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There exist in  physics and chemistry important rate processes that involve 
activated escape of a particle over barriers. Examples are chemical reactions, 
superionic conductors, and ligand migration in proteins. Only those processes which 
involve a clear separation of timescales of particle and heat bath motion are 
understood.' In what follows, we consider the transport as  a passage over a mean 
potential barrier between two wells. I n  contrast to Kramers' classic investigation,' we 
consider the rate of motion of the particle to be on the same order as the rate of motion 
of the excitation field of the heat bath. Applications can be made to the migration of 
ligands in proteins, impurity diffusion in solids? and chemical reactions on surfaces of 
insulators that lack fast-moving electrons. The relevant motion in the barrier region 
must then be modeled by a generalized Langevin equation (we use a unit particle mass) 
in  a phase