systems described by a finite number of stochastic fields

i= 1, 2, . . . N.

Examples for systems of type A are the stochastic Ising model [19] (see section 6.5) and various
systems described by birth and death processes [20—221(See e.g. section 6.3). As systems of type B we
mention the Brownian particle described by position and momentum (see section 6.1), and the laser
described by a finite number of mode amplitudes [1,2, 5, 8, II, 161 (see section 6.4 for the single-mode
laser). If the space dependence of some variables becomes important, as e.g. in hydrodynamics, one
deals with a system of type C.

The set of all states of the system is called the state space .~. A stochastic state of the system is given
by a probability distribution on £ For the three cases introduced above it is described in the following
way:

Type A: The stochastic state is described in terms of the probabilities p,~.of the states a satisfying

a 1,2,...N (1.1.1)

p~.= 1. (1.1.2)

The probability of any subset Ac .~ is given by

p(A)=~p0,. (1.1.3)

Type B: We assume the existence of a probability density p(x) in state space .~ satisfying

p(x) 0 VxE~ (1.1.4)

Jp(x)dx= 1. (1.1.5)

p(x), which may contain 6-functions and is therefore a distribution in the mathematical sense, well be
called the probability distribution describing the stochastic state of the system. The probability of any
measurable subset A c .~ is given by

P(A)!P(X)dX. (1.1.6)

In the case of complex state variables, the integral is defined over the complex planes: dx =

H dRex, dlmx,.
Type C: In this case, the stochastic state is described by a probability distribution in function space,
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which requires the methods of functional integration, and will not be treated in detail. A short discussion is
given in section 2.5. In the case of systems enclosed in a finite boundary, the fields can be decomposed into
countable sets of discrete modes, the amplitudes of which form a state space which is a slightly extended
version of type B.

The general theory is developed for type B. Specialization to type A will always be evident.
Generalization to type C will be indicated in special cases.

The set of all probability distributions with p(s) = 1 forms a functional manifold I1~(,2)(not a linear
space). In order to define linear operators, it is useful to complete this manifold to a linear function
space I1(2~).Throughout this review, we shall use the following notation: State functions fE [/(~T) atid
distributions p E JJ*(~)are denoted by their function names t~p. their values at point x E ~ by f(x).
p(x). Operators acting oti I1(~)are described by their kernels A E II(~Ø~’)with values A(x, y).
Application of an operator A to an element fE 11(s), and successive action of two operators A, B are
written in the usual way as products Af and BA. respectively.

(Af)~= J A(x. y)f(y) dv (1. 1.7)

(BA)~~,= J B(x, z)A(z.y)d:, (l.l.~)

All integrations are over the full state space ~ unless otherwise indicated.
A basic concept is that of a random variable f corresponding to an observable quantity. It may he arty

real or complex measurable state function fE Il(~)

f: ~ or ~, (l.l.~))

in particular any of the state variables .v, thetiiselves.
A mapping

q: ~ (1.1.10)

of the original state space ~ otito the space ~ spanned by the set q = ~ q2. . . .} of random
variables may he considered as the introduction of a tiew state space ~ with state vectors q. The
probability distribution in ~ is given by

J 6(q(x)— q)p(x)dx. (1.1.11)

If the mapping (1 . I . I (1) is one-to-one, it is equivalent to a coordinate transformation in the original state
space. If it is many-to-one. on the other hand, it represents a coarse-graining of state space. In the
following we assume that the state variables x = {x, x2.. . .} characterize the states of the system at the
desired level of description, i.e. that the appropriate coarse-graining has already been carried out.

Two random variables f and g are statistically independent if

p(t,g)=p(f~p(g). (1.1.12)
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The statistical expectation value or mean value of the random variable f is given by

(f)= Jf(x)p(x)dx, (1.1.13)

and the equal-time correlation between two random variables f and g is defined as

(fg*) Jf(x)g*(x)p(x)dx. (1.1.14)

The fluctuation of the random variable f is the state function

(1.1.15)

with (~)= 0. A measure for the fluctuation strength is the mean-square fluctuation or variance

= — . (1.1.16)
The fluctuations ~c= f— (f) of a set of random variables I = {ft, f2,. - .} can be characterized by the

non-negative definite equal-time covariance matrix

S=~=(ff”)—~f)(f
5), (1.1.17)

which contains the variances ~I~I2) as diagonal elements and the correlations between the fluctuations
as nondiagonal elements. Since S is Hermitian, there exists a unitary transformation to

uncorrelated linear combinations of the f,. It should be noted that uncorrelated random variables J with
(f,f~= (If~I2)6uare in general not statistically independent.

For a detailed review of the main concepts of random variables, especially cumulants, characteristic
functions, etc. see [23,241.

I. 1.E1. The two-state distribution
A simple example of a system of type A is a two-state system with an Ising variable x,,~= ±1.It is

described by a probability distribution

p ~ ~(~~~)= (1 + ax), al ~ 1, (1.1.18)

and is completely characterized by the mean value,

= a. (1.1.19)

The mean square of the fluctuation ~ = x — (x) is given by

2)ms=1—a2 0. (1.1.20)
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I. 1.E2. The n-component Gaussian distribution

As an example of type B we consider a Gaussian distribution of a set x = (x, .V: v,,) of n real
random variables,

p(x) = [det(2~s)I exp~—~(x a) . s . (x — a)] . (L1.21)

It is completely characterized by the vector of mean values

(1.1.22)

and the covariance matrix of the fluctuations ~ = x — (x~.

(1.1.23)

which is symmetric and non-negative definite. The surfaces of constant probability are elliptic hypersur-
faces of second order. The variables x are called jointly normal.

All cumulants of higher than second order vanish. A principal-axes transformation diagonalizing s
introduces “normal coordinates” which are not only uncorrelated but in this case statistically in-
dependent, as can be seen from the factorization of (1.1.21).

1.2. Stochastic processes

In the course of time, the state vector x of every member of the statistical ensemble will carry out a
motion in state space .~. The trajectory x(t) is called a sample function or realization. Any statistical
ensemble of sample functions forms a stochastic process. For a fixed time t. the stochastic process is a
random variable x E  with probability distribution p(xt); for a pair of time instants t(t), t~, one has
two random variables x~t,x(2), with a joint probability distribution p(2)(x(t)t(t) x12~t12>),etc. The set of all
possible sample functions x(t) forms a functional manifold 12, and the stochastic process is a probability
distribution in 12. In order to avoid functional integration, we define the stochastic process by all its
multiple-time joint probability distributions (multivariate distributions): For every n = 1, 2. . . . and
every sequence of time instants T = {t(t), . - - t1’°} there exists for the sequence of state vectors
X = {x°>,- - - x1’°}a distribution p~’>(T)E JJ*(.~~)with values

~ ~(XT)= pt” ~(x°)~(‘~. . . . x~’t~’~). (1.2. 1)

The distribution p1’°(XT)satisfies the symmetry relation

p~”~(XT)= p~”~(P(XT)) (1.2.2)

where F’ denotes a permutation of the n pairs (x~°t~°).
The multivariate distributions p”°.n = 1. 2. - -. are not all independent of each other. In fact we have

the compatibility relations

p~(XT)=fp~~(xT.YS)dY, n, k = 1,2 (1.2.3)
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We restrict the consideration to stochastically continuous processes with the property

p(fl)( - . x(~t~),~ . . ~) ~(n— t)( - - x1°t~°,- - .) 6(x~°— x°~) for t°~—~ t°~. (1.2.4)

A process is called strictly stationary if

p~(X,T+rD)=p~(XT) Yr (1.2.5)

where D = (1,... 1).
If one introduces a new state space .~ according to (1.1.10), the stochastic process in .~ is defined

by the n-time multivariate distributions p(fl) of the sequences Q = {q’°,.. , q~}of new state vectors,
obtained from the original p~by

p~(QT)= J 6(0(X) - Q) p~(XT)dX. (1.2.6)

Any random variable defined by a state function f(xt) which may be explicitly time-dependent in
general, represents a stochastic process consisting of sample functions f(x(t), t).* The mean value at
time t is given by

~f(t))= ff(xt)p(xt)dx, (1.2.7)

the two-time correlation between two processes f(t) and g(t) is obtained as

~f(s)g* (t)) = J f(xs) g* (yt) p~2~(xs,yt) dx dy, (1.2.8)

etc. The fluctuations

~c(t)= f(t) — ~f(t)) (1.2.9)

of a set of random variables f(t) = {f
1(t), f2(t),. - .} can be characterised by the two-time covariance

matrix

S(t2, t1) = (~c(t2)~c*(ti)) (f(t2)f*(tt)) — (f(t2)) (f*(t1)) (1.2.10)

with the autocorrelations (~~(t2)ç~’(t1))as diagonal elements and the cross-correlations ~1(t2) ~~(t1)) as
nondiagonal elements. S(t2, t1) is a non-negative definite matrix kernel** [25] and satisfies

S(t2, t1) = S
t(t

1, t2) . (1.2.11)

*we denote both the sample functions and the random variables at agiven time t by the same symbolf(t). The specific meaning will be clear from the
context.

** A matrix function S(t, t’) is called a non-negative definite matrix kernel on Tx T, if for any n, any sequence of complex-valued vectors ~ and
any sequence of points t,(i = 1. . . . n). one has ~ ~ . S(t1. t1) -  0.
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It is interesting to consider the Fourier transforms of the fluctuations ~(t) with respect to time.

~(w) = (2~h/2 J ~(t) exp(iwt) dt (1.2.12)

~(t) (2~t/2 J ~(w)exp(—iwt)dw. (1.2.13)

where the Fourier amplitude ~(w) may contain 6-functions and their derivatives. The correlation matrix
of the Fourier amplitudes

S(w2, w1)’ (~(w2)~*(w1)) (1.2.14)

is the double Fourier transform of the two-time covariance matrix (generalized Wiener—Khintchin
theorem)

S(w2, Wt) = (2i~I Jf S(t~,t~)exp{i(w2t2 — witt)} dt~dt2. (1.2.15)

From (1.2.11) and (1.2.15), one concludes

SS(w2,wt)S (Wt.W2). (1,_b)

Thus, the equal-frequency covariance matrix S(w, w) is Hermitian. Further. it can be shown that the
double Fourier transforms of the autocorrelations S•,(t2, t) satisfy 1241

JJ S1~(w2.w~)dw~dw2 () (1.2.17)

with arbitrary a,b E [—cc, cc]. In particular, it follows that S,,(w. w)  (1.
Of particular importance is the case that the covariance matrix S(t2. t1) becomes invariant against

time translations,

S(t2, t1) = S(t2 — t1). S(—r) = S
t(r) - (1.2.18)

This is always the case for a strictly stationary process and random variables f = ~, j~.- - .} which are

not explicitly time-dependent. As a consequence
S(w

2, w1)S(w7)6(w2—w~). (1.2.19)

where S(w) is the spectral matrix defined by
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S(w) = J S(r) exp(iwT) dr = S~(—w) (1.2.20)

(Wiener—Khintchin theorem). From eqs. (1.2.18) and (1.2.20) it follows that S(w) is Hermitian and
nonnegative definite. The diagonal elements S,,(w), which are called spectral densities or power spectra
of the fluctuations ço~,satisfy [24,261

= S~~(—w)= J S1~(r)exp(iwT) dr  0. (1.2.21)

Moreover, S(w) can be diagonalized by a unitary transformation of the Fourier amplitudes p•(w). The
new variables are normal coordinates of the process in the sense that they are statistically decoupled up
to second order in the fluctuations. The eigenvalues of S(w) are just the spectral densities of these
normal coordinates.

The spectral matrix S(w) of the fluctuations is of great importance in linear transport theory and in
scattering theory: It is connected with the dissipative part of the transport matrix by the famous
fluctuation-dissipation theorem [7, 27, 281, and the spectral densities S,,(w) determine the cross-sections
for scattering of light and neutrons by the fluctuations [291.Further, as will be shown in section 5, the
linear response of nonequilibrium systems is given by a generalized fluctuation theorem.

1.2.E1. Exponentially decaying correlations
As an example, we consider a process with an oscillating autocorrelation function with exponentially

decaying amplitude,

S(T) = S0cos w0r exp(—’y]rJ), y >0. (1.2.22)

The corresponding spectral density

S(w) = s0[2 + (W~- w)2+ y
2 + (W~+ ~)2] (1.2.23)

is obviously positive (see fig. 1).
This example contains as limiting cases for y = 0 the undamped oscillations with

S(T) = So cos w
0r (1.2.24)

yielding

S(w) = S~[6(w— w0) + 6(w + w0)], (1.2.25)

and for y—~,S0—4x~S0/y—~A/2the “white noise” with
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S(’r)

S(c,)

Fig. I. Autocorrelation function S(r) (1.2.22) and spectral density 5(w) (1.2.23).

S(r)=A8(r), A>0. (1.2.26)

and

S(w) = A. (1.2.27)

1.3. Markov and non-Markou processes

In the theory of stochastic processes the concept of conditional probability plays an important role.
Let T = T2 U T1 be a sequence of in + n time instants with a corresponding sequence of state vectors
X = X2 U X,

T~= {t~’>,..- t~’°}. X, = {x~,. . . x~’~} I ~ I

T1 = {~),. , - t~ )}, X~= {xY~.. . - xY” )} -

then the conditional probabilities R~”~’~are defined through

~ >(X2T2, X T) = R ~“

t(X
2T2IX T ) p°’~(XT~) (1.3.2)

for state sequences X with p~”°(XT)~Ii. They have the properties

R°’~‘“°(X2T2,YS]X~T1) = R”
1” ~X

2T2J YS. X T ) R~”)( YSIXI T ) , (1.3.3)

J R ~“~‘“ ~(X2T2.YS~XIT) d Y = R ~“
1’”~(X

2T2lXT), (1.3.4)
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and

J R(~m)(X2T2IX1Tt)dX2=1. (1.3.5)

Further, for stochastically continuous processes

lim R°”°(X2T2IX~Tt)= 6(X2— X1) . (1.3.6)
T2-.Tt

We shall only use conditional probabilities with past conditions, where the largest t~E T1 is less than or
equal to the smallest t2 E I’~.

Extending the notation introduced in (1.1.7,8), p~’°(T)denotes an element of function space H(.~)
with values p~’°(XT).Elements like R~~

1”~)(T
2]T1)are operators mapping H(.~

m)on H(~”)with kernels
R°’~’°(X

2T2lX1Ti). Application of an operator to an element of H(.~)and operator multiplication are
written in the usual way as products R~

1°(T]S)p~(S)and R~/~(T
2]S)Roul~~(SITi),respectively,

[R~(T]S) p~(S)Ix= J R~(XTII’S) p~(YS)d Y (1.3.7)

[R~’~(T2lS)R~”~(S] T1)]~2,~,= J R°~~(X2T2lYS) R~Jm)(YSIXIT1) dY. (1.3.8)

With this notation, one obtains from (1.3.2) by integrating over X1 using (1.2.3)

= R°~’”~(T2lT’~)p(m)(Ti) , (1.3.9)

and eq. (1.3.6) for stochastically continuous processes takes the form

lim R~’~(T2IT5)= 1. (1.3.10)
T~—*Ti

Eq. (1.3.3) yields after integration over V and using (1.3.4) the balance equation for the conditional
probabilities

R(~m)(T2lT1) = R~’”~~(T2jS,T1) R~~Im)(SIT1) (1.3.11)

valid for any stochastic process.
The most important class of stochastic processes are the Markov processes which satisfy

R(thim)(T21tY), - . - t~’~)= R~~’’~(T2ItY~) (1.3.12)

for any integers n,m  0, where tY~is the time instant of the latest condition, tS°>t~°,~> 1. Loosely
speaking, the Markov principle states that the process has no memory of the past for a known present.
As a consequence, all conditional probabilities R~~Im)can be expressed by repeated application of
(1.3.3) with k = 1 in terms of the two-time conditional probability R”’°(t2]t1)= R(t2]t1)
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- x~”~t~’xt”’mtt” ), . . .) = R(x1’~t°xt2~r~~)R(xt’’tt’’1Jx°’ I I~ - (1.3.13)

where t1°>- ‘ - t°°> t”~°>- ‘ - - Thus, in the Markov case, the operator set R(t~s)contains all the
information necessary to calculate any multivariate distribution ~(~O from the single-event distribution

= p at a fixed time 5: From (1.3.2) follows for in = I by using (1.3.13)

p(~)(xmt)tht). . . x~’~t’’1)= R(x()t( x~21t~) R(x~’’ t~’ ix°’~t°’)p(x’’’>r1’’) . (1.3.1—I)

It is important to note that a given operator set R(tls) generates a whole class C of stochastic processes
from the set of different initial distributions p(t). The term “Markov process” is ofteti used to designate
the whole class.

From the balance equation (1.3.11) we obtain with (1.3.12) for n = k = I the well-known C’hapntan—
Kolmogorov—Smoluchowski equation

R(t
2lt~)= R(t2Is) R(slt), t2  s  t~. (1.3.15)

The R(t2Jt1) act as propagators for the time evolution of the single-event probability p: From (1.3.14)

follows for n = I by integration over y
p(t2)= R(tslti)p(ti) . (l.3.I()

If the conditional probabilities R(t2j11) are invariant against arbitrary time translations r.

R(t2+ r]tt + T) = R(t51t1) = R(t2— 1). (1.3.17)

the Markov process is called time-homogeneous, and the propagators set {R(r)} forms a semigroup. For
such a process, the probability distributions p(t), p

12~(t+ r. t) etc. may still depend on time t.

For a non-Markov process, the conditional probabilities R(t
21t1) in general do not satisfy the

Chapman—Kolmogorov—Smoluchowski equation (1 .3. IS). and the conditional probabilities depend oti
previous history. We have shown [30] that even in this case the time evolution of all multivariate
distributions can be described in terms of n-parameter propagator sets G~”

m(T
2lT)such that

p°°(T2)= G~”~(T2jT~)p
1”~(T

1). (1.3.18)

But these propagators are different from the conditional probabilities, and can therefore not he used to
calculate p

12’°(T
2U TT~).

We illustrate these concepts by three examples. the two-state process, the Gauss process, and the
process with independent increments.

I.3.EI. The two-state process
The joint probability ~(

2) of a two-state process of the Ising variable x(t) = ±I can he written

p121(x
2t2, xitt) = ~[1+ a(t2) x2 + a(t~)x1 + r(t2, t~)x2x1]. (1.3.19)
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It is completely determined by the mean values

(x(t2~))= a(t21) (1.3.20)

and the autocorrelation function

(x(t2) x(t1)) = r(t2, t1) - (1.3.21)

The variance and the two-time auto-covariance of the fluctuations ~(t) = x(t) — a(t) are given by

(~
2(t)) s(t) = 1 — a2(t) (1.3.22)

and

(~(t
2)~(t1)~ s(t2, t1) = r(t2, t~)— a(t2) a(t1) , (1.3.23)

respectively. The conditional probability R(t21t1) has the form*

R(x2t2]x1 t~)= ~{1+ x2[a (t2, t1) + p(t2, t1) x11}, (1.3.24)

where a(t2, t1) and p(t2, t1) obey

]a(t2, t1) ±p(t2, t1)] ~ 1 . (1.3.25)

These quantities determine the propagation of a(t) and r(t2, t1): From (1.3.2) for m = n = 1 one obtains

a(t2) = a(t2, t1)+ p(t2, t1) a(t1) (1.3.26)

r(t2, t1) = p(t2, t1)+ a(t2, t1) a(t1), (1.3.27)

from which it follows that

s(t2, t1) = p(t2, t1) s(ti), t2  t1 . (1.3.28)

For a stochastically continuous process one has

p(t~,t) = 1, a(t’, t) = 0, (1.3.29)

yielding

R(x2t]x1t) = ~(1+ x1x2) ~ (1.3.30)

* R(xtlys) is the kernel of an operator R(tls) which may be expressed in terms of the unit matrix 1 and the Pauli matrices o’~~as

R(tls) = ~{[1+ p(t, s)I 1 + [1—p(t, s)I a-i +a(t, s) (a~—io2)}
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When the process is Markovian. the Chapman—Kolmogorov—Smoluchowski equation (1.3.15) implies
that p(t2. 1) and a(t2, t~)satisfy

p(t2, t~)= p(t2, s) p(s. t~) (1.3.31)

a(t2, t~)= a(t~.s)+ p(t2. s) ~(s,t1) (1.3.32)

for all 1 ~ s ~ 12. For a stochastically continuous two-state Markov process. p(t~.t~)is strictly positive.

p(t2. t1)>0 Vt1 ~ t2<cc . (1.3.33)

This can he seen by the following argument: Since p(t’, t)= 1, p(t, t~)must be positive at least in a
certain interval, Assume that p(t. t) >0 for t1 ~ t < t~and p(t~.t~)= 0. Then it follows from (1.3.31) that
p(t2, s) = 0 for all s satisfying t1 ~ s < i~,which is in contradiction with the requirement p(12, r~)= I.

The process is time-homogeneous if

P(12, tt)p(t~— ti), a(t2, II) a(t:— ti). tc Il. (1.3.34)

For a time-homogeneous process, the Markov conditions (1.3.31, 32) take the form

p(r~+ r2)= p(r1)p(r2) (1.3.35)

a(rt + r2) = a(r1)+ p(r1) a(r2) - (1.3.36)

lf the process is stationary in the strict sense, it has to satisfy iti addition

a(r) (1 —p(r)) a, T () (1.3.37)

with a = const., whence

c~(r)=—,ó(r)a. (1.3.38)

if the process is stochastically differentiable (see secfloti 2.2).

I.3.E2. The n—component Gauss process
A real n-component Gauss process x(t) has the k-time joint probability distributions (k = 1,2, ...)

~(k ~(xt, - . - X~t~)= det(2~S~)]I/2exp{_~ ~ (x1 — a(11)) (S~ )~. (~— a(ti))} (1.3.39)

which are completely determined by the vector of mean values

(x(t~))= a(t~) (1.3.40)

and the (n x n) two-time covariance matrices of the fluctuations ~(t)= x(t)— a(1).
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(~(t1)~(t1)) = s(t1, t1), s(t~,t,) s(t1) (1.3.41)

forming the blocks of the symmetric non-negative definite (kn) x (kn) matrix ~
The conditional probability R(t2]t1)

R(x2t2]xitt) = [det(2lTff(t2,t1))]
112 exp{—~[x

2— (p(t2, t1) x1 + a(t2, t1))] ff
1(t

2, t1) [x2

— (p(t2, t1) x1 + a(t2, t1))]} (1.3.42)

is determined by the matrix o(t2, t1),

o(t2, t1) = Q.t(t2, t1) non-negative definite, (1.3.43)

the matrix p(t2, t1), and the vector a(t2, t1). These quantities determine the propagation of the
covariance matrix St

2~ S(t
2, t1) and the vector of mean values a(t). From (1.3.2) for m = n = 1 one finds

a(t2) = a(t2, t1) + p(t2, z’1) a(t1) (1.3.44)

and an expression for S_t(t2, t1) which can be factorized,

— / 1 0 \ f4f’(t2, t1) —a~
t(t

2,t1) p(t2, t~)\ 4

(t2, t1) — ~t(t t1) s~(ti)) ~ 0 1 ), (1.3. 5)
and is easily inverted to give

s(t2) = ff(t2, t5)+ p(t2, t~) s(t1) pt(t2, t1) , (1.3.46)

s(t2, t5) = p(t2, i’1) s(t1) (1.3.47)

and

det S = det o(t2, t1)det s(t1). (1.3.48)

For a stochastically continuous process one has

p(t
4, t)= 1, ff(t4, t)= 0, a(t~,t)= 0. (1.3.49)

For a Markov process, the relations

p(t
2, t1)= p(t2, s) p(s, t1) (1.3.50)

a(t2, t5) = a(t2, s) + p(t2, s) . o~(s,t~) (1.3.51)

~(t2, t1) = ff(t2, s)+ p(t2, s) ff(s, t1) . pt(t2, s) (1.3.52)

* Note that for fixed times {t1, . . . t5}, (1.3.39) is a (kn)-component Gaussian distribution (1.1.21) with ~(1’)as covariance matrix (see (1.1.23)).
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have to be satisfied for all t~<s ~ t2. These conditions are also sufficient to guarantee that the Gauss
process (1.3.39) is Markovian (Doob’s theorem [2,4(1]).

For a stochastically continuous Gauss—Markov process,

P(t2. t~)non-singular Vt ~ t2 < cc (1.3.53)

which can be seen by the same argument as given for (1.3.33), applied to det p(t2. 1).
The process is time-homogeneous if

P(12, t1) = p(t2— t1) (1.3.54)

a(t2, t1)= a(t2— t1) (1.3.55)

ff(t2, t~)= ~(t2— t) - (1.3.56)

For a time-homogeneous process, the Markov conditions (1.3.50—52) take the forni

p(r + T2) = p(r1) . p(i-~) (1.3.57)

~(r1 + r2) = ~.(r)+ p(r)- ff(T:) (1.3.58)

o(r1 + r2) = o(r1 ) + p(Tt) . ~y(r2) . p
t(r) (1.3.59)

If the process is stationary in the strict sense, it has to satisfy in addition

= (1— p(r)) a (1.3.60)

and (see (1,3,46))

(1.3.61)

with a = const,, s = const., whence

a(r) —p(r). a (1.3.62)

&(r)= —~(r)s. pt(T)—p(r)’s~5(r) (1.3.63)

if the process is stochastically differentiable (see section 2.2).
An important and simple case of a time-homogeneous but nonstationary Gauss—Markov process is

the one-component Wiener process with

p(r)= I, ct(r)=0. u(r)’= r, (1.3.64)

i.e.

R(xr~y0)= ±.._.~exp[_~— ~ ]. (1.3.65)
V2~r 2r
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The time evolution of the mean value a(t) and the variance s(t) are found from (1.3.44, 46),

a(t) = a(0), s(t) = t + s(0). (1.3.66)

1.3.E3. Process with independent increments
We consider a process defined by a conditional probability

R(x2t2Ixtt~)=R(x2—x1 t2, t~) (1.3.67)

depending only on the increment r = — Xt, i.e. the probability for an increment r to occur during

— t1 is independent of the starting point x1. Thus, the two-time joint probability ~(
2) has the structure

pt2~(x
2t2,x~t1)= R(x2 — x1 t2, t~)p°~(x1t1). (1.3.68)

The object is to derive propagation equations for the mean value a(t) = (x(t)) and the equal-time
covariance matrix s(t) = ~(t) ~(t)) of the fluctuations 4~(t)= x(t) — a(t). One obtains from (1.3.68)

a(t2) = a(t2, i’1) + a(t1) (1.3.69)

s(t2) = o(t2, t1) + s(t~) (1.3.70)

where

a(t2, t1) = J rR(r; t2, t~)dr (x(t2)]0t1) (1.3.71)

and

cr(t2, t1) = J rr R(r; t2, t~)dr — a(t2, t1) a(t2, t1) ~(t2) ~(t2)]0t1) (1.3.72)

are the conditional mean increment and the conditional covariance matrix, respectively. The two-time
autocovariance matrix satisfies

s(t2, t1) (~(t2)~(t~)) = s(t1) , (1.3.73)

which is an immediate consequence of the independence of the increment ~2 — ~ of the starting point
S~:1.

In general, the probability (1.3.67) for an increment r to occur during t2 — t1, although independent of
the starting point at t1, may still depend on the previous history. If it is independent of previous history,
i.e. if the process is Markovian, a(t2, t1) and o(t2, t1) satisfy

a(t2, t1) = a(t2, s) + a(s, t1) (1.3.74)

and
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if(t2, t1) = ff(12, s) + ~(s, t1 ) (1.3.75)

for all t~s~t2.
The process is time-homogeneous if a and a depend only on t2 — 1 = T. For a time-homogeneous

process. the Markov conditions (1.3.76. 77) take the form

a(r1 + r~)= a(r)+ a(~2) (1.3.76)

(1.3.77)

whence

a(T)=aT. if(T)&T (1.3.78)

with a = const., a = const., if the process is stochastically differentiable (see section 2.2).
A Gauss process with p(12. t1) = 1 is a process with independent increments, and can he checked

easily to satisfy the above relations.

2. Time evolution of stochastic processes

2. I. Microscopic origin of stochastic time et’olutioii

The microscopic dynamics of the system is goveriied by the classical or quantum-mechanical
Liouville—von Neumann equatioti of motioti for the microscopic phase-space distrihutioti or the
microscopic statistical operator, respectively, for the total system (reservoirs included). Time-evolution
equations for the statistical multivariate distributions p(~~)in the space .~ of coarse-grained macrovari-
ables x of the system can be constructed by eliminating the microscopic degrees of freedom of the
system and the reservoirs with the help of projection-operator methods. This has been carried out for
the single-event distribution ~ [13, 18, 31,32] resulting in the Nakajima—Zwanzig master equation

~(t)= JA(tls)p(s)ds+I(t). (2.1.1)
fI)

Here, the “retarded kernel” .1(t~.c)is an operator acting on space lI~(~),which describes the memory
effect of the distribution at time s on the rate of change at the later time t. caused by the elimination of
the microscopic degrees of freedom. In general, A(t]s) may contain an instantaneous contribution
1(t) 6(t — s — 0k). The inhomogeneous term 1(t) contains the effects of the preparation procedure and
depends explicitly on the initial microdistribution at time t0 of preparation. If the physical preparation
procedure ir, i.e. the initial distribution over the microstates belonging to a given macrostate, is
explicitly taken into account in the definition of the projection operator, one can construct an exact
master equation without the inhomogeneous term 1(t), with a uniquely defined preparation-dependent
kernel A,~(t]s)[33, 34].

Similar memory effects are present in the time-evolution equations for higher multivariate dis-
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tributions p~(t(t),. .. tt’°).Moreover, it is found that the memory kernels for n> 1 depend in general
on the whole process a- under consideration, i.e. not only on the initial distribution over the microstates
belonging to a given macrostate but also on the initial macrodistribution p(to) [33,34]. It is this fact (and
not the retardation in the master equation (2.1.1) for the single-event distribution*) which clearly
demonstrates the non-Markovian character of the macroprocess.

Evolution equations for conditional and joint probabilities are important not only for the calculation
of time-correlation functions, but also as a starting point for a rigorous discussion of the Markovian
limit. In order to obtain a Markov process, the operator determining the time evolution must become
independent of the initial macrodistribution. This is expected to occur on a macroscopic time scale if the
actual “non-Markovian” memory decays on a microscopic time scale ~mIcro much shorter than the times
characteristic for the macroscopic motion in state space .~‘, i.e. if the variables of the system separate
into two classes: One class consisting of all the approximately conserved quantities of the system, which
change on a time scale much longer than the relaxation times of the remaining variables forming the
second class. For the validity of the Markov approximation it is essential that all the variables of the first
class are contained in the set x of macrovariables,

Such a “coarse-graining in time” over Tm”~0 leading to a Markov description simplifies the stochastic
calculus enormously, because the Greens function G(t~s),t  s of a Markovian single-event master
equation coincides with the conditional probability R(tls) of the process, and thus according to (1.3.14)
all multivariate distributions p~’°(t”~,.. - t~’°)are completely determined by the single-event master
equation and the initial macrodistribution p(to) alone. In the general non-Markov case, on the other
hand, a separate evolution equation is required for each of the multivariate distributions [34].

In this review, we restrict the general presentation to the Markov case. A brief outlook on the
non-Markov case is given in section 2.6.

2.2. Time evolution of Markov processes

In this subsection we study the differential equations governing the time evolution of a Markov
process. According to the Chapman—Kolmogorov—Smoluchowski equation (1.3.15) the R(t~s)form a
propagator set. This set can be generated from the infinitesimal propagator

R(t+dt~t)=)+T(t)dt, dt>-0 (2.2.1)

where the generator F(s) of the set is defined by

F(s) = R(t~s)~~ = - ~- R(t~s)~
5c. (2.2.2)

A process for which the derivatives of R(tjs) exist will be called stochastically differentiable.
From the propagator property

R(t + dtls) = R(t + dtjt) R(tjs), dt >0, (2.2.3)

we find the forward equation [38—411
* The retarded single-event master equation (2.1.1) may under fairly general conditions (nonsingularity of the Greens function) be formally

recast into a time-convolutionless (but not memoryless!) form [33—37].
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R(t~s)= 1(t) R(t~s), t > s, (2.2.4)

which involves differentiation with respect to the later time t. In a similar way we get from

R(t~s)= R(ds + ds) R(s + dsls), ds >0, (2.2.5)

the equation

R(t~s)= —R(tls) F(s), t > s. (2.2.6)

involving differentiation with respect to the former time s. In terms of the transposed* operator Rt, this
becomes the backward equation [38—411

Rt(t~s)= —Tt(s) R~(t~s). 1 >s. (2.2.7)

Eqs. (2.2.4) and (2.2.6) show that the generator 1(t) determines the time evolution of a Markov process
in the same sense as the Hamiltonian determines the time evolution of a Hamiltonian system. It will be
called the master operator** of the process.

The formal solution of the forward equation can be written

R(tJt
1)= ~exp J I’(s)ds. (2.2.8)

where ~Yis the usual time-ordering operator. From this form, the propagator property (1.3.15) can
immediately be read off.

For a time-homogeneous process, the master operator

F = ~- R(i’)~tc (2.2.9)

is independent of time, and the forward equation takes the form

FR(r). (2.2.10)

which has the solution

R(r) = exp(T~). (2.2.11)
* The kernels of R and R~are related by R(xt~y.c)= Rlyt~xs).
** In this review, we use the term “master operator to denote the generator of time evolution of any Markov process. Thus, the Fokker—Planck

operator is a special case of a master operator and the Fokker—Planck equation a special case of a master equation.
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The forward and backward equations have also the significance of equations of motion of the
single-event probability p(t) and of conditional expectations, respectively. By applying both sides of eq.
(2.2.4) to p(s) one obtains

dp(t)Idt = F(t)p(t), (2.2.12)

showing that p(t) is a solution of the forward equation. This equation for p(t) will be referred to as
master equation. The conditional expectation (f(t)~ys)of a bounded state function f(xt) is defined as the
mean taken over the subset of sample functions passing through state y at the former time s,

(f(t)~ys)=Jf(xt)R(xtIys)dx~ t>s. (2.2.13)

It can be considered as a state function of the condition y, and therefore as an element (f(t)Is) of
function space H(.~).Therefore, using the convention introduced in (1.1.7), eq. (2.2.13) can be written

(f(t)Is) = f(t) R(tls) = Rt(tls)f(t) (2.2.14)

whence

(f(t)~s)= _Ft(s) 4~,f(t)Js). (2.2.15a)

For a time-homogeneous process and f not explicitly time-dependent, this takes the form

~- (f(r)~0)= Ft(f(T)I0). (2.2. 15b)

Thus, conditional averages are solutions of the backward equation with respect to their dependence on
the time s of the condition. With respect to the time t of observation, on the other hand, they satisfy the
same equation as any average (f(t)),

= (Ft(t)f(t)+~f(t)), (2.2.16)

which will be of importance in the theory of stochastic differential equations (section 2.4).

2.2.E1. Time evolution of the two-state Markov process
For a stochastically differentiable two-state process, one obtains from (1.3.24) and (2.2.2) the

master-operator kernel

F(x, y; t) = ~x[áo(t)+
1i0(t) y], (2.2.17)

where
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~o(t) = p(s, t)~51+. ~0(t) = a(s, t)I5=,~. (2.2.18)

F(x, v: t) is the kernel of an operator which may be expressed in terms of the unit matrix and the Pauli
matrices O’~25as (compare footnote on p. 221)

1(t) = ~[~io(t) (‘i — u~)+ áo(t) (a3 — io2)] - (2.2.19)

From (1.3.25) it follows that

po(t) ~ 0, ao(t)J ~ Jpo(t)I . (2.2.20)

The quantities ~ and i~are related to the transition rates w(l —~2)=w21 and w(2—~*1)= W12 (see
section 2.3) by

= — W~— w12, ~ = — w21 + w12 . (2.2.21)

For the time evolution of the mean value a(t), one obtains from (1.3.26) the differential equation

da(t)/dt = á15(t)+ ~i~(t)a(t) . (2.2.22)

For a Markov process, po(t) and ao(t) determine the time evolution of the quantities p(t, t1) and a(t, ti).

From the Markov conditions (1.3.31, 32) one obtains the differential equations

t1) = ~~(t) p(t, t~) (2.2.23)

a(t, t1) = ~0(t) + po(t) a(t, t~) (2.2.24)

which have the solutions

p(t, t1) = exp[J ~o(5) ds] (2.2.25)

a(t, t1) = J p(t, s) áo(s) ds. (2.2.26)

For a stationary process, it follows from (2.2.22) that 1i0 = const. and ci~= const. are related by

~()+ poa = 0. (2.2.27)

The solutions of the differential Markov conditions (2.2.23, 24) take the form

p(r) = exp(,poi-) (2.2.28)
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and, using (2.2.27),

a(T) = [1— exp(,por)]a (2.2.29)

in agreement with (1.3.37).

2.2.E2. Time evolution of the Gauss—Markov process
The conditional probability R(xtjyt1) in (1.3.42) depends on t only via the quantities p(t, t1), a(t, z’~)

and o~t,ti). Since

9R 3R 3R 19R 3R 18
2R-~---=—-~—y; -~—-—-‘~---; -~—=~-~—~---, (2.2.30)

one obtains from (2.2.2) by observing (1.3.6) the master-operator kernel

F(x, y; t) = —[p
0(t) y + ão(t)I ~- ~(x— y) + ~ào(t): ~-~~-~-- 6(x — y), (2.2.31)

where

= ~- p(s, t)j~~*, áo(t) = ~— a(s, t)151+ , o0 ~- r(s, t)I51~- (2.2.32)

From (1.3.43) and (1.3.49) it follows that

uo(t) = &~(t)non-negative definite. (2.2.33)

The kernel (2.2.31) is equivalent to the Fokker—Planck-operator

1(t) = — v(xt)+ ~-~-~--: D(t) (2.2.34)

F
t(t) = v(xt) + D(t): ~ (2.2.35)

with linear drift vector

v(xt) = po(t). ~ + á
0(t) (2.2.36)

and state-independent diffusion tensor

D(t) = ~à0(t). (2.2.37)

For the time evolution of the vector of mean values a(t) and the equal-time covariance matrix s(t), one
obtains from (1.3.44, 46) the differential equations
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a(t) = á0(t) + p51(t)- a(t) (2.2.38)

s(t) a0(t)+ ~~(t) s(t) + s(t) . ~(t) (2.2.39)

For a Markov process, p~~(t),a11(t) and o~1(t) determine the time evolution of the quantities p(t. i’).
a(t, t~)and a(t, ti). From the Markov conditions (1.3.50—52), one obtains the differential equations

t~)= ~1(t) - p(t. t) (2.2.40)

t~)= a0(t)+ ~)(t) a(t, 6) (2.2.41)

~(t, 6) = ào(t) + p0(t) a(t, t) + ff(t. 1)- po(t) (2.2.42)

which have the solutions

p(t, t~)=~exp[J ~o(s)ds] (2.2.43)

a(t, t1) = J p(t, s)~tho(s) ds (2.2.44)

ff(t, t1) = f p(t, s) - ào(s) - p
t(t, s)ds, (2.2.45)

where ~ is the time-ordering operator.
For a time-homogeneous process, Po = const,, a

0 = const,, fJ() = const,, the solution (2.2.43) takes the
form

p(T) = exp(p0r), (2.2.46)

It should be noted that so far no condition has been introduced for the quantity p~.One may have, in
particular, time-homogeneous (but nonstationary) Gauss—Markov processes for which the eigenvalues
of p~have positive real parts. Such processes have an application for the description of the onset of
decay of an unstable state [42].

If the process is stationary, then it follows from (2.2.38, 39) that ~o, a~and a0 are related by

(2.2.47)
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and

a0+p0-s+s-p~=0. (2.2.48)

Since by (1,1.23) and (2.2.33) both s and a0 are non-negative definite, the latter relation represents a
strong condition for Po. If both quantities are positive definite, one can show by a slight generalization
of a theorem given in [43]that po is a stability matrix, i.e.

all eigenvalues of Po have negative real part. (2.2.49)

Thus, any stationary Gauss—Markov process with s and a0 positive definite is asymptotically stable (see
section 3.4). For a stationary process, the solutions of the differential Markov conditions (2.2.41,42) can
with the help of (2.2.47, 48) be written in the form

a(r) = [1— exp(~or)] a (2.2.50)

7(T) = s — exp(~or) s• exp(~T). (2.2.5 1)

For the case of the Wiener process (1.3.64, 65), one has

= = 0, o~= 2D = 1, (2.2.52)

which yields the master operator

F = ~a
2/ax2. (2.2.53)

The time derivative ~(t) = ~(t) of the Wiener process is the stationary Gaussian s-correlated process
(“white noise”) with

= 0 (2.2.54a)

(~(t)i(s)) 6(t — s). (2.2.54b)

2.3. Properties of the master operator. Kramers—Moyal expansion

Properties of the propagator set R(tjs) and of the master operator 1(t) depend on the nature of the
sample functions of the process. Three distinct cases are of importance: Purely deterministic drift
represented by a first-order differential operator 1(t) (e.g. Liouville operator), diffusion processes with
sample functions which are almost everywhere continuous but almost nowhere differentiable, represen-
ted by a second-order differential operator 1(t) (Fokker—Planck operator), and jump processes with
piecewise constant sample functions, represented by an integral operator 1(t) with kernel F(x, y; t). (All
processes considered are assumed to be stochastically continuous and stochastically differentiable in the
sense of eqs. (1.3.10) and (2.2.2).) More general processes may be obtained as superpositions of these
pure cases.
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We start with a brief discussion of jump processes. From the significance of the conditional
probability it is seen that F(x. y~t)dx represents for x y the jump rate for jumps y —~ (x, x + dv).
whereas for x = y the kernel [‘(x,y; t) contains a negative 6-function contribution representing the loss
of weight of state y due to all jumps starting at y. Hence the kernel F(x. y~1) can be written (see fig. 2):

F(x,y; t)= W(x,y; t)— -y(,yt)6(x—y) (2.3.la)

= y(yt)[p(x-y,y~ 1)- 6(x—y)], (2.3.lb)

where
W(x,y; t) () (2.3.2)

is the jump rate for jumps y—* (x, x + dx),

y(yt)=J W(x,y;l)dx (2.3.3)

is the total jump rate for jumps starting at y, and

p(r, y; t) = W~+ r, y; t) (2.3.4)

is the probability distribution for the jump width r for jumps starting at y.
It is easily seen that F(x, y: t) satisfies the condition for conservation of the normalization of the

probability

f I’(x,y;t)dx=O. (2.3.5)

By using eqs. (2.2.12), (2.3.la) and (2.3.3), we obtain the master equation in the usual form

dp(xt) = J [W(x, y~1) pot) — W~,x: 1) p(xt)] d. (2.3.6)

It may he expected that one can pass from a jump process to a process with continuous sample
functions in the limit of jump width—sO, jump rate—scc. We study this limit by a simple scaling
procedure. We regard the transition rate W(x, y: y) as a function P(r, y~t) of jump width r = x — y and
starting point y, and consider a two-parameter family of jump processes. each with the same functional
form of P, but differing in average jump rate t’ and average jump width 1. Taking the normalization
required by eq. (2.3.3) into account, we have

P(r, y; t) = ~ r, y; t)~ (2.3.7)

r(x,yti

1(yt>6(x-y)

Fig. 2. Structure of the kernel 1’(x. v: t) = W(x. y: t) — y(v; t) 8(x -- y) of the master operator.
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where the function P is independent of v and 1. With u = rh as integration variable, the master
equation (2.3.6) takes the form

3p(xt) = ~J [P(u,x - Ia; t) p(x - lu, t) — P(u, x; t) p(xt)] du. (2.3.8)

Taylor expansion with respect to the average jump width I up to second order yields the Fokker—Planck
equation

8p(xt) = — - [v(xt) p(xt)] +~-~—: [D(xt)p(xt)1 (2.3.9)

with a drift vector

v(xt)= ~ifuP(u, x; t)du = Jr W(x + r, x; t)dr ~lü (2.3.10)

and a non-negative definite diffusion tensor

D(xt)= ~~l2f uuP(u, x; t)du = ~Jrr W(x+ r, x; t)dr as~pl2uu. (2.3.11)

Thus, jumps with fl 0 of rate v 1/1 give rise to drift, and jumps with ü = 0 but uu ~ 0 of rate t’ 1/12
give rise to diffusion. In order to obtain the Fokker—Planck equation (2.3.9) with both drift and
diffusion, both types of jump processes have to be present.

This scaling procedure gives of course no information on the convergence properties of the Taylor
expansion. It is important to note, however, that there exists no scaling yielding a truncation of the
Taylor expansion at a finite n > 2: A scaling v 11 leads for asymmetric jumps to a divergence
v ~ l”’~ of the drift velocity, and for symmetric jumps to a divergence D ~ l~+2 of the diffusion
coefficient.

On the other hand, the formal Taylor expansion yields a representation of the integral operator 1(t)
as an infinite-order differential operator. Writing the kernel of 1(t) as

F(x, y; t) = J F(z, y; t) 6(z — x) dz (2.3.12)

and formally expanding the 6-function at z = y in powers of z — y yields the representation

alnlF(x,y; t)= ~—~A~(yt)®(~--) 6(,y—x). (2.3.13)

Here, V1”1 denotes the n-fold dyadic product of the vector v, A~is the n x n matrix

A~(yt)= J (z — y)~F(z, y; t) dz (2.3.14)

assumed to exist for all n = 1, 2,. . ., and the notation L®M stands for the n-fold contraction of two



236                                                                                 

n >< n matrices L and M (note that A0 = 0 on account of (L~ With (2,3.13) one obtains for the
master equation by partial integration the Kramers—Moyal expansion [42, ~14]

ap(xt) ~t ~n~?”(~-)~®[A~(xt~(xt)1. (2.3.15)

An alternative representation is obtained from

F(x,y; t)= f F(x, z; t) 6(z —y)dz (2.3.16)

yielding

F(x,y; t)= ~—~-~an(xt)O(~-) 6(x-y) (2.3.17)

with

a~(xt) f (z —x)~1(x, z; t)dz (2.3.18)

which is assumed to exist for all n = 0, 1,2 This gives rise to the expansion

ôp(xt) ~—~-~an(xt)O(~--)p(xt) (2.3.19)

which in contrast to the Kramers—Moyal expansion starts with n = 0. The sets of expansion coefficients
A~(xt)and a~(xt)are related by

A~(xt)= ~‘ ~‘~‘ (‘~-)‘
11®a~÷t(xt) (2.3.20)

a~(xt)= ~ (~-)t1OA~±~(xt). (2.3.21)

The alternative expansion (2.3.19) should not be confused with the backward equation of the Kramers—
Moyal expansion (2.3.15). The backward equation can be written in the alternative forms

af(xt) = -~-~A~(xt)O(i-) f(xt) (2.3.22)

= ~o ~ (Q~®[an(xt)f(xt)] (2.3.23)
It is important to note that truncation of the series (2.3.15) at any order higher than the

second will lead to inconsistencies, as was already concluded from the above scaling argument. This is a
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consequence of the truncation lemma of Pawula [45—471:If it is assumed that A~(or a~,respectivly)
vanishes identically for some n0  3, then it follows that the A~(or a~)have to vanish identically for all
n  3. The only consistent finite-order differential master equation is thus the Fokker—Planck equation
with

v(xt) = A1(xt), D(xt) = ~A2(xt). (2.3.24)

The problem of the convergence of a sequence of processes x~(t)with decreasing fluctuation strength
~, and the extent to which such processes may be approximated by diffusion processes when e is
sufficiently small attracts presently a great deal of interest [48—541.This problem is quite subtle, and a
definite solution is not yet available.

2.3.E1. Time evolution of the process with independent increments
We consider as an example the time-homogeneous Markov process with independent increments

introduced in section 1.3.E3. From (1.3.67) and (2.2.2) it is seen that the kernel F(x, y; t) of the master
operator becomes a function of the jump width r = x — y only.

According to (2.3.lb) it can be written

1(r) = y[p(r) — 6(r)], (2.3.25)

where y is the jump frequency and p(r) is the probability distribution for the jump width r. The
forward equation (2.2.4)

t)= p(x—y)R(y, t) dy—R(x, t)] (2.3.26)

can be solved in closed form by Fourier transformation. In terms of the Fourier transforms R(q, t) and
p(q) of R(x, t) and p(r), respectively, the forward equation is

a-~R(q,t) = y[p(q)— 1] R(q, t) (2.3.27)

which has the solution (note R(q, 0) = 1)

R(q, t) = exp{y[p(q)— 1]t}. (2.3.28)

Taylor expansion in terms of p(q) and retransformation yields the expression

R(x, t) = ~ P(k, t) J- - - J 6(x — ± ri)p(ri) - - - p(rk)dkr (2.3.29)

= ~P(k, t) (6(x_~ rt))

which has the obvious interpretation of the probability distribution for distance x to be reached in k
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jumps with widths r1, . . . r~.folded with the Poissonian probability

P(k, t) = (~~)k exp(—yt)/k! (2.3.30)

for k jumps to occur during time t.
With the help of (2.3.29) it is straightforward to calculate conditional moments ((x(t))

1’110) which are
equal to the moments ((~Xx(t))1”1)of the increments ~x(r) = x(t + s) — x(s). Time correlations can be
calculated recursively by making use of the independence of the increments. For an ordered set ~ 1.

c} {t2, t~,S} of time instants one has for any function g(S)

K(x(t
2) - x(t~))ln ‘g( YS)) = f(x(t2 — O)(g( YS)). (2.3.31)

For a one-dimensional process starting at t = (I with x = 0 one finds the moments

(x(t)) = yt(r)9 (2.3.32a)

(x
2(t)) = ytfr2)

9 + (yt)
2 (r)~ (2.3.32b)

(x3(t)) = ytfr3)~+ 3(yt)2 (r2)~(r)~+ (yt)3 fr)~ (2.3.32c)

fx4(t)) = yt(r4)
9 + (yt)

2 [4(r3)~fr)
9 + 3(r

2)~)+ 6(yt)3 (r2)~fr)~+ fyt)4 (r)~. (2 .3.32d)

Thus, for asymmetric jumps with fr)
9 0,

(x(t)) = yt(r)9 (2.3.33)

(x
2(t)) — (x(t))2 = yt(r2)

9 (2.3.34)

one finds in the drift limit

y —~ ~. (r)~— 0. fr
2)

1, —sO, yfr)1, -s v, y(r
2),, —sO (2.3.35)

a constant drift with vanishing variance, i.e.

x(t) = Vt with probability 1 . (2.3.36)

For jumps with fr)
9 = 0, one finds in the diffusion limit

y —s ~, fr
2)~—sO, fr4)

9 -*0, yfr
2)m, -* 2D. yfr4),, -sO (2.3.37)

for D = ~the Wiener process (see (1.3.64, 65) and (2.2.52, 53)) with

fx(t) x(s)) = min(s, t) (2.3.38)

fx4(t)) = 3t2. (2.3.39)

Thus, x2(t) has nonvanishing variance. However, it is interesting to study also the integral f (dx(t))2
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defined as the limit of the sum of the squares of the increments i~x~= x(t1) — x(t, — 1) for a partition {t0,

= t} of the interval (t0, t). One finds(~(~Xt)~)= y(r
2)

9 (t— t0) (2.3.40)

([~(~Xx~)~])— (~(L~xj)2) = yf r
4)

9 (t — t0) + 2y
2fr2)~~ (t~— t~

1)
2. (2.3.41)

By passing to the Riemann limit N—s cc, max(t, — t,~)—sO,the last term vanishes —1/N. Thus, in the
diffusion limit (2.3.37), the variance vanishes, and one obtains for the Wiener process

J [dx(t)~2= t — t
0 with probability 1. (2.3.42)

It should be noted that the integration over a nonzero interval is essential: f~[dx(t)]~ cannot be
approximated by [x(t + st)— x(t)]

2 but must be considered as the limit of ~ [x(t~)— x(t
1t)]

2 where the t,
form a partition of the interval ~t. In fact, [x(t + ~t) — x(t)12 has nonvanishing variance 2(~t)2.It is the
destructive interference of the statistically independent fluctuations of the terms in the sum which
causes the fluctuations of the sum to vanish in the limit.

2.4. The Fokker—Planck process; stochastic differential equations

Stochastic differential equations have attracted principal interest in the context of phenomenological
modelling of stochastic processes. On the deterministic level, the time evolution of the system is usually
assumed to be determined by an equation of motion of the form

ã(t) = u(a(t), t) (2.4.1)

giving the rate of change of state a(t) as a generally nonlinear vectorial state function u(t) (deterministic
drift) at the same time, independent of previous history. Fluctuations will change the deterministic
process a(t) into a stochastic process x(t). They are taken into account by coupling (generally
state-dependent) stochastic forces X(x(t), t) into the equation of motion, giving rise to the Langevin
equation

x(t) = v(x(t), t)+ X(x(t), t), (2.4.2)

which has to be supplemented by specifying the stochastic process X(x, t).
The microscopic basis for this ansatz is related to the notion discussed in section 2.1: It is assumed

that the variables of the system separate into two classes: One class of slowly varying macroscopic
variables x(t) the motion of which is determined by the drift vector v(xt), and the rest of microscopic
variables varying on a much shorter time scale and giving rise to random perturbations X(x, t) of the
macroscopic motion [3, 13, 551. — Such stochastic differential equations are studied extensively in the
mathematical literature [56—66].
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It is important to note that the drift u(at) describing the motion of the average a(t) = fx(t)) in a
deterministic equation of the form (2.4.1) is in general not identical with the drift v(xt) in (2.4.2) but
contains nonlinear effects of the fluctuations. This is one of the problems of any phenomenological
modelling: The deterministic equation does not even determine the drift term uniquely.

In the following, we confine ourselves to processes x(t) which can be approximated by Markov
processes with continuous sample functions (Fokker—Planck processes). According to the discussion in
the previous subsection, such a process may — apart from a drift — be considered as the limit of a
symmetric jump process with jump frequency ~,‘ —*~ and jump width I—sO such that p!2 = const.
Therefore, the noise contribution X(xt) to the time derivative x(t) consists of impulses with X =

represented by 6-functions of weight x ± I occurring with frequency p x 1/12 (we assume that
asymmetric jumps with i’~ 1/I are absorbed into the drift vector v(xt)). Sample functions of such a
process do clearly not exist in the normal sense in the limit i.’—s~, I-sO. r’12=const. [56—63].It is
therefore more appropriate to write the stochastic differential equation in the form of a difference
equation

dx(t) = v(x(t), t) dt + dZ(x(t), t) (2.4.3)

where integration over a physically small but mathematically nonzero time increment dt is implied.
In order for the process x(t) to be a continuous Markov process, the diffusion-induced increment

dZ(xt) may be represented in terms of the increment dw(t) of an rn-component vectorial Wiener
process satisfying (see (2.3.38, 42))

fw(s) w(t)) = 1 min(s, t) (2.4.4)
dw(t) dw(t) = 1 dt with probability 1 (2.4.5)

in the form

dZ(x(t), t) = b(x(t), t) . dw(t). (2.4.6)

Here, we have introduced an tn-dimensional linear state space 11 with states w E .11, and b(xt) which is
assumed smooth in both arguments represents a mapping of 11 to the vectors of .~ in x. The dimension
m of 12 may be smaller than, equal to, or even larger than the dimension of  [56—58, 64a,b]. For a
mapping b(xt) which depends on the state x it has become common to refer to dZ(x(t), t) =

b(x(t), t) dw(t) as “multiplicative’ noise in contradistinction to state-independent “additive” noise
dZ(t) = b(t) - dw(t).

In the case of multiplicative noise, the Stieltjes integral b(x(t), t) dw(t) in (2.4.6) is not uniquely
defined, because the sample functions of the Wiener process w(t) and therefore also of the process 1(t)
under consideration are not of bounded variation. Stochastic integrals of the form f Y(t) dy(t) where
both Y(t) and y(t) are processes of unbounded variation have to be defined by specifying the exact
form of the terms in the Riemann approximations to the integral [56—63).The two most important
forms are the following:

Ito:

J Y(t)•dy(t) = lim ~ Y(t
11) (y(t1)— y(t~ ‘)) (2.4.7)
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Stratonovich:

J Y(t)Ody(t) = lim ~Y(t1) + Y(t~1))(y(t~)- y(t~1)) (2.4.8)

distinguished by the multiplication symbol • and 0, respectively. Whereas the Ito form is mathematic-
ally more convenient because Y(t) is statistically independent of the increment of y(t), the Stratonovich
form follows more familiar rules of calculation and shows simpler transformation behaviour. The two
forms are related by

J Y(t) Ody(t) = J Y(t)•dy(t) + ~J dY(t) dy(t) (2.4.9)

where the last term may be interpreted in either sense.
By observing that with probability 1

dx(t) dw(t) = b(x(t), t) dt (2.4.10)
dx(t)dx(t) = b(x(t), t) bt(x(t), t) dt

one obtains from (2.4.9) with Y(t) = b(x(t), t) and y(t) = w(t) for the stochastic forces (2.4.6)

b(x(t), t)Odw(t) = b(x(t), t)•dw(t) + v
t(x(t), t) dt (2.4.11)

where vt(xt) is a fluctuation-induced drift term (“spurious drift”) defined by

= ~ b~(abJax
3). (2.4.12)

We thus have the two forms of stochastic differential equation:

Ito:

dx(t) = v(x(t), t) dt + b(x(t), t)•dw(t) , (2.4.13)

Stratonovich:

dx(t) = u(x(t), t) dt + b(x(t), t)Odw(t), (2.4.14)

where the Ito drift v(xt) differs from the Stratonovich drift u(xt) by the fluctuation-induced drift
(2.4.12),

v(xt)= u(xt)+v
t(xt). (2.4.15)

It is important to note, that only if (2.4.6) is interpreted in the Ito sense, show the fluctuating forces
X(t) = dZ(x(t), t)/dt the properties of white (i.e. 6-correlated) noise [661characterized by the con-
ditional averages

fX(t)Ix(t) = x~)= 0 (2.4.16)
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fX’(t) X’(s)Ix(t) = x1) = b(x1, t) - b
t(x

1. t) 6(t — s) . (2.4.17)

Further,the forces X(t) are Gaussian only for additive noise. On the other hand, a procedure by which
the diffusion process is generated as the limit of a sequence of processes with noise consisting of
continuous sample functions of bounded variation leads directly to the Stratonovich form (2.4.14) of the
stochastic differential equation [65).

The connection between the stochastic differential equation and the Fokker—Planck equation is
established most directly by calculating the rate of change of the average (f(t)) of an arbitrary state
function f(x(t)) and comparing the result with (2.2.16). Making use of the statistical independence of the
increments in the Ito form (2.4.13), one obtains by observing (2.4.10)

1
t(t) = v(x(t), t) - + ~[b(x(t),t) bt(x(t). t)]: ~-~j-- (2.4.18a)

which is the transpose of the Fokker—Planck operator

1(t) = - ~. v(x(t), t) + ~ axaax: [b(x(t), 1) b’(x(t), t)). (2.4. 18b)

The stochastic differential equation (2.4.13, 14) is thus equivalent to a Fokker—Planck equation (2.3.9)
with a drift vector given by the Ito drift, and a non-negative definite diffusion given by

D(x(t), t) = ~b(x(t), t) - bt(x(t), t) . (2.4.19)

We observe that the fluctuation matrix b(xt) and therefore also the fluctuation-induced drift vt(xt) are
not uniquely determined by the diffusion tensor D(xt). Thus, a whole set of stochastic differential
equations is equivalent to a single Fokker—Planck equation. A detailed discussion of the relationship
between fluctuation-induced drift and diffusion tensor is given in [64a,b].

Historically, diffusion processes were introduced by requiring the conditional probability to satisfy
the following set of conditions for all 6>0 [40,41]:

J R(x + ~, t + T~Xt)d~= 0(T) (2.4.20)

J ~R(x+ ~, t+ r~xt)d~= Tv(xt)+ 0(T) (2.4.21)
I~I~s

~J ~R(x + ~, t + rlxt) d~= rD(xt) + 0(T). (2.4.22)
I~i~

Condition (2.4.20) guarantees the continuity of the sample functions whereas (2.4.2 1) and (2.4.22) which
are reminiscent of (2.3.10) and (2.3.11) define the drift vector and the diffusion tensor. It should be
noted that the existence of the first and second moments is not explicitly required.

We close this subsection with a brief outline of the transformation behaviour of stochastic differential
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equations under general nonlinear coordinate transformations ~ = J~(x)in state space I, which will in
general not be aEuclidean space butmay be any curvedmanifold.We assume that in a given appropriately
chosen set of coordinates the system is described by the stochastic differential equation (2.4.13, 14). For the
transformation of the increment dx~(t)one finds by using (2.4.9, 10)

dit(t) = ~j •dx’(t) + dx 3xk dx’(t) dxk (t) (2.4.23)

= ~-j0dx’(t).

(Here and in the following, summation over repeated indices is implied.) Application of ai~/3x’0to
both sides of the Stratonovich equation (2.4.14) shows that this equation written out in components is
already in covariant form, and that u’ and b~.transform contravariant (the latter with respect to index i;
index a is irrelevant because the noise space I? is left unchanged):

uL =I;.u’, h~~ b~, i.e. 15” =~f.~f_
1Dkt. (2.4.24)

The Ito drift v’, on the other hand, transforms inhomogeneously,

= v’ + axj&k b~.b~= ~ V + ax’ 3xk D”. (2.4.25)

The transposed Fokker—Planck operator F~(t)given by (2.4.18a) may be expressed in invariant form
[63b] as

2426
‘‘ ax’ 2 adXz ~dx~’

as is to be required of the generator of time evolution of scalar quantities (f(t)).
If the state space is a Riemannian manifold with positive definite metric tensor g~,the transposed

Fokker—Planck operator may be written in terms of the invariant Laplace—Beltrami operator,

I’~(t)=~ (2.4.27)
dx’ Vg dx’ dx’

where g = det g11, D~= ~ and
w’ = ~ Ut ~ b~_A_~1). (24.28)

Vg ax’ 2 dx’ \/j ax’

If the diffusion tensor is nonsingular, its inverse may be used as metric tensor, in which case

g = (det D
11)1. (2.4.29)
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From (2.4.27, 28) it is seen that the Fokker—Planck operator is determined by the diffusion matrix

D” = ~b”~b’”alone, if

b~-~+b~~ =0 Vi. (2.4.30)
\dx’ Vg dx’ /

An alternative kind of covariant formulation is discussed in refs. [67, l32a].

2.5. Stochastic fields

The state of an extended system is described by an n-component field ~~(t) with values /(rt). The
deterministic behaviour is given by the flow

= u[~(t), t] (2.5.1)

in state space . which is now a functional manifold. In most applications, u is a nonlinear partial
differential operator or a nonlinear integro-differential operator acting on the field çb(rt). In the
presence of fluctuations, /(t) becomes a stochastic field. In analogy to (2.4.2), the stochastic
behaviour may be described by a functional Langevin equation

çb(t) = vI~(t),t] + ~[~(t), t] (2.5.2)

which has to be supplemented by specifying the stochastic field ~[~(t), t]. Usually, one assumes without
much justification that ~ can be represented by a white-noise process which is 6-correlated also in space.

Alternatively, the statistical ensemble of fields q’(t) may be described by a probability measure
p[~. tl in function space satisfying a functional master equation. For Markovian systems with realiza-
tions ~(t) which are continuous in time this takes the form of a functional Fokker—Planck equation

OP[~, t] = - (V[~, tl p[~, tI) + V~V~:(D{~,t] p[~, tj) (2.5.3a)

= — J dr’ 6~(r’)(v[~, r’t] p[~,t]) + f J dr’ dr” 8~(r’)6~(r”)(D[~, r’r”t] p[~, t]). (2.5.3b)

However, this representation is generally of only limited use, because the techniques of functional
integration are not well developed. An exception is the case that the solution can be given in terms of a
Ginzburg—Landau type functional [8, 11].

A formal device used as a poor man’s substitute for functional integration is the discretization by
subdivision of real space into cells [68—701,or more generally by expansion into a complete set of
discrete modes ~‘p~(r)

q’.(rt) = ~ ~f.i,,(t)p,,(r), (2.5.4)

combined with a truncation procedure. The stochastics of the remaining finite set {4l~(t)}can then be
handled by the methods described in the previous subsections.
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2.6. Time evolution of non-Markov processes

In the case of non-Markov processes, the conditional probability R(xtlys), t> s depends on previous
history. Thus, R(tls) is not a linear operator in H(.~)but depends in a nonlinear way on the initial
distribution (fig. 3), and fails to satisfy the Chapman—Kolmogorov—Smoluchowski equation (1.3.15)
which was used to derive the master equation (2.2.12) of Markov processes. It is therefore an important
question whether one can construct a propagator set G(tls) for the single-event distribution

p(t) = G(tls) p(s) (2.6.1)

satisfying the (pseudo)-Chapman—Kolmogorov—Smoluchowski equation

G(tIt1) = G(t~s)G(sIti), t  s  t1 (2.6.2)

and

G(f~t)= ]. (2.6.3)

This would permit the derivation of a master equation

= 1(t) p(t) (2.6.4)

with a stochastic operator given by

1(t) = ~- G(sIt)I~5÷- (2.6.5)

The existence of such a substitutive (pseudo)-Markov process with the same propagation behaviour of
the single-event distribution has been studied by the authors [30,33, 34, 371-

The condition (2.6.1) does not determine the propagator set G(tls) uniquely but allows the
construction of many such sets, which depend in general on the initial distribution. It is important to
stress that the kernels G(xt~ys)of these propagator sets are in general different from the conditional

~xo Xi X2

-- ~ P,2t2lx~t,)
- -~ ;~:-‘

I’ / —— ‘.~.

K ~ :‘. R~(x2t2lx,t,)

Fig. 3. Two sets of sample functions of a non-Markov process passing through the same point x1 at time ti, but starting at different points xó and x1
at a previous time t~,give rise to two different conditional distributions.
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probability R(xt~ys)(they may even take on negative values), and cannot be used to calculate time
correlation functions and conditional averages. There is one exception: If the coarse-grained system was
prepared at time t0 without any memory of the past, and if R(t~t0)is nonsingular for t> t~,then

G(tls) = R(tI t0) R (s~t~) (2.6.6)

is a propagator set independent of the initial distribution, and G(t~t51)coincides with R(tIt0). Therefore,
G(tjt0) may be used to calculate initial correlations C(t, t0), but it is important to note that, because of
the preparation procedure, these initial correlations differ from the correlations C(t, s) in an aged
system, even if the stationary distribution is chosen as initial condition. For the calculation of higher
correlations, one has to construct propagator sets for the multivariate probabilities p

1”~(tt,... ta).
describing an n-point pseudo-Markov process with the same propagation behaviour as ~ [301.

These concepts are supported and generalised by the derivation of the evolution equation of the
macrodistribution from the microdynamics of the system. The theory shows that the initial preparation
of the system is of equal importance as the dynamical laws [33.34, 37, 55]. The microdistributions
consistent with a given value of the macrovariables x are characterised by the distribution w~(qto~x)
over the microstates q belonging to the value x. It is found that all initial preparations given by the same
w,,(qt

51jx) form a class ir with the same macroscopic R,r(tJtit), independent of the initial macrodistribu-
tion p(t0), but preparations with different w,r(qtsmIx) give rise to different R,r(tJtü), and are described
macroscopically as different processes. The calculation of time correlations in an aged system given by
R,,.(tls), s> t0, from microdynamics requires the derivation of a propagation equation for the two-time
probability which has been carried out in ref. [34). For the special case of the stationary preparation
class s, for which w~(qtj.v)p~(x) represents the stationary microdistribution of the total system. the
macroscopic initial conditional probability R~(tJt1) coincides with the time-homogeneous conditional
probability of the stationary macroprocesses. Note however that the choice of an initial probability
Pu  p. in the stationary class will give rise to a different process-dependent aged conditional probability
R,, (t~s).

From a practical point of view, strong deviations from Markovian behaviour can usually be traced
hack to the coarse-graining over a slow variable. In such cases, a less coarse-grained description
including such variables in the set of macrovariables will yield a stochastic process which may be
approximated more closely by a Markov process. In this context, a simple criterion testing the validity
of a Markov approximation appears very desirable.

3. Spectral properties and ergodicity

In this section we study the spectral properties of stochastic processes and their correlation functions.
which characterize the dynamics of the system. Since the asymptotic behaviour for long times depends
on the ergodic properties, we also discuss ergodicity problems.

3. 1. Linearized theory of fluctuations

If the fluctuations about the deterministic motion of the system are small, their correlations may be
calculated in linear response theory. This approximation corresponds closely to the “random-phase
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approximation” which is extensively used in the theory of cooperative phenomena in various fields
[71—74].We give here a brief presentation of this method.

We describe the system by a Langevin equation (2.4.2)

~(t)= v(x(t), t)+X(t) (3.1.1)

with state-independent stochastic forces X(t) (additive noise) satisfying (compare (2.4.17, 19))

fX(t)) = 0 (3.1.2a)

(X(t)X(s)) = 2D(t) 6(t— s). (3.1.2b)

The stochastic forces give rise to fluctuations ~(t) = x(t) — a(t) about the deterministic motion a(t). In
linear response, one obtains

~(t)= Jx(t~s).X(s)ds (3.1.3)

where x(t, s) is the susceptibility tensor of the deterministic system (containing a factor O(t — s) to take
care of the causality requirement). With (3.1.3), we obtain the two-time covariance matrix

S(t2, t1) = (~(t2)~*(t1))=2J x(t2, s) - D(s) xt(ti, s) ds. (3.1.4)

For a stationary process with x(t2, t1) = x(t2 — t1), D(t) = D= const., one finds

S(T) 2J x(r + T’) - D xt(Tr) dT’ (3.1.5)

whose Fourier transform yields the spectral matrix

S(w) =

2x(w) - D - xt(w). (3.1.6)

Thus, in linear-fluctuation theory, the spectral properties of the correlations between fluctuations are
expressed in terms of the spectral properties of the deterministic susceptibility. We assume a spectral
representation

X(T) = 0(r) ~ Xn exp(—iw~r) (3.1.7)

with Fourier transform

x(w)=~j(W~W) (3.1.8)
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with eigenfrequencies having negative imaginary parts,

Imw,<O, (3.1.9)

to ensure stability of the deterministic state. With (3.1.7, 8) one obtains for the covariance matrix (3. 1.5)

S(T) = 2 ~ exp(—iw~r) r >0 (3.1. lOa)

* exp(—1w~r) T<O, (3.1.1Db)
,,,,. l(w~—

and the spectral matrix (3.1.6) becomes

S(w)2~ - (3.1.11),,,,~ (w~— w)(w ~.— w)

The linear-fluctuation approximation of this subsection breaks down when the fluctuations become
large. This occurs in particular for “critical fluctuations” near phase transitions and instabilities where
an eigenvalue of the deterministic susceptibility tensor x(w) diverges, either at w = 0 (soft-mode
instability) or at w 0 (hard-mode instability). A proper treatment of such cases requires non-
perturbative methods to calculate spectral properties.

3.2. Spectral properties of time-homogeneous MarkoV process

We now proceed to a discussion of the spectral properties of a stochastic process independent of any
assumption about the smallness of fluctuations.

The general characteristic of stochastic processes that information present in the distribution can never
increase in the course of time, has important consequences for their time evolution. We restrict the
following discussion to time-homogeneous Markov processes with propagators R(tjs) = R(t — s). From
the definition of the conditional probability there follow two “contraction” properties of R1 (r) and
R(r), respectively, which express the deterioration of information [75,76]: The peaks and valleys of any
state function f(x) are never amplified by averaging, i.e. the amplitude of variation of the conditional
average ff(x(t + T))Ixt) never increases in the course of time,

supjff(x(t+ r))jxt)I ~sup~ J [Rt(r)f](x)dx~ (3.2.1)

~sup~f(x)i Vr>O.

Further, given a stationary distribution p. satisfying R(r)p. = p,~, the “distance” of any p(t) from
p. measured by the total variation of Ip(xt) — p.(x)j never increases in the course of time.

f jp(x, t+ T)~Ps(X)~dx ~J[R(r)~(t)-p~)I(x)I dx (3.2.2)

~f p(xt)— Ps(X)I dx VT> 0.
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It is interesting to note that this property holds independently of whether p(t) converges to Ps for t —~ cc
Both the supremum in (3.2.1) and the total variation in (3.2.2) define norms in the appropriate

Banach spaces, and the semigroups represented by Rt(r) and R(r) are therefore contraction semigroups
[75,76]. According to a theorem by Phillips and Lum~L[75,76], the master operator generates a
contraction semigroup (with respect to the norm [ffl= V(f*J)5) if and only if it is dissipative, i.e.

Re(f*l
tf). = Ref f* (x) (Itf)(x) p

5(X) dx ~ 0 (3.2.3)

for all f in the domain of 1~.The average in (3.2.3) is taken over a stationary distribution P. which is
assumed to exist but not assumed to be unique (see section 3.4).

The eigenvalues A of the master operator F coincide with those of F~,and are either real or occur in
pairs A, A *, because I is real. From (3.2.3) it follows that no eigenvalue lies in the right half of the
complex plane,

ReA~0 VA. (3.2.4)

The eigenfunctions tI’A of F and ço~of F = Ft form a bi-orthogonal set

J ~A(x)çb5’(x)dx = 0 for A A’. (3.2.5)

There exists at least one eigenvalue A0 = 0 with

~io(x)= ps(X), çco(x) = 1 Vx with F(x, y)  0 (3.2.6)

whence

J 9~A(x)dx=0, Jc~A(x)p5(x)dx=O VA 0. (3.2.7)

If A = 0 is g-fold degenerate, there exists a bi-orthogonal basis {çlc,,, ~,,} in the A = 0 subspace such that
all ~ are probability distributions, ~i7(x) 0, f mfr,,(x) dx = 1, and any stationary distribution can be
written as a convex combination

p5(x) = p.,. çb,,(x) (3.2.8)

with weights P7  0, ~,, P.., = 1. This is connected with a topological structure of state space with respect
to ergodic properties and asymptotic behaviour (see section 3.4). The right eigenfunctions t/í~with A~ 0
have the significance of deviations from the stationary distribution which decay ~ exp(A~t).The left
eigenfunctions c~’,, belonging to A = 0 are constants of motion; those belonging to A~ 0 represent
stochastic variables whose statistical averages decay ~ exp(A~t).

We consider further the simple case that F and I~have a discrete spectrum A~with a complete
system of eigenfunctions m/i~, ‘p~with a normalization such that the orthonormality and completeness
relations read
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J ~,(x) ~0(x)dx = 6,,,,, (3.2.9)

~~fl(x)~fl(y) 6(x-y). (3.2.10)

Then there exist spectral representations of the kernel of L

T(x,y) = ~ A,, ~!Jfl(x)~(y) (3.2.11)

and of the conditional probability

R(xr~y0) ~exp(A,,T)~Jfl(x)~,,(y), T>O. (3.2.12)

Thus, in the steady state characterized by Ps’ the time correlation matrix of the set of random variables
I = (ft, f2. - - .) can be written as

C(r) = ~f(t+ T) f*(t))5 = ~ g,,h ~exp(AflT), r >0. (3.2.13)

with

gfl =ff(x)~(x)dx (3.2.14)

hfl = J f(x) ~~(x)p5(x) dx (fr~)S. (3.2.15)

The value for r<() may be found from C(—r)= C
t(r) (see (1.2.18)). Since on account of (3.2.6)

g
0 = h0 = ~ the covariance matrix S(r) = C(r) — ~f).Kf’

5). is obtained from (3.2.13) by deleting the
n = 0 term,

S(T) = ~ gflh ~ exp(AflT), r >0, (3.2. 16a)

=~h~g~exp(—A~r). r<0, (3.2.lob)

and Fourier transformation yields the spectral matrix

S(w) = ~ + ~h~g~] (3.2.17)

The long-time behaviour is determined by the eigenvalues with the smallest Re Al. If the eigenvalue
A = 0 is degenerate, the stationary distribution is non-unique (see (3.2.8)), and the system shows
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zero-frequency anomalies [77—79].In the case of a pair of purely imaginary eigenvalues A = ±iwthe
system shows undamped oscillations of frequency w (finite-frequency anomalies). If A0 = 0 is non-
degenerate, and Re A~<0 Vn >0, the long-time behaviour consists of a damped oscillation or an
exponential decay, depending on whether Im A1  0 or =0, respectively:

S(r) ~~(ImAir) exp(Re AsIrl). (3.2.18)

Of particular interest are the cases of metastability and of a stable limit cycle of the deterministic
system. In the case of metastability, the stationary distribution has two peaks corresponding to the two
stable deterministic states, and the long-time behaviour is characterized by a real eigenvalue A~nearly
degenerate with A0 = 0, with an eigenfunction describing a very slow relaxation of the metastable state
towards the absolutely stable state [42,80—87]. In section 6.3 such a case is discussed in detail. In the
case of a limit cycle, the stationary distribution is peaked along the stable deterministic orbit, and the
long-time behaviour is characterized by pairs of eigenvalues A~,A~with very small ReA~Iand with
Tm A~given by the frequency of the deterministic motion. The set of eigenfunctions describes slowly
decaying perturbations travelling along the deterministic orbit.

A discrete spectrum with Re A~<0 Vn >0 thus leads to an exponential long-time behaviour, at
least as long as A = 0 is not an accumulation point of eigenvalues A~ 0. Long-time tails with algebraic
time dependence are obtained in the case of a continuous spectrum* extending without gap up to A = 0.
Assuming

S(r) J A±(A)exp(—IArl)dA, T~O, (3.2.19)

with an amplitude varying for A —sO as

A(A)_.~lAlr_i, r>0, (3.2.20)

yields an asymptotic behaviour with an algebraic long-time tail

S(r)~~.Irj_r, ~ (3.2.21)

In the case of a stochastic process in a discrete N-point state space, with a master operator represented

by an N X N matrix ~ with

F,,  0(i j), I~<0, ~ Ii., = 0, (3.2.22)

more detailed statements can be made about the spectrum [88,89]:
— The spectrum of eigenvalues A (1) is contained in the union of n circular discs lx — 1~I  r5 with radii

[88-90]

* In the presence of a continuous spectrum, the conditions of orthonormality (3.2.9) and completeness (3.2.10) have to be suitably generalized.
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r1 = F~l~( )t~fl 0 ~ a ~ 1. (3.2.23)
j~/j

In particular, all eigenvalues are contained in the disc centered at —maxII’,~jwith radius maxII1,I (fig. 4).
Thus, the real part of any nonzero eigenvalue is strictly negative, which rules out the possibility of
recurring probability solutions with purely imaginary eigenvalues. If the union of discs (3.2.23)
decomposes into disjoint subsets S consisting of !V~discs, each subset contains exactly N, eigenvalues.

— If the eigenvalue A = 0 is algebraically p0-fold degenerate, the rank of F is N — i.’~,,i.e. there exists a
complete set of i.’,, linearly independent stationary distributions [91]. This is of importance in ergodic
theory (see sections 3.3, 3.4).

—A birth and death process with strictly positive transition rates w1~÷1>0, w~11>0, w,1 =0
(j i—I, i+ 1) has real nondegenerate eigenvalues [92]. Moreover, the N— I eigenvalues A of the
truncated matrix I obtained by deleting the last row and column and putting

1N~l.N~t= ~1N-2.N

separate those of I’:

0 = A,, = A
0> A~> A~- - - > AN_2> AN_I. (3.2.24)

— If I is “doubly stochastic”, ~, Ti, = ~, T,~= 0, there exists a uniform stationary distribution

PsO) 1/N. (3.2.25)

3.2.E1. Spectral properties of the two-state Markov process

For the generator (2.2.17) of the strictly stationary two-state process with ~,, = const. <0, á,~= const.,
one finds the eigenvalues

A0 = 0, A1 = Pu (3.2.26)

with the eigenvectors

rn X

~eX

Fig. 4. Regions in the complex plane containing the eigenvalues of the master operator of a three-state Markov process (JT,,~<JF22~<jI’,,~).The
dash-dotted circle is the border of the disc centered at —~F33~with radius IF33I: the full circles are the borders of the discs centered at HF,] with radii
given by (3.2.23) for a = 0.
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= ~(1+ ax), p0(x) = 1 (3.2.27)

m~I1(x)= ~x, ~‘1(x)= —a + x

where a = —ci,j/~is the stationary value of (x) (see (2.2.27)). From the spectral representations (3.2.11)
and (3.2.12) one recovers the generator (2.2.17) and the conditional probability (1.3.24) with p(r) and
a(r) given by (2.2.28, 29). The autocovariance and the spectral density of the fluctuations of the state
variable x are found from (3.2.16, 17) in the form

5(r) = s exp(—I,’ioli-) (3.2.28)

s(w) = s (3.2.29)

where s = 1 — a
2 is the stationary value of the variance (x2~— ~x)2.The result (3.2.28) is in agreement

with (1.3.28) and (2.2.28).

3.2.E2. Spectral properties of a Gauss—Markov process
The spectral analysis of the general stationary n-component Gauss—Markov is nontrivial. Here, we

restrict the discussion to the case that the process factors into a product of one-component Gauss
processes generated by

d2I = — a— (jiox + ao) + ~óo ~j—~ (3.2.30)

with values ad = const.,
1io = const. <0, a0 = const.  0 which are generally different for different

components. In section 4.4E1 it is shown that the case of a general Gauss—Markov process satisfying the
conditions of strict detailed balance may be reduced to this case.

One has to distinguish principally between the cases ~ <0 and fio = 0. For 1i0 <0, the spectrum is
immediately obtained by noting the equivalence to the Schrodinger eigenvalue problem of a harmonic
oscillator with

/1w = —~, h
2/m = (3.2.31)

via the transformation (see eq. (4.3.21) below)

[‘symm = exp[(x — a)2/4s] I exp[—(x — a)214s]

/12 d2

= ~— ~ — ~mw2(x — a)2 + ~hw. (3.2.32)

One finds the complete spectrum

A,, = n
1~’0, n = 0, 1, 2, -.. (3.2.33)

with
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1 Ix—a] I (x—a)~]
I ,—H0I——7==jexpl— I (3.2.34a)

\‘2n!V2irs L’V2sJ L 2s J

I Ix—al
= H,,L~~] (3.2.34b)

where II,,(x) are the Hermite polynomials, and a = —ck,J1i0 and s —d-,,/2/i,) are the stationary values of
‘~x)and (x

2) — (x)2. respectively (see (2.2.47, 48)).
The spectral representation (3.2.12) gives the expansion of the conditional probability (1.3.42) into

exponentially damped modes. The autocovariance and the spectral density of the fluctuations of the
state variable x(t) are found from (3.2.16, 17) to be given by A

1 = ~,, alone.

s(r) = s exp(—I~iorI) (3.2.35)

s(w) = S ~2~~2- (3.2.36)

The result (3.2.35) is in agreement with (1.3.47) and (2.2.46).
The eigenvalues A0 are independent of the parameter &,, and therefore of the variance s. In the limit

s —s 0 corresponding to a pure drift v = —~i,,xthe set of eigenfunctions degenerates into

= 6~~~(x), ~0(x) = (3.2.37)

which still formally satisfy the conditions of orthogonality (3.2.9) and completeness (3.2.10).
For ~,, = 0 corresponding to a uniform Fokker—Planck-process, one obtains a continuous spectrum

with non-normalizable eigenfunctions. If the spectrum is made discrete in the usual way by introducing
periodic boundary conditions with period L one finds

Aq = ia0q — ~)q
2. q = 1, 1=0, ±1.... (3.2.38)

çL~q(x)= exp(iqx), ccq(x) = exp(—iqx), (3.2.39)

but then the process is no longer Gaussian.

3.2.E3. Spectral properties of the process with independent increments
The stationary process with independent increments described by (2.3.25) also requires the

specification of boundary conditions. For periodic boundary conditions with period L one finds

Aq = Iq = y[p(q)— 1], q = I, I = 0, ±1 ... (3.2.40)

~q(x)fexp(iqx), ~q(X) exp(—iqx). (3.2.41)
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Here, p(q) = (e~’)~is the Fourier transform of the jump probability p(r). In the drift-diffusion limit
= 0 (n > 2) one recovers the uniform Fokker—Planck process (3.2.38) with a0 = y~r)~,&o = y(r

2)~.

3.3. Ergodic properties

Ergodicity is concerned with the asymptotic behaviour of stochastic processes for t —s ~, and with the
closely related problem of determining the statistics of a stochastic process from a single realization. We
restrict ourselves to the discussion of the ergodic nature of stochastic variables of a strictly stationary
process x(t).

The set of stochastic variables {f
1(x), f2(x),.. .} (not explicitly time-dependent) forming the vector

variable 1(x) is called ergodic if the time average

jT1J f(x(t))dt (3.3.1)

tends to the ensemble average (f) for T —s ~. According to theorems by Birkhoff [93,94] adapted to
nondeterministic stochastic processes [76,95], the limit

~=lim~J f(x(t))dt (3.3.2)

considered as a random variable exists for almost all realizations x(t) and is independent of the reference
time (chosen as t = 0 in (3.3.1)), provided 1(x) is determined at all points x E .X and (J) is finite. Thus,
the stochastic vector variable I is ergodic if

f°°= ~J)with probability 1 (3.3.3a)

or equivalently if

(3.3.3b)

That this is a nontrivial requirement can be seen from the trivial example of a process with constant
sample functions x(t) = x, where x is a random variable with nonvanishing variance. Then clearly f°= x
exists but does not equal (x) = a with probability 1. Of course it is always true that

(JT) = = (1) (3.3.4)

An equivalent criterion for ergodicity is obtained by expressing (3.3.3b) in terms of the covariance
matrix S(r)= (f(t+ r)f*(t))_(f)(f*),

(~T_(~)(~T_(~)*)1J (l_~)S(T)dT. (3.3.5)
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It can be shown that

~ (l_~)S(r)dr= lim~J S(r)dr (3.3.6)

provided that the limit exists. Thus, the stochastic vector variable f is ergodic if and only if

lim~ J S(r)drO. (3.3.7)

From this criterion, one obtains two simple sufficient (but not necessary) conditions for ergodicity: The
variable f is ergodic if its time correlation function satisfies

(f(t+ r)f*(t)) —s(f) (f*~ for T -~ cc, (3.3.8)

or if its fluctuation has finite spectral density at zero frequency.

S(w0)<cc. (3.3.9)

The ergodicity condition (3.3.7) is certainly satisfied for a stochastic variable I of a stationary Markov
process, if there exists a spectral representation (3.2.16) with eigenvalues A,,  1) (n >0). If in addition
Re A,, <0 (n > 0), even the stronger condition (3.3.8) holds.

Conditions for the ergodicity of the probability distribution can be cast into the same form by
introducing the characteristic functions fA(x) for measurable subsets A C 2’,

fA(x) I if xEA (3.3.10)
=0 ifx~A.

The time average f~.gives the fraction of time a given realization x(t) spends in A, the ensemble
average ((A) gives the probability p(A)= fA p(x) dx, and the time correlation function between fA and
fB is related to the two-event probability by

(fA(t + r)fB(t)) = p~2~(A,t+ r; B, t) (3.3.11)

= f p~(xt+ r; x’t) dx dx’.
(AX B)

The ergodicity criterion for the single-event probability,

= p(A) with probability 1 (3.3.12)

for all measurable subsets A C 2’, is equivalent to the condition of weak mixing [94]
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lirn ~ J p~(A,t+ r; B, t) dr = p(A)p(B) VA, B C 2’, (3.3. 13a)

which is equivalent to

lirn ~ J R(xt + rlyt) dr = p(x) Vx, yE 2’ (3.3.13b)

for the type of system under consideration. A sufficient (but not necessary) condition for ergodicity of
p(x) is given by the strong mixing property of the two-event probability

lim p12~(A,t + r; B, t) = p(A)p(B) VA, B CI (3.3.14a)

or equivalently

lim R(x, t + rlyt) = p(x) Vx, y E I. (3.3.14b)

In the case of a time-homogeneous Markov process with a propagator R(r) having a spectral
representation (3.2.12) with nondegenerate eigenvalue A

0 = 0, the distribution p = m~i0 is ergodic in the
sense of (3.3.13). If in addition Re A,, <0 (n >0), even the strong mixing condition (3.3.14) is satisfied.

Clearly, all stochastic variables f(x) with (f) < are ergodic if the single-event probability is ergodic.
The main ergodic theorem of Birkhoff relates ergodicity to the properties of time evolution in state

space I. One introduces the concept of invariant irreducible subsets of I. A measurable subset A CI is
called invariant if all sample functions with values x(t0) E A for a fixed time t0 stay in A for all t> t0
with probability 1. An invariant subset A is called irreducible if it contains no proper subsets which are
both measurable and invariant. Then the Birkhoff theorem states:

The probability distribution in the invariant subset A is ergodic if and only if A is irreducible. In
particular, if I is irreducible, then the probability distribution is ergodic in I.

It is also of interest to study the ergodicity of products F~(x(t+ T), x(t)) = f(x(t + T)) g(x(t)) of
random variables at different times. F~is called ergodic if the time average

= J f(x(t + r))g(x(t)) dt (3.3.15)

tends for T—sct~to the correlation matrix

C(T)= (f(t + r) g(t)). (3.3.16)

A necessary and sufficient condition for the ergodicity of F~is given by
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lim~J (((t+ u+ r)g(t+ u)f(t+ T)g(t)) dr = (((t+ r) g(t)~f(t+r)g(t)). (3.3.17)

This shows that the ergodicity of multiple-time products is related to the behaviour of higher-order
correlation functions and thus to the ergodicity of multivariate probability distributions, and is in the
case of non-Markov processes not automatically guaranteed by the ergodicity of the single-event
distribution. An exception is the case of a strictly stationary Gauss process x(t) for which the condition

lirn J (x(r) x(0)) dr = (x)(x) (3.3.18)

is necessary and sufficient for ergodicity of any random function f(x(lt) x(10)) f 96. 97].

3.4. Asymptotic behaviour

In most applications one is interested in the stochastic behaviour of an aged system, where the time
of observation is much later than the time t,, of preparation. It is often assumed without proof or
justified by nonrigorous arguments only that the distribution p(t) approaches some unique asymptotic
distribution as t—scc.

In order to investigate the asymptotic behaviour of a general time-inhomogeneous process, it is more
convenient to study the limit f1—s—cc for a fixed time t of observation. We consider a system prepared at
time t,, with initial distribution p,,, and examine the behaviour of its distribution p(t; t,,, p,,) at time t for
t,,-s—cc. If

pas(t) = lim p(t; t~,p,,) (3.4. 1)
to—...—

exists and is independent of p~,the process x(t) is called asymptotically stable. This is the case if
~ R(tjt,,) exists and represents a singular operator mapping the whole space JI*(2’) on the unique
element Pas(t) E H*(I) given by

Pas(Xt) = lim R(xtlyt,,) - (3.4.2)
to—~—

If p~is time-independent, the process is asymptotically stationary.
We restrict the following considerations to time-homogeneous Markov processes with R(tlt,,) =

R(t — t,,). Then, any asymptotically stable process is automatically asymptotically stationary. Further.
the asymptotic stability condition (3.4.2) is equivalent to the condition (3.3.l4h) of strong mixing, and
thus implies ergodicity of the distribution Pas. The reverse does not hold: For an ergodic distribution
which is only weakly mixing [93.94] the limit (3.4.2) does not exist independently of y.

In the following, we discuss the asymptotic behaviour assuming a spectral representation (3.2.12) for
the propagator R(r). The asymptotic properties are then determined by the eigenvalues with Re A = 0.
If there exist pairs of purely imaginary eigenvalues, the limit (3.4.2) does not exist, and the process is
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asymptotically unstable. We exclude this case of undamped oscillations, assuming Re A <0 for all A  0.
If A0 = 0 is nondegenerate, the process is asymptotically stable, and Pas coincides with the right
eigenfunction ~frobelonging to A0 = 0. If A = 0 is g-fold degenerate, Pas exists and is of the form (3.2.8)
with weights P~= f ~~(x) p0(x) dx depending on Po, i.e. the process is not asymptotically stable in the
whole state space I.

The structure of the conditional probability R(x’l-]yO) gives rise to a topological decomposition of
state space I into ergodicity classes reflecting the asymptotic behaviour of the process. It can be seen
from the spectral representation (3.2.12) that for any pair of states (x,y), the conditional probability
R(xr]yO) is either identically zero or strictly positive for all r E (0, cc). Further, if for given (x, y) there
exists a state such that both transitions y —s z and z -~ x have positive probabilities, the same holds for
the transition y —s x on account of the Chapman—Kolmogorov—Smoluchowski equation (1.3.15).

Thus, the state space may be decomposed into a set of irreducible ergodic classes I~(y = 1, 2,. -

and a remaining class I’ of evanescent states,

1= UI~ U 1’. (3.4.3)

An ergodic class I~is a set of states which are connected pair-wise in both directions by positive
transition probabilities R (xr]yO) but do not feed into any state outside I,,:

R(xr]yO) >0 Vx, y E 1.,, (3.4.4)

R(zt]yO)=0 VyEI7, zEI—17.

The class I’ consists of the remaining states which are not fed from any state outside I’ but feed into at
least one state outside I’:

R(xr]zO) = 0 Vx E I’, z E I — 1’ (3.4.5)

R(zrlyo)>0 VyEI’ forsomezEl—I’.

Figure 5 shows a few examples of ergodicity classes. It should be noted that a continuous state space
will in general contain lower-dimensional submanifolds as ergodicity classes. The boundary of an
ergodic class, for instance, may form a separate ergodic class, or belong to the evanescent class.

From the Chapman—Kolmogorov—Smoluchowski equation (1.3.15) and the conservation of prob-
ability it can be seen that the probability for the transition y x between states of the same ergodic
class I~approaches a unique strictly positive asymptotic distribution Pas,y in I~,whereas the probability
for any transition into an evanescent state approaches zero. Thus, the process is asymptotically stable
and therefore ergodic within each of the ergodic classes I..,. The asymptotic distributions Pas.~are just
the right basis functions cit7 of the A = 0 subspace used in (3.2.8),

l/17(x) = Pas.y(X) = Im R(xr]yO), y E I~. (3.4.6)

From the spectral representation (3.2.12) it follows that the corresponding left basis functions ~,(j~)
describe the total asymptotic weight of transitions starting in y and feeding into I~,
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Fig. 3. Examples of various ergodicity classes.

= lim J R(xr~y0)dx (3.4.7)

whence

~.~
7(y)l VyE2. (3.4.8)

Thus, the number of ergodic classes coincides with the degeneracy g of the eigenvalue A = 0, the
process within each of the ergodic classes 2~has nondegenerate eigenvalue A = 0, and the basis
functions satisfy

ci~7(x)>() VxEI~ (3.4.9a)
=0 VxE2’—2’,,.

~cr7(y)=l VyE2’~

= 1) Vy E 2’~, y’ y (3.4.9h)

 0 VyE2’.

The eigenmodes belonging to any of the other etgenvalues A,, 0 may also be chosen in such a way that
they describe a process which proceeds either within one of the 2’~or 2’~U 2”, or in 2” alone. The
asymptotic probability for the transition from an evanescent state y E 2” into the ergodic class 2’~is
given by the left eigenfunction çc~(,y).
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Any initial distribution Po can be written as a convex combination

po(x) = ~ P07 pt17(x) + P,p~(x) (3.4.10)

P,,7,P/, 0, >~P07+P~=1

of distributions in the ergodicity classes I~,I’. with weights P07, P~.Each of the weights P7 of the
asymptotic distribution

Pas(X)’ ~ P,,,t/i7(x) (3.4.11)

consists of the initial weight P07, plus a contribution from the initial weight P~of the evanescent class:

P7=P07+PJ ~7~)p/~(y)dy. (3.4.12)

In the case of a discrete state space, the decomposition into ergodicity classes is reflected in the
algebraic structure of the matrix I. The states may be renumbered such that I takes the form

o
1= - . . (3.4.13)

IgiBg~

III:~III::L
Here, each of the I.,, is an irreducible submatrix with nondegenerate eigenvalue A = 0, describing the
stochastic process within the ergodic class £~,the submatrix B’ with det B’  0 describes the transitions
between evanescent states, and the B.., describe the transitions from evanescent states into the ergodic
classes.

The decomposition of a discrete state space into ergodicity classes may be extended to the case that
no complete bilinear set of eigenfunctions exists, by making use of the Jordan canonical form of the
matrix 1 [261.

Asymptotic stability may also be tested with the help of a Lyapunov-functional ~‘: H*(I) —s R: if
there exists a strictly decreasing Lyapunov-functional,

d VpEH*(I) (3.4.14)

~e[p] 0

= 0 only for a unique p = p,



262                                                                                  

then the process is asymptotically stable. In the case of a stochastic process on a discrete state space

with nondegenerate eigenvalue A, = 0, Schlogl [98.991 has introduced the information gain

K[p, p~]= ~ p(xt) ln[p(xt)/p5(x)] (3.4.15)

as a Lyapunov functional.

4. Symmetries and detailed balance

This section is devoted to an investigation of symmetry aspects of stochastic processes. The
discussion of symmetry properties under transformations of state space follows similar lines as for
deterministic systems. The formulation of the behaviour under time reversal, on the other hand,
requires special care because of the conflicting aspects of macroscopic irreversibility and microscopic
reversibility. Of particular importance and usefulness is the symmetry of “detailed balance” which has
its origin in microscopic reversibility, and of generalizations thereof, and which is therefore discussed in
detail.

4.1. Symmetry group of a stochastic process

In this subsection, we study the symmetry properties of a time-homogeneous Markov process under
transformations of state space I. Let i = S(x) be a volume-conserving transformation of I. In the case of
a discrete state space, S represents a permutation of its points. In the case of a continuous state space,
any continuous S may be locally decomposed into a translation, a rotation, and a shear. Such a
transformation 5: I—sI generates a transformation Os: H(I)—sH(2’) of function space H(I) defined
by

,ô(it)= (Osp) (it)=p(S
t(i), t)~p(xt), (4.1.1)

which because of di = dx holds both for state functions and for probability densities.*

To the master operator I of the original process x(t) there corresponds the master operator
1 O~FO~ (4.1.2)

of the transformed process 1(t) with kernel

F(i, y) = I(S~(1),st&)) T(x, y). (4.1.3)

S is called a symmetry transformation of the process if it leaves I invariant,

[=1, i.e. IO~=O~I. (4.1.4)

* In the case of non volume-conserving transformations S. the Jacobian has to be taken into account in (4.1.1).
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The propagator R(r) is then also invariant under S, i.e. the conditional probability satisfies

R(xTIyO) = R(S(x) T]S(y) 0) = R(ir]j0). (4.1.5)

The set of all symmetry transformations forms the symmetry group ~ of the process.
We now discuss the symmetry properties of the decomposition of phase space into ergodicity classes

discussed in the previous section. The ergodic class I~is left invariant by a subgroup X~of ‘~,

= {S E ~]SI7 = I~}. (4.1.6)

The transformation of I,, subduced by an element S E ~ is a symmetry transformation of the process
in I~,i.e. the corresponding operator O~:H(17)—s (17) commutes with the stochastic operator I~.
Consequently, the symmetry group ~ of the process in 17 is at least the group X,, subduced by ~

= ~t
2
7/J’7, (4.1.7)

where .]3~,,C ~ consists of those transformations S E ~°,, which leave every state of I~invariant. On the
other hand, the symmetry group ~,, of 17 may contain other symmetry operations not subduced by
elements of ¶.~.

The subgroup ~C7generates the left-coset decomposition

= ~ S2,~’C7~3•- -~S,,~C7 (4.1.8)

where n is the index of ~ in ~. A coset element S E S,JC7 transforms the ergodic class I.,, into a
symmetry-related replica 17’ with symmetry group

= S,f~7S;’ (4.1.9)

isomorphous to ¶~..,.As a consequence, either ,W.., coincides with &, in which case the ergodic class I~is
fully invariant under ~, or I~is a member of a star I~.of n symmetry-related ergodic classes with
conjugate symmetry groups (4.1.9). Conversely, an ergodic class 17 which is inequivalent to any other
class must be fully invariant under ~&.Clearly, the evanescent class I’ is fully invariant under ~.

The asymptotic distributions p~,7= ‘/‘~transform according to irreducible representations of W. Each
1/17 is invariant under the symmetry group ~

14r7(x)—l/’7(S(X))= i/i~(x) VSE ~. (4.1.10)

The same holds on account of (1.3.14) for all multivariate distributions ~ in 17. Consequently,

(fi(xit1) . f(xktk)) = (fi(11r1) - - f,,(Iktk)) Vx1, - . - , Xk E 17, SE ~ (4.1.lla)
i.e.

The nonzero part of any correlation function in
17 is fully symmetric under ~ (4.1.llb)
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An asymptotic distribution Pas = ~, P7i/i7 with arbitrary weights P.,, has in general no symmetry
properties, but for each star 17* of symmetry-related classes 2’,, one may form the fully symmetric
convex combination with equal weights P,, = 1/n,

Psymm~ ~ i/i,, (4.1.12)
yE). *

which is invariant under the symmetry group of the star,

~ (4.1.13)
yEy*

4.2. Time-reversal properties of a stochastic process

For any process 0~(Markovian or non-Markovian) with sample functions x(t). t E It,,. cc), and for any
set of time instants S U T = {s~,...,s0,, t~ t0} with t0 ~ ~, .~ K ,~,,, K 1, K K t0 K cc and a
corresponding set of state vectors V U X, one may define retarded and advanced conditional prob-
abilities k0(m)(T~s)and k~”~(TIS)by

pr” ‘(XT, YS) = R~”’‘(XTI I’S) p~( YS) (4.2.1)

= ~(tnln)(ysIxT)p~°(XT). (4.2.2)

In the previous sections, only the retarded probabilities R have been used.
With any process o one may associate a time-reversed process a containing the time-reversed sample

functions ~i = I(— t) E a, t E (—cc, t,, = — t,,], with the same measure in function space as was associated
with x(t) E u. Here ~ is the coordinate obtained by time reversal from the coordinate x. The retarded
and advanced conditional probabilities of a defined for —cc K s~K~ - K s,,, K t~K~ - K t,, ~ t,, by

p(n± ttt)(J~Tc’S) = nlrn)(~Tjc’S) p(~0)(I’S) (4.2.3)

= ~(rn n)( c’SJ~T)p~~T) (4.2.4)

are related to those of o by

&,,(.tTIc’S)= ,(i —T~Y—5) (4.2.5)

where —T = {—t1 —t0}, —S = ~—s1
Processes w and a satisfying

R~”°(T~S)= R’(T~5rna*) (4.2.6)
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and

,~(~*kn)(5]T) = k~t)(SItmin) (4.2.7)

for all 5, T with 5max < tmin are called retarded-Markovian (or simply Markovian) and advanced-
Markovian, respectively. With these definitions, we have the following theorem:

If cr is retarded-Markovian, then a is advanced-Markovian,
and vice-versa. (4.2.8)

In this context it is important to note that the linear continuation of k~’”(tIs)= .k,,(t]s), t > s defines a
linear operator describing the forward propagation of a whole class C> of forward-Markovian processes
generated by different initial distributions p(t0). It is this whole class C> w~ichconstitutes a Markov
“process” as considered in this review. Similarly, the linear continuation of R,,(t]s), t < s describes the
backward propagation of a class C< of backward-Markovian processes, generated by different final
distributions p(to). In general, the classes C> and C< do not coincide. The class C< generated by final
distributions has limited physical application, and its anticausal nature may easily lead to confusion.

In order to define time-reversal invariance, both processes a- and a have to be defined on the same
domain, i.e. on an interval t0 ~ t s~ = — t~(t0<0), or on the whole 1-axis. Then, a process is called
time-reversal invariant if o- = 6-, i.e. if the measure in function space is invariant under time reversal, or
if the process a- contains the sample functions x(t) and ~(—t) with equal probability, or equivalently if

p
1’°(XT)= p~’°(S~— T) Vn. (4.2.9)

A time-reversal invariant process a- which is forward Markovian is also backward Markovian and vice
versa. However, it is important to note that the other members of the classes C> and C< generated by
.k~(tls)of a time-reversal invariant Markovian process a- are in general not time-reversal invariant, and
the intersection C> fl C< constitutes a very special class of processes. For instance, in the case of a
time-homogeneous .k,(r), only strictly stationary processes can be time-reversal invariant.

4.3. Detailed-balance symmetry

The time-reversal invariance of microscopic motion has important consequences for the macroscopic
behaviour, as is clearly demonstrated by the principle of detailed balance for systems in thermodynamic
equilibrium [3, 1001 and by the Onsager reciprocity relations of irreversible thermodynamics [100—102].

In this subsection, we briefly review the origin of the principle of detailed balance and discuss possible
generalizations for driven systems.

The microscopic Liouville motion q~= q(t) of the system in phase space I = {q} is described by
the time-homogeneous propagator (see ref. [341)

R(q’r[qoO)= ~t3(q—q~). (4.3.1)

From microscopic reversibility and time-homogeneity we find for the time-reversed motion
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R(qr]qoo) = R(400[4r) (4.3.2)
= R(40rJ40) Vq,,, q El.

where q is the coordinate related to q by time reversal (see fig. 6).
We consider a stationary distribution p(q~)= p(q,,). If q and 4 are on the same trajectory, i.e. if
= q~+5for some 6, then

p(q)=p(4) VqEI. (4.3.3)

If q~and 4~are not on the same trajectory, i.e. if there exists a constant of motion which is odd under
time reversal (e.g. angular momentum), then we associate with the process a- under consideration the
time-reversed process 6-. The same procedure is necessary if the motion occurs in an external field which
is odd under time reversal. We then have instead of (4.3.2) and (4.3.3)

R,,(q’rJqoO) = Ra(4ttr]40) Vq~,,q E 1 (4.3.4)

p,,~(q)=p,,.(4) VqEI (4.3.5)

yielding the condition of detailed balance

p~(qr,qoO) = p~)(4— T, 4~0) (4.3.6)

= p~(4oT,40)

for the microscopic joint probability distribution, valid for any system in thermodynamic equilibrium.
The significance of this detailed-balance condition lies in the fact that it survives coarse-graining: The

joint probability distribution p~
2~(x’r,yO) of the macrovariables x = x(q) is given by the coarse-graining

operation (1.2.6),

p~2~(xr,yO) = J 6(x(q) — x) 6(y(q’) — y)pt2~(qT,q’0) dq dq’. (4.3.7)

One finds from (4.3.6) the detailed-balance condition

p~(xr,yO) = p~t)(~— T, 90) (4.3.8)

=p~(frr,IO) Vx,yEI

q It>

Fig. 6. Trajectory q(t) and time-reversed trajectory 4(t).
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for the macrodistribution, again valid for any system in thermodynamic equilibrium. Integration over y
yields the analog of (4.3.5),

p~,(x)=p~(I) VxEI. (4.3.9)

Eq. (4.3.4), on the other hand, has no direct analog after coarse-graining. One only finds relation (4.2.5),
i.e.

k,,(xr]yO) = R~(~0lfr) (4.3.10)

between the retarded and advanced conditional probabilities.
Driven systems do not in general satisfy the detailed-balance condition (4.3.6): One is interested here

in a situation where a system, which is driven by simultaneous coupling to several reservoirs, reaches a
stationary state. As long as the reservoirs are considered finite, such a state can at best be quasi-
stationary, but for sufficiently large reservoirs, the state will not change appreciably over a long period of
time. Then, although the microdynamics in the phase space ~ of the total system (system + reservoirs)
is still microreversible in the sense of (4.3.4), the quasistationary distribution clearly violates the
time-reversal symmetry (4.3.5), and therefore detailed balance (4.3.6) does not hold in ~ — Alter-
natively, one may eliminate the bath variables and obtain in the limit of infinite reservoirs a stationary
distribution in the phase space I of the system. However, the process 6- obtained by time-reversal from
the process a- in phase space I is in general not identical with the process obtained by elimination of the
reservoir variables from the time-reversed process in Itot: In 6-, only the motion of the system variables
(and not that of the bath variables!) is reversed. We thus conclude that detailed balance (4.3.6) is in
general violated for the process in phase space I.

Under special conditions, one may of course have detailed balance on a coarse-grained level even
though it is violated microscopically. Examples for such a situation are provided by models for the
single-mode laser, hydrodynamic systems and chemical systems [3,5, 8, 11, 12, 15, 18]. In this context it
should be observed that the validity of (4.3.9) is necessary but not sufficient for detailed balance.

Since for driven systems, there is thus no microscopic basis for expecting a detailed-balance condition
(4.3.8) relating the joint probability of a process a- to that of the time-reversed process 6-, it is
meaningful to generalise the concept of detailed balance. We consider a pair of stationary processes
(a-, ó) satisfying a generalized detailed-balance relation of the form

p~= (xT, yO) = p~(1— r, 90) (4.3.11)
p~(j~1O) Vx,yEI

or

R,(xr]y0)p,,~(y)= R~(9rli0)p.~,.(1). (4.3.12)

The process a may be related to a- for instance by time reversal of the sample functions combined with
a suitable transformation of the external fields, and we have allowed for a volume-conserving
transformation

x=�1x (4.3.13)
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of state space, consisting for instance of time reversal of the state variables combined with some
rotation or reflection. (The explicit representation of such a transformation 0 is optional; it may always
be absorbed into the definition of process ti.)

Integration of (4.3. 11) over y yields

p,,(x) = p~(1). (4.3.14)

If (4.3. II) is satisfied for some transformation 0, it is also satisfied for 0
We do not investigate further the microscopic conditions for the existence of a generalised

detailed-balance relation (4.3.11), but study some of its consequences. For a stationary Markov process.
one obtains from (4.3.12) by using (1.3.14) for the n-point probability the relation

p(XT)=p~”(.~—T). (4.3.15)

which implies corresponding symmetry relations for correlations tensors. In particular, one finds

Sfg(T)_ S,~j(r)v~~Sj~(—r), (4.3.16)

where the state functions f, ,~are defined by

J(i) = f(x), g(1) = g(x).

For the kernels of the stochastic operators I’,,, 1,-,, one finds by differentiating (4.3.12) with respect to
r and observing (4.3.14) the condition of generalized detailed balance

I,,(x,y)p,,~y)=[‘,,1)p,~.(1) (4.3.17)

= ~ 1)p~(x).

By applying the transformation (x —s ~, a- —~ ~), observing (4.3.14), and interchanging x and y, one finds

T~,,(x,y)= I5(~,~) (4.3.18)

on the support p,., i.e. the process ~ differs from a- at most by a transformation of state space.
Therefore, one may assume a- = ~, e~= 1 without loss of generality.

It is interesting to note that (4.3.17) implies the stationarity of p,,: If the equation is satisfied for some
function 1/’, i.e. if Im(x, y) 1/i(y) = F,,,(y, x) 1/i(x). then integration over y yields T~,t/i= 0, which shows that
1/’ is a stationary solution of the master equation.

Eq. (4.3.17) gives rise to an interesting relation between the spectral properties of processes ci and ó
[89]: Multiplication (4.3.17) by a left eigenfunction çc,~(x)of I,, to eigenvalue A~and integration over
x shows that

~ l/1,,,(1) (4.3.l9a)

defines a properly normalized right eigenfunction t/i,,~,, of I~to the same eigenvalue A~.Here, the
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function ~ is defined by ~~~(x)”~q~,,(1).Similarly, if p5~(i)is a left eigenfunction of I,~,then

~ i/i,,~(x) (4.3.19b)

defines a right eigenfunction t/i~,,.of I~to the same eigenvalue. The stationary distribution p0,(x) = p~(i)
is simultaneous right eigenfunction of I,, and I~to A = 0.

Of particular importance is the case of strict detailed balance: If I~(i,9) = I~(x,y) Vx, y, i.e. if the
process a- differs from a at most by a transformation 0 of state space, the condition (4.3.17) takes the
simple form

Ie,(x, y) p,,~y)= I~A.y,x) pe,(x). (4.3.20)

This case may always be reduced to the case a- = 6-, 0 = 1 by a redefinition of the process 6-. The
condition (4.3.20) has the important consequence that the master operator I,, becomes a symmetric
operator under the scalar product (f g) = ff(x) g(x) [ps(x)]

1 dx, and has therefore only real eigen-
values A. It may be explicitly symmetrised by the transformation

i’~’~”~(x,y) = [p~(x)1”2I(x, y) [p~(y)1~”2. (4.3.21)

4.3.E1. Detailed balance of the two-state Markov process
The time-homogeneous two-state Markov process with generator (2.2.17),

F(x, y) = ~(tho + ~i
0y)x (4.3.22)

satisfies the condition (4.3.20) of strict detailed balance, as is verified immediately by noting that the
stationary distribution is because of (2.2.27) given by

p~(x)=~(1_~9x). (4.3.23)

The master operator (4.3.22) may therefore be symmetrised by the transfonnation (4.3.21) yielding

f’~’
mm(x,y) = ~{tho(x+ y)+ po(l + xy)+ V~— á~(1— xy)}. (4.3.24)

Here, V~—á~is real on account of eq. (2.2.20).

4.4. Detailed balance of the Fokker—Planck process

Of particular interest are the consequences of generalized detailed balance for a stationary,
asymptotically stable Fokker—Planck process defined by the differential operator (see (2.3.9))

D
0,(x) (4.4.la)ax axax
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corresponding to the kernel (compare (2.4.18))

l~(x,y) = v~(y)- - x) + D~(y): - x). (4.4. lb)

We restrict the consideration to transformations 0 satisfying

= 1. (4.4.2)

Under such a transformation (which is now explicitly assumed to be linear) the state space becomes the
direct sum of an even and an odd invariant subspace, I = ~ I~,such that

1=0-x=~ X (XEIg) (4.4.3)
.—x (xEI0).

In a symmetry-adapted coordinate system, 0~,= 0,6k, with 0~= ±1.
By observing the rule

— x) = f(x)~-
6(y — x)+ (~-f(x))6(y— x) (4.4.4)

and noting that 6(9—i)” 6(,y—x). it follows that the detailed-balance relation (4.3.17) is equivalent to
the set of three equations

(D,,. —0 - 0)p,, = 0 (4.4.5)

~(v~+ 0- v~,,)p,, (Dop,r) = 0 (4.4.6)

~. ~ (4.4.7)

It is convenient to introduce the stationary probability current

= v~p,,— ~-. (D~p,,) (4.4.8)

and its even and odd components

j~=~(j,,+0-j,.) (4.4.9)

= ~(J~—0 - j,,,). (4.4.10)

By observing (4.3.14) and (4.4.5), one finds

(4.4.11)
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j~= ~ (4.4.12)

with the even and odd components v~of the drift vector defined in the same way as (4.4.9, 10). One
then obtains from (4.4.5)—(4.4.7) the set

D,. ns~(D.—0 - D,. 0) = 0 on the support of p~ (4.4.13)

j~= 0 (4.4.14)

(4.4.15)

which are necessary and sufficient conditions for generalised detailed balance. A covariant formulation
of these conditions has been discussed in ref. [67], and it can be shown that a transformation u—s a,
x —sO x obeying the generalized detailed-balance relation (4.3.11) exists for any Fokker—Planck
process [103].This result has, however, not proved very useful, because the stationary distribution has
to be known a priori in order to construct the transformation.

By applying the Fokker—Planck operator to the function xp~(x),we obtain with the help of (3.5.14)
further the relation

J I~,(x,y)yp~(y)dy = [v~(x) - v(x)] p,~(x), (4.4.16)

which will prove useful for the derivation of a fluctuation theorem (see section 5.2).
An important consequence follows in the case of nonsingular D,,. Then (4.4.14) leads to the

“potential condition”

~-lnp,,.=D’ .{v~_(-~.D7)} (4.4.17)

which yields the stationary distribution

p,~= Z01
1 exp(—~

0.) (4.4.18a)

with a distribution potential P~determined by

{v~_(~‘~De~~)}. (4.4.18b)

In the case of strict detailed balance, one has

~ ~ (4.4.19)

and the Fokker—Planck operator may be symmetrised by the transformation (4.3.21). It then becomes
equivalent to a Schrödinger-like operator
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= -.,f-- D -.,~- — V(x) (4.4.20)

with generally x-dependent anisotropic mass m = ~h2D1 and an effective potential

V(x) = — (~- D)] .iirl. — (-i- D)] ~~-!-- — (-i- - D)]. (4.4.21)

Comparison with (4.4.19) shows that the effective SchrOdinger potential V(x) may be expressed in terms
of the distribution potential ct(x) by

V(x)=.D~—~--D.~-~P. (4.4.22)

The useful set of relations (4.4.13—15) with 0 denoting time-reversal of the state variables has first been
obtained for the Fokker—Planck description of systems in thermodynamic equilibrium by Green [3]. For
a general Fokker—Planck process, the relations have been given by van Kampen [1041,Uhlhorn [105]
and Stratonovich [106].They have been rediscovered by Graham and Haken [107] and Risken [108],
who also showed that the relations (4.4.13—15) are necessary and sufficient conditions for detailed balance
of Fokker—Planck processes.

4.4.E1. Detailed balance of the Gauss—Markov process
The time-homogeneous n-component Gauss—Markov process is a Fokker—Planck process with (see

(2.2.36, 37))

v,,(x)=j.,~x+ã,~ ~ (4.4.23)

where we have dropped the subscript 0 for simplicity. The stationary distribution satisfies

In p~,(x)= —s~ (x — a,,), (4,4.24)

where a,, and s,, are related to o,., p,, and a,,, by (1.3.62, 63). Therefore, the stationary probability
current may be written

j,~(x)= fl,,. ap,,(x)/ax (4.4.25)

with the antisymmetric tensor

a,, = ~Pe, - Se, — ~ = ~ (4.4.26)

In the presence of generalised detailed balance, the even and odd components of the probability current
are given by

j~(x)= 11±-ap,,(x)Iax (4.4.27)
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where

fl±=~(fl,,±0”fl,,0), (4.4.28)

and the conditions (4.4.13, 14) take the form

= 0, a-,, = (4.4.29)

fl.- = 0, fl,, = fl_. (4.4.30)

The third condition (4.4.15) is automatically satisfied on account of the antisymmetry of fl_.
From (4.4.30) and (4.4.26) one obtains

u,, = —2j+ s, = —2s,,. - (4.4.31)

which shows that p.~.- s and therefore also

- = °0’ - (4.4.32)

is symmetric. Further, fl,, is given by

fl. = —g~.- s,, = +s,, - ~i, (4.4.33)

which shows that p - s, is antisymmetric, and

trp_=0. (4.4.34)

It is interesting to note that any Gauss—Markov process satisfies generalised detailed balance with 0 = 1
and 6- defined by

= a-,,. (4.4.35)

~= s,,-p~-s~ (4.4.36)

a, = —~ - (4.4.37)

such that

a0. = —a,,.. (4.4.38)

A vanishing fl,, implies simple detailed balance with 6- = a-.
In the case of strict detailed balance (4.3.20), the Fokker—Planck operator (4.4. la) may be sym-

metrised by the transformation (4.3.21). By comparison with (4.4.20, 21) one obtains (up to a minus sign)
the SchrOdinger operator

V(x) (4.4.39)
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V(x) = ~(x— a) C- (x — a) + V,, (4.4.40)

of a multi-dimensional harmonic oscillator with mass tensor

m=h2à~’. (4.4.41)

restoring-force tensor

(4.4.42)

and a constant background potential

V,, = ~trp,,. (4.4.43)

We restrict the furtherdiscussion to the case6-,, positive-definite and p~a“stability matrix” (see (2.2.49)).
If ~, and &~, commute, we recover the example treated in section 3.2.E2. In the general case, the
transformation

x = a-,~2 ~+ a (4.4.44)

diagonalizes the kinetic energy and yields

~s~rnrn = • — ~• At - A ~— V,,, (4.4.45)

where the matrix A is given by

A = - Jo a-’12 (4.4.46)

By using eq. (4.4.31), this may be written in the form

A = —~a-,Y~s u”2 (4.4.47)

which shows that A is Hermitian and negative definite, and the eigenfrequencies w, of the harmonic
oscillator are given by the negative eigenvalues A, of A. Further, by using (4.4.46) one finds for the
background potential (4.4.43) the expression

Vo=~trA~~A,<0. (4.4.48)

This shows that V
0 just compensates the zero-point energy of the harmonic oscillators, which is required

to ensure the eigenvalue A0 = 0 of the master operator.
We have thus found that the spectrum of the master operator (4.4.39) is given by

A{~,}=~n,A,, n,=0,1,2 (4.4.49)

where A are the eigenvalues of the operator A defined in (4.4.46).
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5. Linear response theory for stochastic processes

The study of linear response of a system to external test forces has proved to be a very useful method
for the investigation of the dynamics of systems in thermodynamic equilibrium [7, 109—112]. Apart from
giving the response of the system to actual perturbations, the generalised susceptibility yields in-
formation about relaxation towards equilibrium, about normal modes and via the famous fluctuation-
dissipation theorem [7,27, 28] about the fluctuations of the unperturbed system, even in cases where
experimental realization of the test forces may be difficult.

In this section, we develop the formalism to calculate the linear response of a Markov process to an
arbitrary external test force. The case of non-Markov processes has been treated in ref. [30,113]. We
shall be especially interested in fluctuation theorems relating the susceptibility to correlations between
fluctuations of the unperturbed system.

5.1. Linear response of a Markov process

We consider a stochastic process ~(t) which differs from a given reference process x(t) by a small
perturbation. The time evolution of the perturbed process is governed by the master operator

t(t)= I(t)+I”(t) (5.1.1)

where 1(t) refers to the reference process. We explicitly assume that both the unperturbed and the
perturbed process are of Markov character.

The perturbation I’(t) represents the change of the transition probabilities by an externally
controllable force F(t) which we assume to be real. For the purpose of linear response it is sufficient to
consider a linear coupling

I’(t) = F(t) 12(t) (5.1.2)

described by an operator 12(t) which for a nonstationary process will in general be time-dependent. The
force F(t) may be a mechanical, electric or magnetic force acting on the system, or may be of thermal or
chemical origin, describing a change of the coupling to the external reservoirs. From eq. (2.3.5) applied
to 1(t) one obtains a condition for the kernel of the operator 12(t),

J 12(x,y; t)dx=0, (5.1.3)

which guarantees conservation of probability normalization under the perturbation.
The master operator 1(t) generates the perturbed propagator R(t!s) for which one obtains the

Dyson-type equation

.1~(tIto)=R(tlto)+JR(tIs)I’(s)E(sIto)ds~ t t0, (5.1.4)

where R(tIt0) is the unperturbed propagator. The perturbation is assumed to be switched on after the
system is prepared at time t0 with initial distribution p(to) = Po.
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Up to linear terms in the force F(t), the probability distribution j3(t) = E(tlto)po of the perturbed
process is obtained by replacing R(slt) on the r.h.s. of (5.1.4) by R(slt) and using (5.1.2) as

15(t) = p(t) + f R(t~s)12(s) p(s) F(s) ds. (5.1.5)

The linear response of the statistical average of a stochastic variable f(t) assumed to be real, to the force
F(t),

(3f(t)) = (f(t))~~,1—~f(t))~(,) (5.1.6)

= f x(4 s) F(s) ds

defines the generalised susceptibility x(t, s).
From (5.1.5) one obtains

x(t, s) = O(t — s) J f f(xt) R(xtJys) [12(s)p(s)]y dx dy, (5.1.7)

where the unit-step function O(t — s) guarantees the causality requirement (the integral in (5.1.6) may
then be extended to 00)

For a nonstationary process, the susceptibility x(t2, t1) depends separately on two time instants t1 and
t2. From an experimental point of view, x(t2, t1) can be measured as the response at time t2 to a
6-impulse at time t1. Similarly, its double Fourier transform

X(w2, w1) = Jf x(t~,t1) exp[i(w2t2 — witi)] dt2 dt1 (5.1.8)

can be measured as the response at frequency w2 to a unit-amplitude harmonic force at frequency w1.
The susceptibility X(w2, w1) may be extended to complex frequencies z2, z1. From the causality

requirement x(t2, t,) = 0 for t2 < t1, it follows that X(z2, z1) is separately regular in the upper half-planes
of both variables z2 and z1, and one obtains the spectral representations

X(Z2,Z1)~ f~~z1)dwf (5.1.9a)

(Im z,, Im z2 >0).

~ jx(z2,w’)d~ (5.l.9b)
2~n z1.—w

On the real axes, this yields dispersion relations between real and imaginary parts of X(w2, w1) in both
frequency variables w2 and w1 separately [114],



                                                                                277

X’(Wz, w5) = ~ X”(W’,(~)i)dw’ = x”(w2,w’)d~’ (5.1.lOa)

X”(W2, Wi) = — ~ ~X’(W’, w1)dW, = — I ~.X~W2,W’)dW, (5.1.lOb)

where ~ denotes the principal value of the integral.
For real F(t) and f(t), X(t2, t1) is real, and one obtains the reality condition

x(—z~,—zfl = X*(z2, z1). (5.1.11)

Thus, X(z2, z1) is real for purely imaginary z2, z1. On the real axis, one has the symmetry relations

X’(w2, ~1) = X’(~v2, w’) (5.1.12a)

X”(W2, —w1) = —X”(w2, w1). (5.1.12b)

If the unperturbed process is strictly stationary, R(tls) = R(t — s), p(t) = Ps, the operator ~Qis
independent of time. If in addition the variable f does not explicitly depend on time, then the
susceptibility becomes time-homogeneous,

x(s + r, s) x(r) = 0(r) Jf f(x) R(xr~y0)[Ilps]ydx dy, (5.1.13)

and in Fourier space, one obtains a linear response only at the frequency of the driving force,

x(w, w’) = x(w) - 2~6(w— w’), (5.1.14)

where

x(w) = J x(T) exp(iwT) dT. (5.1.15)

The spectral representation (5.1.9) and the dispersion relations (5.1.10) then take the familiar form

~(z) = J ~ dw’ (Im z >0) (5.1.16)

and

x’(w) = ~- ~ dw’ (5.1.17a)
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x”(w)= _IfX;(~dw~, (5.l.17b)

respectively, and for real F and f one has the reality conditions

x(~~z*)=x*(z) (5.1.18)

= x’(w), x”(W) = x”(w). (5.1.19)

Another important case is the response to a constant unit force which is switched off at time t = 0. This
response, which describes the relaxation of the system back to its stationary state, is given by the
relaxation function

~Ji(t)r Jx(r)dr. (5.1.2(J)

Its initial value is the static susceptibility

(5.1.21)

5.2. Fluctuation theorems

The form of eq. (5.1.7) suggests to introduce a stochastic variable ~t(t) associated with the
perturbation I’(t) = F(t) 12(t) by the definition

~J(xt)p(xt)= [12(t) p(t)]~. (5.2.1)

The statistical average of ~(t) vanishes on account of eq. (5.1.3).

= 0, (5.2.2)

i.e. ~I(t) represents a fluctuation of the system. Therefore, the expression (5.1.7) for the susceptibility
takes the form of a fluctuation theorem [114, 115]

x(t, s) = 0(t — s) (f(t) i~(s)) (5.2.3)

= 0(t — s) (p(t) i5(s)) 6(t — s) S~(t,s),

connecting the response to an external perturbation with the unperturbed correlation between the
fluctuations ~(t) = f(t) — (f(t)) and ~J(t).

We now restrict the discussion to strictly stationary processes and to variables f which do not depend
explicitly on time, such that the susceptibility becomes time-homogeneous.

x(r) = 0(r) ~çc’(r)~~(0)) 0(r) S~(r). (5.2.4)
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In this case one may derive an alternative fluctuation theorem which resembles more closely the
fluctuation-dissipation theorem for equilibrium systems [7,27, 28]. With the perturbed process described
by the stochastic operator 1(t) = I + F(t) 12 we associate an accompanying distribution (“begleitende
Verteilung”) pa(F(t)) defined by

[I + F(t)Q]pa = 0. (5.2.5)

Physically, pa(F(t)) represents the stationary distribution in a system in which F(t) is frozen at its
instantaneous value. Note that Pa depends on time only indirectly via F(t).

The linear response 8Pa to F(t) is determined by

16Pa + LiPs F(t) = 0. (5.2.6)

We define a variable ci’ associated with the perturbation 1’(t) = 12 F(t) by the relation

5pa(x; F(t)) = çlr(x) Ps(X) F(t), (5.2.7)

such that

[flPs]x = — J 1(x, z) çfr(z) Ps(Z) dz. (5.2.8)

It is not necessary to assume that the accompanying distribution is normalizable, but we will assume
that Pa(F = 0) = Ps and that 6N = f 8pa(x; F) dx exists. The value of 8N may then be made equal to
zero by a change of normalization Pa5Pa/(l + 6N). For this normalization, i/i(x) again represents a
fluctuation of the system,

(5.2.9)

and the expression (5.1.13) may be written

x(r) = -0(r) JJ ff(x) R(xrlyo) 1(9, z) çi’(z)ps(z) dx dy dz. (5.2.10)

By using eqs. (2.2.10) and (5.2.9), this may be transformed into

x(r) = —0(r) ~- ff tp(x) R(xrjzo) cii(z)p
5(z) dx dz

T (5.2.11)

= —0(T) ~- (ço(r) i/i(0)) —0(r) dS,~,~,(r)

which again connects the linear response with an unperturbed correlation between the fluctuations
= f— (,f) and i/i. However, whereas the variable i~is given explicitly by eq. (5.2.1), the variable i/i is

given only implicitly as the solution of (5.2.8), or equivalently, if the accompanying distribution pa(F) 15
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assumed to be known as function of F, by the derivative

t/i(x)p5(x) = 3pa(x; F)/aFIF,). (5.2.12)

With the help of the spectral decomposition (3.2.12) of the conditional probability, we obtain a special
representation of the susceptibility tensor. We assume that the eigenvalue A,, = 0 is nondegenerate, i.e.
the stationary distribution p. is unique, and find in analogy to (3.2.16, 17)

x(r) = 0(r) ~ g~h~*exp(A~r) (5.2.13a)

= —0(r) ~ A~g~h~*exp(A~r), (5.2.l3b)

or in Fourier space

x(w) = — A~+ iw g~h~* (5.2.l4a)

= ~ An+k) g~h~*, (5.2.14b)

where the g. and h~are defined as in eq. (3.2.14, 15) in terms of the eigenfunctions c~,,,,t/j, of the master
operator, *

g=J~(x)~~(x)dx (5.2.l5a)

h~’”=(~,,) (5.2.lsb)

~ = (tII(pn). (5.2.15c)

We illustrate these concepts by a few specific situations. A classification of fluctuation theorems for
Markov processes is given in ref. [115].

1. Isolated system with Liouville dynamics
Here, the time evolution is governed by the Liouville generator

I={H(x), }, (5.2.16)

where H(x) is the Hamiltonian, and { } are the Poisson brackets. The perturbation is described by a
Hamiltonian

H’(x) = —F(t) g(x), (5.2.17)

* The left and right eigenfunctions ~,,,~ of the master operator should not be confused with the state functions ~ = f — (1) and ~i.
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i.e. the operator 12 has the form

12 = —{g(x), }. (5.2.18)

For a canonical stationary distribution

p5(x) = Z
1 exp[—H(x)/kT], (5.2.19)

one then finds from eq. (5.2.1)

i~t(x)= {g(x), H(x)}/kT ,,~(x)/kT, (5.2.20)

and from eq. (5.2.8)

t/i(x) = g(x)IkT, (5.2.21)

and therefore from both eqs. (5.2.4) and (5.2.11)

~(r) = — §~1~~- ~ (r) g(0)) = — ~ dS~(r) (5.2.22)

which is the classical fluctuation-dissipation theorem in the time domain [7].
It should be noted, however, that in this case of an isolated system not in continuous contact with a

heat bath, the usual derivation of linear response amounts to assuming linear perturbations of the
system trajectories, an assumption which is valid only for unphysically small values of the external force,
as has been emphasized by van Kampen [116,117].

2. Canonicalform of accompanying distribution
If the solution of eq. (5.2.5) is of the form

pa(x; F) = [Z(F)]’ exp[—c1(x)+ Fh(x)], (5.2.23)

i.e.

6pa(x; F) = F - [h(x)—(h)] ps(X), (5.2.24)

then one sees by comparison with (5.2.7) that

cii(x)= h(x)—(h~ (5.2.25)

and therefore

x(r) = —0(r)~-(~p(r)h(0)) —0(r) dS,,~h(T) (5.2.26)
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3. Gradient perturbation
An important case is the coupling of a vector force F to the gradient of the probability distribution,

[I’(t)p(t)]~ = —KF(t) ap(xt)/ax, (5.2.27)

i.e.

12 = —~ a/ax. (5.2.28)

One finds from eq. (5.2.1) [114]

8(xt) = —K -,~- In p5(xt). (5.2.29)

For a stationary Fokker—Planck process obeying generalized detailed-balance symmetry, with a constant
nonsingular diffusion matrix, one finds from eq. (4.4.17)

t~t(x)= K - v~(x), (5.2.30)

where v~is the even part of the drift vector. In the case of strict detailed balance (4.4.19), one obtains
by using eq. (4.4.16)

~(x)p5(x) = —K - f I(x, y)yp~(9)dy, (5.2.3 1)

whence by comparison with (5.2.8)

(5.2.32)

For the response of the state vector x, one thus finds the fluctuation theorem [118]

~(r) = - 0(r) K 0’ - ~- ~(r) ~(0)) - 0(r) K D~ ~ (5.2.33)

This may be generalized to the case of an odd drift vector v~related linearly to the even drift vector v~
[115].

5.2.El. Linear response of the two-state Markov process
A general perturbation of the two-state process has the form

1’(t) = F1(t) ( ~)+ F2(t) (~- = F1(t) 12~+ F2(t) 122 (5.2.34)

where
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121(x, y) = —~x(1+ y), 122(x, y) = +~x(1— y) - (5.2.35a)

Here, F1 and F2 have the significance of a change of the transition probabilities w21 and w12 respectively
(see (2.2.21)). The operators 111, 12~may be expressed in terms of the Pauli matrices a-1,2,3 (see (2.2.19))
as

122 —~(1— a-1 + ia-2 + a-3), 11~= —~(1— — ia-2 — a-3). (5.2.35b)

The functions ~1(x), 1~2(x)defined by (5.2.1) are found by using the representation (1.1.18) of the
unperturbed distribution p(x, t) to have the form

1~1(x,t) = — 1 —a(t)’ 1~2(x,t) = + 1 +a(t)’ (5.2.36)

where ~ = x — a. The response of the state variable x to the forces F1(t), F2(t) is obtained from (5.2.3) in
terms of the auto-covariance s(t2, t1) = (~(t2)~(t1))as

xi(t2, t1)= — 0(t~—t1) (5.2.37a)

x2(t2, t1) = + l+(t) 0(t2 — t1). (5.2.37b)

By using eqs. (1.3.28) and (1.3.22) this may be written in the form

xi(t2, t1) = —[1 + a(t1)] p(t2, t1) 0(t2 — t1) (5.2.38a)

x2(t2, t1) = +[1 — a(ti)] p(t2, t1) 0(t2 — t1). (5.2.38b)

For a stationary process, we could alternatively have started from the accompanying distribution

pa(x; F) = ~[1+ á(F) x], (5.2.39)

where

â(F) = p2+Ft (5.2.40)

The functions ~1(x), i/12(x) defined by eq. (5.2.7) are found to have the form

ciit(x) = +4-~—~----, t/12(X) = — 4-~—~—, (5.2.41)

and eq. (5.2.11) yields the response

xi(r) = ——-~-—~-~ (5.2.42a)1—a po dr
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X2(T) = + ~ (5.2.42b)

By using eqs. (1.3.28), (1.3.22) and (2.2.28), this may be written

Xi(T) = —(1 + a) 0(r) exp(f~or) (5.2.43a)
= +(1 — a) 0(r) exp(jior), (5.2.43b)

which agrees with (5.2.38a, b) for a stationary process. Fourier transformation yields the spectral
representation

Xi(W) = + (5.2.44a)po + 1W

X2(W) = — .~ — . (5.2.44b)
Po + 1W

We obtain a pure relaxation with relaxation frequency p0.
Instead of the forces F1 and F2 representing perturbations of the transition rates w21 and w12 we

could have considered perturbations F,, F,, of the quantities ho, cio determining the generator (2.2.17) of
the process. On account of eq. (2.2.21), the two sets are related by

F~=—F1—F2, F,,=—F1+F2, (5.2.45)

and the response to F,, F,, is given by

xP(t2, t1) = + X2) = p(t2, t1) a(t1)0(t2 — t1) (5.2.46a)

X,,(t2, t1) = ~Xi — X2) = p(t2, t1) 0(t2 — t1) - (5.2.46b)

5.2.E2. Linear response of the Gauss—Markov process
We consider a state-independent perturbation of the drift,

i3(xt) = v(xt) + F(t). (5.2.47)

Eq. (2.2.33) shows that the perturbation of the master operator is represented by the gradient operator

11=—a/ax. (5.2.48)

The functions 1~1(x),i~2(x)defined by (5.2.1) are found by using the representation (1.1.18) of the
distribution p(xt) as

t~(xt)= [s(t)]’ - ~, (5.2.49)

where ~ = x — a(t). The response tensor of the state variable x is found from eq. (5.2.3) in the form
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x(t2, t1) = s(t2, t1) - [s(t1)]~0(t2 — t1) - (5.2.50)

By using eq. (1.3.47), this may be written

x(t2, t1) = p(t2, t1) 0(t2 — t1) . (5.2.51)

For a stationary process, we could have started alternatively from the accompanying distribution

Pa(X F) ps(x; a — p~j~- F). (5.2.52)

The function i~r(x)defined by eq. (5.2.7) is found to have the form

i~c(x)= —~ s - ~ (5.2.53)

and eq. (5.2.11) yields the response tensor

d -t
X(r)=0(r)~—~s(r).s Po - (5.2.54)

By using eqs. (1.3.47) and (2.2.46), this may be written

x(T) = 0(r) exp(~or), (5.2.55)

which agrees with (5.2.51) for a stationary process.
This result shows that one obtains a superposition of relaxation processes with relaxation frequencies

given by the eigenvalues of —pr,.

53. Sum rules and continued fraction expansion

The frequency moments of the dynamic susceptibility x(w) can be expressed in terms of equal-time
correlation functions. Such relations are called sum rules.

From the Fourier inversion of eq. (5.1.15) it follows that the frequency moments X~of x(W) are
given by the time derivatives of x(T) at r = 0÷,

Xns~ J (~iw)kx(~)dw= dkx(r)~~ (5.3.1)

as long as both sides exist. If the even and odd parts of x(w) vary for w —~ ±o~as W~”~
1~and W~~0+O,

respectively, then the l.h. side exists only for k even and <ne or k odd and <n
0, whereas the r.h. side may

exist for any k.
The time derivatives of x(r) can be found by differentiating the fluctuation theorems (5.2.4) or

(5.2.11). From the forward equation (2.2.4) we find

d”R(rIO) k
dr” ~ = I ; 1, (5.3.2)
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where T~<is the k-fold iterated propagator. We thus obtain the sum rules (k <Or. n~)

(~~) S~0, (5.3.3a)

= k÷I)—S~k~), (5.3.3b)

where ~k and t,lJk are defined by

~k(x)ps(x) = f Ik(x, y) i~(y)p5(9)dy (5.3.4a)

~k(X) ps(X) = J Fk(x, y) ~(9) p5(9) dy, (5.3.4b)

respectively.
It is of practical interest to express the dynamic susceptibility x(w) in terms of equal-time correlation

functions. We assume that ~(r) has a convergent Taylor expansion at r =

cb(r) = 0(r) ~ rk. (5.3.5)
k=()

Substituting this series in eq. (5.1.15) and observing ~ r’< exp(iwr) dr = k !/(—iw)”~yields an expansion
of x(w) in l/w,

x(w) = ~x~/(_iw)k~~, (5.3.6)

with coefficients given by eq. (5.3.3). This series, which will in general be only semiconvergent, may be
written in the form of continued fraction expansions

C1 c~ c1
x(w) = ~ + ~ (5.3.7a)

_________ b2
—iw—a1+ —iw—a2+~~’ (5.3.7b)

which usually show fast convergence. The coefficients c,,, a~and b~ are given in terms of the
determinants

A,, = 1, Ak = det : (k  1), (5.3.8a)

and
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/ ~ X~° \
B1 = 1, Bk = det I ~ (k  2) (5.3.8b)

X°’
1~ - X(2k3))

as

— .4 — AklBk±I — Ak±jBk
— i-li, C2k — — ,~ ,, , ~ — — A D

~kDk .~1kl~k±1

and

b
1=c1, a1=—c2 (5.3.10)

bk+l = C2kC2k÷1, ak+1 = —(C2k±I + c2k±2).

For the calculation of high-order coefficients a convenient recursive algorithm has been developed [115,
119].

6. Specific systems

In the following, we discuss the stochastic behaviour of a number of specific systems. These may
serve to demonstrate the application of the general concepts developed in the previous sections to
problems of physical interest. In addition, the cases considered are intended to elucidate some aspects
which have not been treated in the general theory. Of major interest is the problem of phenomenologi-
cal modelling, i.e. of constructing a stochastic model of a macroscopic system, based on its
phenomenological laws of motion, without recourse to the underlying microdynamics. Another problem
discussed for the various cases is the size scaling, i.e. the dependence of the fluctuation properties on
the size of the system [48,49]. This is of particular importance in the case of systems which in the
absence of fluctuations would show instabilities and multi-stable behaviour.

6.1. Brownian motion in a potential

Brownian motion has played an important role in the development of the theory of stochastic
processes [1,2, 7, 13, 18, 120, 121]. It has found application as a model for a variety of physical systems
[1, 5, 42, 122—128]. In the following we consider a single Brownian particle of mass m in an external
potential U(x), interacting with a thermal environment, a heat bath at temperature T The interaction
with the heat bath gives rise to friction described by a constant friction coefficient y >0, and to
fluctuating forces described by Gaussian white noise. We then have for position x and velocity u the
system of SDE’s (see section 2.4)

dx=udt (6.1.1)

du = _(I aU(x)~yu’~)dt+bdw(t)\m ax

with b = const., which is equivalent to the Fokker—Planck equation
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(6.1.2)

In the case of a confining potential, U(x) —~ 00 for x -~ ±00,the stationary state is the thermal equilibrium
state given by the Boltzmann distribution

p5(x, u) = Z’ exp[—(~mu
2+ U(x))/kT]. (6.1.3)

In order that this is compatible with the Fokker—Planck equation, the friction constant y and the
velocity-diffusion coefficient D~= ~b2must satisfy the Einstein relation

D~=kTy/m. (6.1.4)

It may further be verified that the process satisfies the detailed-balance conditions (4.4.13—15) with a
nonvanishing odd drift vector

v(x, u) = (u; — -—~J2~). (6.1.5)

Therefore, the Fokker—Planck operator will in general have complex eigenvalues.
In the case of a driven system with a non vanishing stationary particle current, e.g. for U(x) =

U
0(x) — Fx, U~,periodic or constant, with finite driving force F, there does not exist a universal form

like (6.1.3) for the stationary distribution. It is not even certain that the ansatz (6.1.1) with b = constant
is justified in this case.

In the case of strong damping, adiabatic elimination of the momentum leads to the Langevin equation
for the position

dx~—~---~dt+~dw(t), (6.1.6)
myax y

which is equivalent to the Smoluchowski equation

(6.1.7)
at myax ax / 3x

with position-diffusion constant

~ (6.1.8)y my

It has to be noted that the validity of this Smoluchowski approximation depends on a condition
depending both on the damping constant y and on the gradient aU/ax of the potential [1,42, 129, 130].*

In the following, we calculate the linear response of an equilibrium system to an infinitesimal driving
* Eq. (6.1.7) is a good approximation for times long compared to y~and if on the length scale I = (kT/my

2)”2 neither the potential nor the force
vary appreciably: i.e.. 1 aU/ax ~akT. I. a2U/ax2 ~ aU/ax.
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force F(t). The perturbed system is described by a potential

U(x, t) = U(x)— xF(t), (6.1.9)

giving rise to a gradient-type perturbation

ia
au

of the master operator. The linear response of the velocity variable, i.e. the mobility of the particle, is
obtained from eqs. (5.2.4, 29) and (6.1.3) as

Xu(T) = ~~u(T) u(0)~ S~~(r). (6.1.10)

We have thus found the well-known result that the mobility is given by the velocity-autocorrelation
function.

The linear response of the position variable, i.e. the ordinary susceptibility of the particle in the
potential U(x), is given by

Xx(T) = ~~x(r) u(0)) S~~(r), (6.1.11)

which is equivalent to the usual form of the fluctuation theorem

Xx(T) = — ~ (x(r) x(0)) — ~ dS,~,(r) (6.1.12)

The two response functions Xu and Xx are obviously related by

Xu(T) = d~~(r)/dr (6.1.13)

Xu(W) = iWx~(w) (6.1.14)

in the time and frequency domain, respectively.
We now discuss the qualitative behaviour of the response for co —~ 0:
— If U(x) increases more strongly than linear,

U(x)/IxI_*00 for x-~±~,

then the perturbed potential (.1(x) = U(x) — Fx is still confining. Thus, a static force cannot give rise to
a stationary current in any order of F, but will induce a finite displacement of the average position from
its equilibrium value (x) = 0. In linear response,

Xx(co)~X~h1nujteT forw—*0. (6.1.15)
x~(w)——1coX~~°J
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For the simple example of a harmonic oscillator,

U(x) = ~mw0
2x2, (6.1.16)

one obtains explicitly (see ref. [2])

Xx(W) m(w~_~2_iyw) for all co, (6.1.17)

Xu(~ m(w~-w2-iyw)

which is identical to the deterministic result. Of greater interest is the case of a particle in a multiwell
potential, because of the conflict between deterministic multistability and stochastic asymptotic stability.
We refer to section 6.3 where we discuss a problem equivalent to Brownian motion in a double-well
potential.

— If U(x) increases less strongly than linear,

U(x)/Jxj—~0 forx-*±00,

then the perturbed potential U(x) = U(x) — Fx is no longer confining, and a static force will give rise to
a nonvanishing current, while the average position will get displaced an infinite amount. However, both
the position xm and the value Urn = U(xm) of the potential maximum go to infinity when F—*0 (e.g. if
U(x) ‘-~ x’~(0 < a < 1) then Xrn =~F t/(t~,,)and Urn ~ F~/tl~~t).Therefore, the current vanishes exponen-
tially when F—*0, and the mobility is still zero:

Xx(~~)~00)

~ forw—~-0.
xu(w)—*OJ

We thus expect an algebraic singularity at co = 0,

Xx(W)~0~ T 0<p<l. (6.1.19)
Xu(W)’~ J

— If U(x) is not confining, then no normalizable stationary distribution exists on the infinite interval.
The case of a periodic or constant potential may still be treated by using the Fokker—Planck equation
(6.1.2) and the equilibrium distribution (6.1.3) with periodic boundary condition.* In this case, one
expects a finite static mobility x~= Xu(W = 0) and a diverging static susceptibility, i.e.

X~(~°)”X~(s) T for w—*0. (6.1.20)
xx(w)—*iw Xu ~00J

The position coordinate x of a Brownian particle in a periodic or constant potential is expected to show
* It shouldbe noted that rigid walls are unsuitable as boundary conditions, because they would stop the current for any value of the applied field.
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diffusive behaviour for t —~co• This can be seen by writing eq. (6.1.10) in the form

(u(t’) u(t”)) = kTx~(It’— t”I) (6.1.21)

and integrating over t’ and t” between 0 and t, which yields

([x(r) — x(0)J2) = 2kT• t J (1— nt) Xu(T) dn. (6.1.22)

It can be shown that ~ TXu(T) dT = dx,,(w)/d(iw)I~,,.o<~. Therefore, one obtains asymptotically for
t—*co

([x(t) — x(0)]2) -~2 kTX~-t 2D~,t, (6.1.23)

where D~is a renormalized position-diffusion constant related to the static mobility x~by an Einstein
relation

= ~ (6.1.24)

In the Smoluchowski limit one finds [5, 148]

= DX{~JJ exp[U(x)/kT] dx ~jJ exp[— U(x)IkT] dx} (6.1.25)

 D~,

where L is the period.
For a sine-potential, the mobility Xu is studied numerically in ref. [131].
For a constant potential, one finds the well-known result for free Brownian motion

1
Xu(W) m(y—iw)

for all co, (6.1.26)
1

Xx((0) = —iwm(y — iw)

which agrees with the CO~-+0 limit of the harmonic oscillator. The position-diffusion constant takes the
value

D~= kT/my = DJ
7
2. (6.1.27)

in agreement with the Smoluchowski result (6.1.8).
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6.2. Nonlinear conductance

We consider a simple electric circuit consisting of a nonlinear resistance element R, e.g. a p—n diode,
in contact with a heat bath at temperature T, and driven by a current source It” (fig. 7). The element
has a capacity represented by the constant capacitance C, such that the voltage V across the element is
related to the charge 0 by V= 0/C. The nonlinearity is described by a voltage-dependent conductance
G(Q) > 0, which will in general depend parametrically on temperature. On the deterministic level, the
relaxation towards the steady state 0. G(Q~)= ~ is governed by the phenomenological law

Q = —G(Q) Q/C+ Jext (6.2.1)

We use this system to discuss in some detail the problems which arise in constructing a stochastic model
in such a nonlinear situation. We disregard the discrete nature of the charge and treat 0 as a
continuous stochastic variable. The current fluctuations induced by the coupling to the heat bath are
modelled by Gaussian white noise modulated by a state-dependent amplitude b(Q) (multiplicative
noise). We thus write the nonlinear Ito—SDE (see section 2.4)

dO = v(Q) dt + b(Q)• dw(t), (6.2.2)

and the corresponding Fokker—Planck equation

ap(Q, t) = — [v(Q) p(Q, t)] + [D(Q) p(Q, t)] (6.2.3)

where the drift v(Q) and the diffusion coefficient D(0) = ~[b(Q)]2are two as yet undetermined
functions of 0.

In the driven case ~  0, little can be said about the stochastic process on the basis of the
phenomenological law (6.2.1) alone, even if we regard Je~~tas a nonfluctuating quantity. The only
general condition which the stochastic process must satisfy is that it is macroscopically compatible with
(6.2.1) (see below). It is true that the probability current vanishes in the stationary state, i.e. the
“potential condition” (4.4.17) is satisfied, and the stationary distribution P~(0)is given explicitly by eq.
(4.4.18),

p~(Q)= Z~exp[—P(Q)I (6.2.4)

with a distribution potential ‘~P(Q)obtained by integration of (4.4.19),

H
HRh-ET 1 w 274 115 m 327 115 l S BT 

Fig. 7. Nonlinear resistance element R with intrinsic capacitance C driven by external current 1~”,and in contact with heat bath at temperature IC
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1 ~ (Q)dD(Q)1 (625)
dQ D(Q)~V dQ j~

However, this just determines p~(Q)for given functions v(Q) and D(Q), but in the driven case does not
represent any condition on these functions.

In the case of the open circuit je~~t= 0, on the other hand, the steady state is a thermodynamic
equilibrium state, in which case we have the additional information that the stationary distribution has
the canonical form

p~(Q)= Zt exp(—Q2I2CkT), (6.2.6)

since E = Q2/2C is the energy of the charged capacitance. This yields a relation between v(Q) and

D(Q) of the form
— QD(Q) dD(Q) 627CkT + dQ ( . . )

Together with the condition of macroscopic compatibility, this relation essentially determines the
process, except for finite-size corrections, as we will now show.

If G= G
0 were independent of Q (linear conductance), we could set v(Q) = — G0Q/C, and obtain

from (6.2.7) for the constant diffusion coefficient D0 the Einstein relation

D0=kTG,,. (6.2.8)

For the nonlinear conductance G(Q) we introduce the hypothesis of a generalized Einstein relation as
put forward in refs. [132a,b]

D(Q) = kTG(Q). (6.2.9)

With this ansatz, we obtain from (6.2.7) for the Ito—Drift

v(Q)= —G(Q) Q/C+ kTdG(Q)/dQ, (6.2.10)

i.e. a correction to the deterministic law (6.2.1). It should be noted that the fluctuation-induced drift
(2.4.12)

v
t(Q) = ~bdb/dQ = ~kT dG(Q)/dQ (6.2.11)

amounts to only half the correction in (6.2.10), such that the Stratonovich drift

u(Q)= v(Q)— vt(Q)= —G(Q) Q/C+~kTdG(Q)/dQ (6.2.12)

also deviates from the deterministic law.
In the Fokker—Planck equation, the extra term may be combined with the diffusion term such that
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ap(Q, t) = ~ [G(Q).~p(Q, t)+ kTG(Q) ap(Q, t)] (6.2.13)

which corresponds to a different separation of the probability current into drift and diffusion (see refs.
[133,134]),

j(Q, t) = v(Q) p(Q, t) — ~ [D(Q) p(Q, t)1
(6.2.14)

= —G(Q).9~p(Q~t)— kTG(Q) ap(Q t)

In order to discuss the significance of these deviations of the drift from the deterministic law (6.2.1), we
recall that the latter has to be understood as the asymptotic law for large systems (“thermodynamic
limit”), and study the dependence of the various terms on a size parameter 11, e.g. the cross-sectional
area of the p—n junction. We introduce the intensive variable q = 0/12 and denote 12-independent
quantities by a bar, such that C = Cli, G(Q) = G(q) 11. The important fact to realise is that the current
fluctuations scale with

12t/2, i.e.

b(0)= b(q)Q”
2 (6.2,15)

whence

D(Q) = D(q) 12, (6.2.16)

and drift _and diffusion coefficient in the Fokker—Planck equation for p(q, t) become —q G(q)/C+
(kT/11) dG(q)/dq and D(q)/I’2, respectively. The ansatz (6.2.9) is consistent with the scaling (6.2.16) andeqs.
(6.2.10) and (6.2.12) show that the deviations of the drift from the deterministic law (6.2.1) are of order 11°,
i.e. represent finite-size corrections:

v(Q) = —12q G(q)/C+ 0(12°). (6.2.17)

This result shows that in thermodynamic equilibrium the nonlinear Einstein relation (6.2.9) guarantees
the compatibility of the stochastic description with the deterministic law in the thermodynamic limit.*
Deviations from the ansatz (6.2.9) may, in fact, occur, but at most of order 11°,in order not to violate
this compatibility. Such deviations amount to higher-order terms in the fluctuations (6.2.15).

We have thus obtained some understanding of the remarkable fact that phenomenological laws like
(6.2.1) hold in the thermodynamic limit independent of the stochastic preparation of the system. It is
important to realize that this is true_only for the leading term in 12. For size effects in the conductance,
i.e. deviations of G(Q) from 11 G(q), the phenomenological law is expected to depend on the
stochastic preparation. Unfortunately, such effects are ordinarily too small for experimental in-
vestigation, except possibly at critical points where different 12-scaling laws apply.

* Stnctly speaking, the deterministic law (6.2.1) is a relation between mean values, whereas q and G(q) in (6.2.17) are of course still fluctuating
quantities. But the difference between {q G(q)} and (G((q))) will again scale with 11’, i.e. represent another finite-size correction 1135].
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For small driving currents, one may perform a perturbation expansion around the thermodynamic
equilibrium state. It is important to realize that the validity of this procedure is restricted to the terms
linear in ~ In higher order, one has to take Joule heating and heat exchange with the reservoir into
account, and the temperature of the sample (if it can still be defined) differs from the bath temperature.
Thus, already the deterministic description (6.2.1) is incomplete, and has to be supplemented by a heat
transport equation. Analogous complications arise in other driven systems.

We now calculate the linear response of the voltage V = 0/C to the driving current ~ i.e. the
differential resistance Xv- The perturbed drift is

i3(Q, t) = v(Q) + Iexi(t) (6.2.18)

yielding a gradient-type perturbation

F1(r) = —I”(t) a/aQ (6.2.19)

of the Fokker—Planck operator. Therefore, the linear response is given by eq. (5.2.4, 29). From the
Gaussian character of the stationary distribution (6.2.6), we thus obtain the Nyquist theorem

Xv(T) = (V(r) V(0)) = Svv(r). (6.2.20)

Because the Fokker—Planck operator defined by (6.2.3) satisfies the condition of strict detailed balance
(4.4.19) with o- = a, OQ = 0, it has only real eigenvalues. Therefore, Xv(T) is a monotonically decreasing
function,

1/C= Xv(T = 0)  Xv(T) >0. (6.2.21)

In the case of a linear conductance G= G0, the Fokker—Planck operator has eigenvalues A,. = — nG0IC
(see section 3.2.E2), but X°v(n)consists only of a single relaxation term,

X°v(T) = 0(r) exp(—Gor/C) (6.2.22)

i.e.

= G0 —iwC (6.2.23)

in agreement with the deterministic result.
For small nonlinearity,

G(Q) = G0(1 + aQ + $Q
2), (6.2.24)

one may perform a perturbation expansion in a and /3 [136,137]. One finds that to first order in a and
~8,Xv(T) still is a single exponential with an eigenvalue shifted linearly with /3 (clearly, the eigenvalues



296                                                                                 

can depend only on even powers of a). The higher eigenvalues enter with amplitudes starting with
second order in a and /3.

6.3. Bistable tunnel diode

Of specific interest are driven nonlinear systems in which the nonlinearity leads to instabilities and
bistable behaviour in certain ranges of the driving forces. Following Landauer [821we consider here a
tunnel diode with a current-voltage characteristic shown in fig. 8, driven by a current source.
Disregarding fluctuations, the system has for currents I <It one stable stationary state with voltage
V~1(I),for currents I such that I~K 1 K I,~two stable stationary states with V~1(I)and V~2(I)and an
unstable one with V~3(I),and for I > I~again one stable stationary state with V~2(I).For I/la and
I”~I~,the states V~1(I)and V52(I), respectively, loose their stability, and a switching occurs to the other
stable state. The tunnel diode thus represents a driven system showing a discontinuous (ist order-type)
non-equilibrium phase transition between a low-voltage state

1/st and a high voltage state Vs
2.

— 1(V) * <IEsakI)+ (I>N

—~ _~t____l__~..,_~ ~ V zeN/C

/ v~1 v~3 v~ v / <~>

Fig. 8. Static current-voltage characteristic 1(V) of a tunnel diode. Fig. 0. Esaki current ( 1 and Zener current (———) contributing to the
For currents I between 1~and I,, there exist two stable stationary static charactcristic.
states V,1 and V,2 and one unstable stationary state V0.

In a stochastic description, this phenomenon of bistability generates a number of interesting
problems. In particular, there arises the question of how to reconcile the deterministic bistability with
the existence of a unique stationary probability distribution. For the study of these problems, one needs
a stochastic model valid under arbitrary driving conditions. As discussed in the preceding subsection,
little can be said about such a model on general grounds. Therefore, we construct a stochastic model
based on specific knowledge of the underlying physical processes for this particular system. We still
disregard, however, the complications due to Joule heating and heat transfer to the environment which
in principle always occur in driven systems. Essentially the same model describes a variety of other
discontinuous transitions, e.g. chemical instabilities [9,84, 86, 138, 1391, optical instabilities [140—1431
and vapor condensation [83, 144—146].

We take the discrete nature of the charge into account, and describe the state of the system by the
number N of unit charges on the diode capacitance C. The voltage across the diode is then given by
V = eN/C. The capacitance is charged by the sum of driving current 1ctr and Zener current 1Zener and
discharged by the Esaki current jEsaki We assume that all contributions consist of uncorrelated transfers
of single electrons. Then, they induce transitions between states N and N ± I with transition rates
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W(N + 1, N) W~(N)= [(I~) — (IZ~)NI/e (6.3.la)

W(N — 1, N) W(N) = (I~”t)N/e. (6.3.lb)

One thus obtains a birth- and death-process described by the master equation

dP(~t) = W~(N—1) P(N —1, t) + W(N +1) P(N +1, t) — [W~(N) + W(N)] P(N, t). (6.3.2)

The dependence of the average currents (IE~)Nand (I)N on the voltage, i.e. on the state N of the
system, may be taken from a microscopic model. The difference (see fig. 9)

1(V) = [(JEsaki) + (JZener)] N=cv/e (6.3.3)

represents the static current—voltage characteristic of the diode. The current source is characterized by
the average driving current Jexs = (I~),but fluctuations of

1th (shot noise) are fully taken into account.
Since there cannot exist a stationary probability current along the N-axis, the stationary distribution

P5 satisfies the condition (4.3.20) of strict detailed balance,

W(N + 1) PS(N + 1) = W~(N)P5(N), (6.3.4)

from which one obtains immediately the solution

P8(N) = P5(N0) fl [W~(K)/ W(K + 1)]. (6.3.5)
K—’ No

This may be written in the form

P~(N)= Z’ exp[—c1(N)] (6.3.6)

with the distribution potential

= — ~ ln[ W~(K)/W(K+1)]. (6.3.7)
K —N~

Maxima and minima of P5 occur at those values of N for which W(N + 1) = W~(N),i.e. where

Text — / ytrsaki\ / rZener~

I —\I 1N+lm\1 /N’ -
These are up to 0(1) just the points on the bare characteristic (5.3.3) corresponding to I = Je~ttThus, in
the bistable region, the probability distribution has two maxima at the deterministically stable states and
a minimum at the unstable one.

For large systems one expects that the discrete nature of the charge becomes unimportant, and that a
continuum description becomes possible. We therefore study the dependence on a size parameter 11
which we take again as the area of the diode junction. We introduce the intensive variable n = N/Il with
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the probability density p(n) = liP(N), and the transition rates per unit area

w~(n)= W~(1ln)/li. (6.3.9)

With this scaling, the Kramers—Moyal expansion (2.3.15) becomes an expansion in 1/li. Keeping terms
up to 0(1/li) we obtain the approximate Fokker—Planck equation

t9p(n, tL ~~[v(n)p(n, t)]+-f—~[D(n)p(n, t)] (6.3.10)

with the li-independent Ito-drift

v(n)= w~(n)—w(n) (6.3.11)

and the diffusion coefficient

D(n) = [w~(n) + w(n)] ~ 15(n) (6.3.12)

scaling as 1/li. The static characteristic (6.3.3) is determined by v(n, ~ = v(n, 0) + (1/lie)
= 0, i.e.

= 1(V) —12ev (n = CV/e, J~~t= 0), (6.3.13)

where C = C/li is the capacitance per unit area. From the detailed-balance condition, one obtains the
stationary distribution (see eqs. (4.4.18a, b))

p
5(n)= Z exp[—tI~”(n)] (6.3.14)

with the Fokker—Planck distribution potential

~(n)_J D~’n,)[v(n’)_~~]dn’. (6.3.15)

The potentials (6.3.7) and (6.3.15) have leading terms of 0(12), clk(N) = litIP(n)+ 0(1), where

- fIn ~dn’ (6.3.16)

~1~*(n) —2 1 w~(n’)—w(n’) dn’ns_J v(n’) dn’ (6.3.17)
-I w~(n’)+w(n’) D(n’)
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respectively. This shows that the distributions (6.3.6), (6.3.14) become very strongly peaked at the
deterministically stable states, with a width scaling as (~1/2

The leading terms (6.3.16, 17) of the two potentials are not identical. Their derivatives differ by

~—~-~---——l w(n)+2w(n)w(n)dn dn — n w(n) w~(n)+w(n) (6.3.18)

——2 ~ 1 [w~(n)—w(n)]2~
— ~~~2p+1 ~w~(n)+w(n)J

but the positions nm of their minima and maxima defined by

W4(flm) = W(flm) = Wm (6.3J9)

coincide, and they have identical curvatures

2 2FP

dn2 ~m— dn2 ,,,,, — Wm dn n~

at these points. Therefore, in regions of width li_h/2 around the maxima and minima n = flm~the two
distributions are approximated by the same Gaussian or inverted Gaussian distributions, respectively
(but possibly with different factors Z1). One has

ps(n) = Z_t exp{_ ~— (n — nm)2}, n — nm = o(12_ht’2), (6.3.21)

where

1~ 1 15m 1
Sm[~Smf~~~uldv/dn (6.3.22)

may be expressed in terms of the differential resistance (Rm = (d VIdI)m) of the static characteristic (6.3.13).
This yields

= 15mRmC~”DnRmC, (6.3.23)

where Rm = I1R,., is the specific resistance of the junction in the state flm.

On the other hand, a Fokker—Planck equation with Ito drift as in (6.3.11) and a diffusion coefficient

15(n) = i w~(n)— w(n) (>0) (6.3.24)
fllnw (n)—lnw (n)

has a stationary solution which agrees with the exact solutions in the leading terms of the exponents
everywhere, and not only in the Gaussian regions around the maxima.

We have thus found that in the bistable region the stationary distribution consists of two peaks
located at the deterministically stable states V = V

1, V2, the larger peak representing the globally stable
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state and the smaller one the metastable state. As Ie~~increases from I, to I~,the height of the first peak
decreases and the height of the second one increases, and at a critical current I = I~both peaks have the
same height, i.e. the two states are equally probable. Because of the factor 12 in the exponent of
Ps(fl), this transition occurs very abruptly in a current interval of 0(1). The total weights Pt, P2 of
the two peaks are given by

P2 = 1 — Pt = 1 — exp[—li(~~— ~2) + 0(1)], cPt > 12 (6.3.25)

= exp[—li(t12 — ~) + 0(1)], I~< ~2,

where ‘J~1.2= I(fli.2) are the minimum values of the potential I.(n). The current where Pt = P2 = ~ coincides
to 0(1) with the critical current I~where cb~= ‘12. For I <Ic. i.e. ‘$~< I~,practically all the
weight is concentrated near state V1, and for I > I,~,i.e. cP~< ~I~2 near state V2. The details of the
transition in a current interval of 0(1) depend on the terms of 0(12) in the exponents. This behaviour
shows that in the “thermodynamic limit” 12 —~ ~, one obtains a first-order phase transition between a
low-voltage phase V1(I) and a high-voltage phase V2(I) at the coexistence point I = I,.

The dynamics of the system is determined by the spectrum of the master operator F. Since the
process satisfies the condition of strict detailed balance (6.3.4, 4.3.20), F has only real eigenvalues. The
behaviour of the low-lying eigenvalues may be discussed in a systematic way in the Fokker—Planck
approximation. The Fokker—Planck operator may be symmetrized by the transformation (4.3.21),
yielding the Schrodinger-like operator (4.4.20),

f~sYrnm
4D(n)_~__ V(n), (6.3.26)

dn dn

with state-dependent mass h2/2D(n) = 11211/2D(n) and effective potential (4.4.22)

1 /d1\2 ld/ d~iV(n)=~D(n)~—)—--i
5~D(n)~--

(6.3.27)
12 - /db\

2 1 d / - dtl)\
= -~-D(n)u—) —~— ~D(n)~—) + 0(12 ).

where we have dropped the superscript FP.
In the monostable regions I < I~and I> I~,the first term has a single minimum of depth zero and

curvature of 0(12) at the state n = flm = n
1 or n2 corresponding to the stationary characteristic (6.3.13).

The second term shifts the minimum down by an amount of 0(1).
For the low-lying eigenvalues it is sufficient to use the Gaussian approximation (6.3.21) and a

constant diffusion coefficient D~,= D(flm). With

P(n) = ~-~— (n — n~,)
2, (6.3.28)

one obtains a harmonic-oscillator potential

V(n) = (n — ~)2 — (6.3.29)
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giving rise to the spectrum

Am,k = k . Am, Am = Dm/.~m, k = 0, 1, 2,... (6.3.30)

Eq. (6.3.23) shows that ~Am is just the relaxation rate

Am = 1/RmC 1/RmC (6.3.31)

of the equivalent RC-circuit. Anharmonic effects will play a role only for quantum numbers k of 0(12).
For the spectral representation of the auto-covariance S,.,.(r) = (z~n(r)~n(0)) one needs the

coefficients g~and hk defined in (3.2.14, 15). If these are expressed in terms of the harmonic-oscillator
eigenfunctions 1k), one finds

gk = hk = (kInIO) = v’i7~i~k,t- (6.3.32)

Thus, in the harmonic-oscillator approximation, only the first nonzero eigenvalue contributes to the
charge fluctuations,

S,.,.(r) = sm exp(—IAmrl). (6.3.33)

With V = en/C one obtains the voltage auto-covariance Svv by using (6.3.23) and (6.3.31)

Svv(r) = ‘Sm ‘~mexp(—IrI/1~m~) (6.3.34)

with the Fourier transform

e2 215mR~m
= ~ 1 + (ü~i~m~)2 (6.3.35)

These relations have the form of a generalized Nyquist theorem.
Deviations from the harmonic-oscillator approximation give rise to higher “harmonics”, i.e. terms

with relaxation frequencies k/RmC, k > 1.
In the bistable region I, <I < I~,one expects that the deterministic stability of the metastable state

corresponds in the stochastic description to a very slow transition rate from the metastable to the
globally stable state. In other words, one expects that for Ii ~‘ 1 one eigenvalue of the stochastic
operator becomes quasidegenerate with A0 = 0. This is indeed the case [42,80—87]. Historically, this
problem has been studied already by Kramers [42] in the context of the evaluation of a thermally
activated escape rate. Extensions to a multi-dimensional situation have been discussed by Bnnkman
[80], Landauer and Swanson [81,82] and Langer [83]. Recently, a detailed WKB-treatment has been
given in ref. [87]. The problem has also been treated by an evaluation of the mean first-passage time
[5, 147—150].

In this bistable region, the first term of the potential V(n) in (6.3.27) has three minima of depth zero
and curvature of 0(12), two at the stable and metastable states n1, n2, and a third one at the unstable
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v (n)

V~!

Fig. 10. Effective potential V(n) of the SchrOdinger-like master operator (6.3.26) of the tunnel diode in the bistable region.

state n3. The second term shifts the minima at flt and n2 downward and the minimum at n3 upward by
amounts of 0(1) (see fig. 10).

Each of the low-lying eigenstates in this potential consists in good approximation of a harmonic-
oscillator wave function in one of the three valleys. It can be characterized by two quantum numbers,
Im, k), where m = 1, 2, 3 gives the number of the valley and k = 0, 1, 2... describes the excitation level
of the oscillator. Since valleys 1 and 2 are shifted downward and valley 3 is shifted upward, we find the
eigenvalues

Ask = kA1 (6.3.36a)

A2,k = kA2 A,,, = Dm/Sm, k = 0, 1, 2,... (6.3.36b)

Ask = (k + 1)A3 (6.3.36c)

where in analogy to (6.3.22, 23)

Sm jj’15n*I1~ml~’ (6.3.37)

such that

—A,,, = 1/!RmIC. (6.3.38)

Equations (6.3.36a, b) show that the two states 11,0) and 2, 0) are degenerate. It is evident from fig. 10
that tunnelling between the two minima m = 1, 2 at the deterministically stable states will lift this
degeneracy. One eigenvalue, A0, will remain zero, the other, A~,will assume an exponentially small
negative value. It is this remaining quasi-degeneracy of the two lowest levels which corresponds to the
deterministic stability of the metastable state. The correct linear combinations of the two harmonic-
oscillator functions Ii, 0) and 2, 0) corresponding to At) and A5 are found from normalization and
orthogonality conditions as

0) = p~”
2l1,0)+p~/2~2,0) (6.3.39)

It) = p~2J1,O)—p~2l2~0), (6.3.40)
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where P1,2 are the weights given in (6.3.25). An evaluation of the tunnelling integral determining A~
requires, however, an approximation in the overlap region near valley 3. An explicit calculation [84]
yields for the left eigenfunctions ~o, ~ of the unsymmetrized operator F defined by (6.3.2)

= 1 (6.3.41)

= L—_ {p~— Pi~ en .~/—~—(n — n3)} (6.3.42)
2\~p1p2 21531

with eigenvalues

A0 = 0

A — — 1 1 2w(n3) p,(n3) 6 3 432V2~rliI.~sI P1P2

— — exp{—li [‘~(fl~) — ~ms]} (6.3.44)

where erf x = 2~t/2f(~c exp(—y
2) dy is the error function, and ~~ms is the metastable minimum of the

potential ck(n) given by ‘k(n
2) or ‘i’(n1), depending on whether I <I~or I > I~,respectively. —

The sequence of the higher eigenvalues depends on the relative magnitude of the values of Rm of the
three states. In the next approximation, each eigenfunction is changed by small admixtures of
harmonic-oscillator functions in the other valleys of such signs, that it exhibits the proper number of
nodes.

Interestingly, the eigenstate 13, 0) corresponding to the deterministically unstable state n3 has an
eigenvalue A3,0 = A3 = 0(1), i.e. of the same order as the excited states in the other valleys. Thus, of the
three zero-eigenvalues of the backward operator of the deterministic motion, only the two which
correspond to the deterministically stable states n1, n2 change continuously, whereas the third one
corresponding to n3 changes discontinuously with the onset of fluctuations.

For the coefficients g~and hk determining the auto-covariance Si,,, (r) one finds in the bistable region,
neglecting exponentially small overlap terms

g~= h~= (tInIO) = \/pip2(ni — n2) (6.3.45a)

gm,k = km.k = (m, kInIO) = \/IL..!! ~k,1 (m = 1, 2) (6.3.45b)

g3.k = h3,k = 0, (6.3.45c)

yielding the voltage auto-covariance

SW(T) = P1P2 (V1 — V2)
2 exp(—1A

5rj)

+ {p~1S~l~iexp(—IrII~i~+ P2D2R2 exp(—IrI/~2~)}. (6.3.46)

The first term which represents the contribution of the slow mode A5 is exponentially small because of
the prefactor P1P2, and of the two remaining terms which are of the form (6.3.34) there survives
only the one corresponding to the absolutely stable state, except in the immediate neighbourhood of the
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transition point I = I,~where the two weights Pt, P2 are of comparable magnitude. Thus, also in the
bistable region, the voltage auto-covariance S~~(r)is still given by (6.3.34, 35) with values D,,, and R,,,
corresponding to the absolutely stable state. Only in a region of width 1/li around the transition point,
there occur anomalous voltage fluctuations of 0(1) (instead of O(li 5/2)) of extremely low frequency
w -~ 1A51, corresponding to slow transitions between the two stable states.

Anomalous (nonstationary) fluctuations of a similar nature play an important role in the decay of a
distribution concentrated near the unstable state n3 (I~<I K L). The representation by a Gauss process
with positive ~i0(see remark after (2.2.46)) is then a good approximation only in the initial time region of
the relaxation process. For the intermediate time region, one needs a nonlinear theory of relaxation of
the type discussed in refs. [151—1551.

It should be noted that realistic diodes are well in the asymptotic limit of large 12: In dimensionless
units, the size parameter 12 is represented by the number N of carriers on the junction at some standard
voltage, which is of order 108 for a junction of area i0~cm

2, capacitance C--~l0~F,at a voltage of
0.5 V. The relaxation time 1/1A

51 is therefore astronomically large.
We finally discuss the linear response of the diode to a change of the average driving current,

fext(t) (I’~(t))= I~°+ 8 I~
t(t). (6.3.47)

This perturbation is represented by a state-independent modulation 8W(t) = 6F”t(t)/e of the transition
rate W~(N) (see (6.3.la)), yielding a perturbation f’(t) = li6W(t) of the master operator with the
matrix *

ñ(N, M) = 8N,M±t — 6N,M. (6.3.48)

The response variable defined by (5.2.1) may be expressed in terms of the distribution potential ‘~Pas

~~t(N)= exp[s~I(N)— cb(N — 1)] — 1, (6.3.49)

or, using (6.3.7), in explicit form

~(N) = [W(N)— W~(N— l)]/W~(N— 1). (6.3.50)

In the Fokker—Planck approximation, the perturbation is represented by the differential operator

(6.3.51)

which yields

1 d~ 1 d~ 2
— dn2 ] (6.3.52a)

= d~”/dn+~(d~”/dn)2+O(lit) (6.3.52b)

= — v/D + ~(v/D)2 + 0(12_i). (6.3.52c)

* In this section, we denote the operator defined in (5.1.2) by fl, in order to distinguish it from the size parameter 12.
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The two expressions (6.3.49, 50) and (6.3.52) differ even in their leading terms, except in regions of
width 12u~~2around the stationary points where the two potentials (6.3.16, 17) agree.

The function i’J’(n) determines the response x(r) of the charge density n to ÔW(t) by eq. (5.2.3). The
spectral representation (5.2.13a) is determined by the coefficients g~and h~7~defined in (5.2.15a,b). In
the monostable regions, we may use the harmonic-oscillator approximation (6.3.28, 29). Then, g~ is
given by (6.3.32), and

h~7~= (kIi~(n)I0). (6.3.53)

The leading term in 1/li of x(r) is determined by the linear approximation to 1~(n).One obtains from
(6.3.52b) and (6.3.28)

= 4— (n — nm) +O(n — nm)2 (6.3.54)

yielding

gl8k,1 (6.3.55)

and therefore

x(T) = 4- S,,,,(r) 0(r) (6.3.56)

= ~-~S~j)exp(— T/Rm C).

The resistance function R(r) of the junction defined by

8V(t) = J R(r) ôIext(t — r)dT (6.3.57)

which is related to x(r) by

R(r) = ~(r)/C, (6.3.58)

is thus given by

R(r) = ~-~exp(—rIRmC). (6.3.59)

Fourier transformation yields the frequency-dependent differential resistance

R(w) = 1 jWRmC’ (6.3.60)
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which shows that the static differential resistance R(w = 0) does in leading order in 1/li in fact agree
with the value Rm = (d V/dI)m obtained from the static characteristic (6.3.13).

Comparison of (6.3.59) with (6.3.34) shows that the resistance function is in leading order related to
the voltage fluctuations by the fluctuation theorem

R(r) 2 - Svv(T)0(T). (6.3.61)
e RmDm

In the bistable region, g~is given by (6.3.41a, b) and for h~7~one finds correspondingly

= (tI~J(n)l0)= Vptp2(s~tt— ~2) (6.3.62a)

( —

— g~fl.~Uk.I ~m — ,

(6.3.62c)

where ‘9,,, = 19(flm). This yields

x(r) = {P5P2 (flt — n2) (19i — ~2) exp(A5r) + [p1exp(—r/R~C) + P2 exp(_r/R2C)1} 0(r). (6.3.63)

Again, the first term and the term corresponding to the metastable state are exponentially small, except
in the immediate neighbourhood of the transition point where the two weights Pt, P2 are of comparable
magnitude. Thus, also in the bistable region, the resistance is still given by (6.3.59, 60), and the
fluctuation theorem (6.3.61) remains valid. Only in a region of width 1 around the transition point,
there occurs at extremely low frequencies w l/IA~Ian anomalous contribution to the resistance,

~R(w) = P1P2 (‘it — fl2)(~9t— 192) (6.3.64)C AtI—iw

VI

~/

— ___
It I~ I~ I

1 /X~

Fig. 11. Static voltage-current characteristic V(I) and differential conductance l/xv of the tunnel diode. The stable and unstable parts of the
deterministic characteristic and the deterministic differential conductance are represented by the dashed and dotted lines, respectively.
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reflecting the asymptotically vertical (first-order) transition between the states n1 and n2. This behaviour
is shown schematically in fig. 11.

6.4. Single-mode laser

Another driven nonlinear system showing an instability is the laser: At a critical pumping rate, the
laser threshold, the state of incoherent radiation in the cavity becomes unstable against formation of a
coherent state. This laser transition is continuous (2” order-type), in contrast to the discontinuous
transition of the tunnel diode considered in the preceding subsection.

The laser has been treated in considerable detail at all levels of description [156—162].Therefore, we
restrict the discussion here to the simplest case of a single-mode laser (cavity in resonance with the
atomic transition frequency w0), treated in rotating-wave approximation, in the limit that the elec-
tromagnetic loss rate is small compared to the atomic relaxation rates. Then, the atomic coordinates can
be adiabatically eliminated, and the state of the laser is characterized by the complex-valued mode
amplitude b which is normalized such that

Nph=1b1
2 EhwoIbJ2 (6.4.1)

are the total photon number and total electromagnetic energy in the cavity, respectively.
Near threshold, the deterministic behaviour is described by the equation

b = Kb + g2(d — 1b12)b (6.4.2)

for the two-component vector b = {Reb, Imb}.
Here, the first term is the linear electromagnetic loss with loss rate K, and the second term represents

the nonlinear gain from the active medium, with d proportional to the pumping rate, and g2 a
normalized coupling constant. The laser threshold is determined by

g2d~=K, (6.4.3)

and in terms of d~,eq. (6.4.2) may be written

6 = g2[(d — d~)— 1b12]b. (6.4.4)

This deterministic law would again be compatible with a large variety of stochastic models, as discussed
in section 6.2. However, knowledge of the underlying physical processes allows the construction of a
specific model. The mode-amplitude fluctuations are predominantly due to spontaneous emission noise,
which near threshold may be modelled by additive complex-valued Wiener noise [156,157]. One
obtains a Fokker—Planck equation

ap(b, t) = — ~. [v(b) p(b, t)] + D 82p(b,t) (6.4.5)

with drift

v(b) = g2 [(d — d~)— b2] b (6.4.6)
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and a constant diffusion coefficient [156, 157]

D = ~K(1+ dmldc), (6.4.7)

where dm is the parameter value corresponding to complete inversion.
This process satisfies the condition of strict detailed balance (4.4.19) with a = ~, 0 b = b, and

vanishing odd drift vector, such that the distribution potential CP(b) determining the stationary
distribution

p5(b) = Z’ exp[—1(b)] (6.4.8)

is obtained as the solution of the differential equation (see (4.4.18a, b))

(6.4.9)

in the form

~I(b)= ~ [—(d— d~)b
2+ ~b4]. (6.4.10)

Thus, below threshold (d K do), the distribution has a single peak at b = 0, whereas above threshold
(d> do), there is a minimum at b = 0 and a maximum at a circular rim of radius b = \/d — d~equal to
the deterministic laser amplitude.

In order to study the size dependence, we introduce a size parameter 12 representing the length of
the cavity. Eq. (6.4.1) shows that the mode amplitude scales as b lit/2. Further, g2 x li’, d li, and
D ~c120, such that the probability distribution for the intensive variable b = b/li”2 satisfies again a
Fokker—Planck equation with li-independent drift, and diffusion coefficient D/li, exactly as in the two
preceding subsections. (Note that the diffusion coefficient D defined by (6.4.5) is li-independent.)
Therefore, for large 12 the stationary distribution for b becomes very narrow — at d> d~of course only
in radial direction — with a width scaling as li_t/2.

It should be noted that a typical laser is thermodynamically a rather small system: In dimensionless
units, the size parameter 12 is represented by the number N of photons at threshold, which is typically
of the order iO~.Thus, size effects are easier to observe in a laser than in other macroscopic systems
[163,164].

Because of strict detailed balance, the Fokker—Planck operator may be transformed by (4.3.21) into
the Schrodinger-like operator

= D — - — — V(b) (6.4.11)
3b ôb

with constant mass h2/2D and effective potential

V(b)=~D(/3b)2—~D32I/ab~3b (6.4.12a)

= ~ [(d — d~)2— b2]2b2 + g2[(d - d~)— 2b2]. (6.4.i2b)
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Below threshold, d < d~, V(b) has a single minimum at b = 0. For d~— d = 0(li), the low-lying
eigenstates of energy and width of 0(1) are well represented by the harmonic approximation

V(b) = ~ (d,, — d)2 b2 — g2 (d~— d). (6.4.13)

Anharmonic effects will play a role only for excitations of energy of 0(12) and width of 0(111/2). The
Schrodinger equation of the two-dimensional harmonic oscillator may be separated in polar coor-
dinates, giving rise to the azimuthal and radial quantum numbers m and k, respectively. The
eigenvalues are given by

Amk = (ImI + 2k)A
1, m = 0, ±1,±2,... (6.4.14)

k=0,1,2,...

where

A1 = —g
2jd~—dI. (6.4.15)

The zero-point energy has been compensated by the last term of (6.4.13), thus guaranteeing A
0~0= 0. All

relaxation rates show a critical slowing down for d/d~.The value of A11 agrees with the deterministic
relaxation frequency following from (6.4.4). _____

Above threshold, d> d~, V(b) exhibits two types of minima, one on the circle b0 = \/d — d~
corresponding to the deterministically stable state, the other at b = 0 corresponding to the unstable state
(fig. 12). For d — d~= 0(12), the low-lying eigenstates (except for degeneracies, see below) are concen-
trated near one of the minima, and are well represented by the approximations

V(b) = ~ (d — d~)
2(b — b

0)
2 — g2(d — d~) (6.4.16)

near b = l,~,where b = Vb~+b~is the radial component, and

Fig. 12. Effective potential V(b) of the Schrodinger-like master operator (6.4.12a, b) of the single-mode laser above threshold.
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V(b) = ~ (d — d~)2b2 + g2 (d - d~) (6.4.17)

near b = 0. Then, each of the eigenstates can be characterized by the azimuthal and radial quantum
numbers m and k, and a further index ~ indicating whether the eigenfunction is concentrated near
b = b

0 (~i= 1) or near b = 0 (~a= 2). Since the radius b0 is of o(lii/2) the curvature of the circle can be
neglected, and the eigenvalue problem for ,a = 1 separates into a one-dimensional harmonic-oscillator
problem for the radial motion, and free propagation with wave-number q = 2rrm/2irb0 in azimuthal
direction. One thus finds the eigenvalues

A~k= k . 2A1 — Dni
2/b~, in = 0, ±1,±2,... (6.4.l8b)

k =0,1,2...

with A
1 given by (6.4.15). For ~a= 2, one again has a two-dimensional harmonic oscillator with

eigenvalues

A~k= (Im I + 2k + 2)A~, m = 0, ±1,±2,... (6.4.18b)

k=0,1,2,...

starting with ~ = 2A1 because the potential (6.4.16) is shifted upward. The degeneracy between the
states 0, k + 1, ~ = 1) and 0, k, ~ = 2) is lifted by tunnelling between the two minima, leading to an
exponentially small splitting.

The spectrum (6.4.i8a) shows that the radial relaxation rates A~I harden again above threshold; the
value of IA~?I= 21A11 agrees with the radial relaxation frequency following from the deterministic
equation (6.4.4). To the continuum of deterministically stable states b = b0 with constant phase, on the
other hand, there correspond in the stochastic description the slow phase-diffusion modes ~ =

0(1/li). Interestingly, the mode 10, 0, 1a = 2) corresponding to the deterministically unstable state b = 0
has a relaxation rate A~I= 2A1 = 0(1), similar to the result for the tunnel diode.

In a critical region d — d~of 0(1) around threshold, anharmonic effects become important. The
spectrum has been studied in detail by Risken [156,157]. The eigenvalues are of 0(li_i~2)in this region
and connect smoothly the asymptotic results (6.4.14) and (6.4.18a, b).

The amplitude auto-correlation matrix

S(r) (b(t+ r)b(t)) (6.4.19)

is given by (3.2.14, 15) in terms of the coefficients g,, hk. Below threshold, one finds

gm.k = hm,k = (m, klblo,0) = [{1, ~}8m,i + {i, ~}8m.~l]6k,O, (6.4.20)

whence

g1,0h ~ + g_1,0h~,,0= 1 (6.4.21)
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and therefore

S(r) = exp(—IAirI) 1, d < d~, (6.4.22)

with Fourier transform

S(w) A~+w21, d < d~. (6.4.23)

Above threshold, one finds

g~fl~k= h~k = ~b
0[{1, ~}8mi+ {1, ~}8m._.l]8k,O, (6.4.24)

whereas the g(fl,~~are exponentially small. Therefore,

S(r) = ~ exp(—DIrI/b~)1, d> d~, (6.4.25)

with Fourier transform

S(w) = (D/b~+ (~)21, d> d~. (6.4.26)

In the critical region d — d~= 0(1) around threshold, higher modes will contribute to the amplitude
fluctuations because of anharmonicity. Their effect is, however, very small, and amounts only to about
2% [156,157].

We finally discuss the linear response of the laser to an external coherent field at the laser frequency,
modulated with a time-dependent amplitude b

tm5t(t), which is injected into the cavity. The nonlinear gain
of the laser depends on the total field bt~~t= b + b55” whereas the electromagnetic loss is independent of
b~t.Therefore, the effect of the external field is taken into account by replacing the deterministic
equation (6.4.2) by

6 = Kb + g2 (d — lb + b~tl2)(b+ be~~i). (6.4.27)

Linearizing in b55°and neglecting terms in the perturbation which vanish at threshold yields

6 = g2 (d — d~— 1b12) b + K b~’(t). (6.4.28)

Thus, near threshold the external field gives rise to a state-independent extra drift,

i3(b, t) = v(b)+ K b~’(t), (6.4.29)

and the operator A describing the perturbation F’(t) = A- beuds(t) of the master operator is given by

A —K a/3b. (6.4.30)
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Since this is of the gradient form (5.2.28), the susceptibility tensor describing the response of the laser

field b to the external field b’5 is given by the fluctuation theorem (5.2.33),

x(r) = — ~ 0(r) ~- S(r). (6.4.3 1)

Below threshold, we thus find by using (6.4.22)

x(r) = K 0(r) exp(—IAijr) 1, d K d~, (6.4.32)

with Fourier transform

x(w) = AtI— ~ 1, d K d~, (6.4.33)

in agreement with the deterministic response following from (6.4.28).
Above threshold, (6.4.25) yields

x(T) = ~ 0(r) exp(—Dr/bo~)1, d> d~, (6.4.34)

with Fourier transform

x(w) = ~ — 1, d> d~, (6.4.35)

whereas the deterministic response following from (6.4.28) is anisotropic, depending on whether be~~is
parallel (II) or perpendicular (I) to the spontaneous laser amplitude b:

xrt(w) = 2g2(d K — (6.4.36a)

= —~---. (6.4.36b)

6.5. Stochastic Ising model

We consider a system of N Ising spins* xi(t) = ±1,1 = 1 N, which interact with each other and
with a heat bath at temperature T The interaction with the bath induces transitions between spin
configurations x = {x

1,.. . , XN}. We restrict the discussion to single-spin-flip models, i.e. we assume
random jumps between configurations x which differ by the reversal of a single spin only, such that the
total spin is not conserved.

Such a process may serve as a model for a variety of physical systems. Some applications are listed in
table 6.1.

* We use the rather unconventional notation x1 for the spin variables, in accordance with the notation used for the two-state process.
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Table 6.1

System Variables Bath System— bath interaction

Uniaxial magnet Spins x, = ±1at Phonons Spin—phonon interaction
lattice sites I

Crystal with off-center Positions Q~= ±Qof Phonons Pseudospin—phonon
atoms (e.g. hydrogen- atom in lattice cell 1 interaction
bonded ferro-electncs)

Molecular crystal with Orientation of Phonons Pseudospin—phonon
2 molecularorientations molecule I interaction
(e.g. NH4CI)

Physisorbed layer Occupation number n5 = 0, 1 Vapor Sorption—Desorption
of lattice site I

Helix-coil system State of bond of base Solvent Oxidation—reduction
pair I (intact or broken)

On the other hand, the single-spin-flip model cannot describe systems in which the total spin
X = ~ x, is conserved, such as binary mixtures with constant concentrations etc.

We denote by S~xthe configuration with spin x1 reversed. The time evolution of a single-spin-flip
process is then described by a master equation of the form [19, 165]

3p(x, t) = ~ [W(x, STx) p(STx, t)— W(STx, x)p(x, t)]. (6.5.1)

In the stationary state, the system is in thermal equilibrium. Therefore, the stationary distribution has
the canonical form

Ps(X) = Z’ exp[—E(x)/kT], (6.5.2)

where E(x) is the energy of the configuration x. Further, the process satisfies the condition of detailed
balance (4.3.17), where a is the time-reversed process. Since for Ising dynamics one has [‘~(j,1) =

F,,(y, x), independent of the time-reversal behaviour of the x1 (true spins or pseudo-spins), the transition
rates satisfy the condition (4.3.20) of strict detailed balance

W(x, y) Ps(J’) = W(y, x) Ps(X). (6.5.3)

For single-spin-flip process, it follows that the expression

W(x, SIx) exp{[E(x) — E(STx)]/kT} (6 5 4)

= W(SIx, x) exp{[E(STx) — E(x)]/kT} W1(x
t0)

is independent of spin x
1, i.e. depends only on the configuration x~of the set of all spin except spin x,.

The energy difference

E(STx) — E(x) = 2 F~~~0I(x(~)x1 (6.5.5)
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defines the molecular field F7i0t(xt~)acting on spin x,. In terms of this molecular field, the transition rate

takes the form
W(x, SIx) = W1(x

tt1) exp[xtF~~~0l(x(O)/kT]
(6.5.6)

= ~A
1(x~°){1 + x, tanh[F7~0

t(x(t))/kT]},

where the A,(x’°) are unspecified functions of the configurations x~. For translationally invariant
systems, A

1(x~°)= A(x~°).
Because of the strict detailed-balance symmetry (6.5.3) all eigenvalues of the master operator are real

(and nonpositive), i.e. the processes described by the stochastic Ising model are relaxation processes. An
oscillatory process cannot be described by such a model.

If E(x) is a sum of two-spin interactions and single-spin (Zeeman) terms,

E(x) = — ~ ~‘ J11x5x1. — ~ F~x1 (6.5.7)

then

F~0
t(x(O)= ~ J

1~x1+ F1. (6.5.8)

In the Glauber model [19, 165], one takes A1(x~°)= A(T) independent of x~°and assumes a linear chain
with F5 = 0 and nearest-neighbour interactions J11 = J(61.,+1 + 8,,,~).Since for Ising variables

tanh[C(x1+i + x1_1)] = ~(Xt± t + Xt_t)tanh(2C), (6.5.9)

one finds

W(x, SIx) = ~A(T) [1+ ~B(T) x1(x1+1 + x1_1)] (6.5.10)

with B(T) = tanh(2J/kT).
For this model, the complete spectrum of the stochastic operator is available [19, 165]. It is easy to

determine the lowest branches by using the left eigenfunctions ‘p,, (see subsection 3.2). One finds

t~°~(x)= 1 , A~°~= 0 (6.5.11)

corresponding to the stationary state;

tpq(X) = N
t’2 ~ x

1 exp(iql), A~= —A(T) [1— B(T) cos q] (6.5.12)

corresponding to the relaxation of spin-density waves of wave number q with relaxation frequencies
AqI; and
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~ 0,q(X) = N
1 ~ (x,x

1. - ~x1x,))sin(ql — i’) exp[~0(1+ 1’)] (6.5.13)

AQ,q = _2A(T)[1_B(T)cosq-cosq],

where (XtX1’) = [tanh(J/kT)]
0”~, related to the decay of quadratic functions of the spin variables.

Eigenfunctions of higher than second degree in the spin variables may be found by using special spin
functions introduced in ref. [166],or the stochastic operator may be diagonalised by a transformation to
fermion operators [167].

We now consider the linear response to forces F
1(t) coupling to the Ising spins Xt with an interaction

energy

E,(x) = —~ x1 6F,(t). (6.5.14)

We assume that the only effect of the forces 6F1(t) is to modulate the transition rates by the
time-dependent molecular field

t~(x~°,t) = F,(x~°)+8F1(t) - (6.5.15)

Then, the perturbed process has the accompanying distribution

Pa(X, 8F) Ps(X) exp(~xt6Fi/kT). (6.5.16)

From eqs. (5.2.23, 25), we find

t/ii(x) = ~/kT; ~ = x — (x), (6.5.17)

which yields for the susceptibility matrix Xtt’(r) the fluctuation theorem (5.2.26),

Xit’(r) = — ~ (~(r)~e~,(0)) (6.5.18)

= — ~ t9St,’(r)
kT 9r

with the spatial Fourier transform

Xq(r) = — t9S~~(i~) (6.5.19)

For the Glauber model (6.5.9), the spatial Fourier transforms Xq of the spin variables x~are just the left
eigenfunctions çoq(x) given in (6.5.12), and bacause of the detailed balance symmetry the right
eigenfunctions are tfrq(X) = coq(x) ps(X)I(l(pql

2). Therefore, the spectral representation (5.2.13b) of the
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susceptibility Xn

Xq(T) = —0(r) Aqgqh_q exp(A0r) (6.5.20)

with

—~ Xq~_q —~ 6521
gq - kT (l~2)— kT

hq = (x_qcoq) = (~q~2)= (Ao/Aq) exp(2J/kT).

Therefore, one obtains

Xq(T) = A~exp(~4)exp(Aqr) (6.5.22)

or in the frequency domain

1 72J\ A5)

= ~ expl5~~)Aq + iW’ (6.5.23)

with the eigenvalues Aq given in (6.5.12).
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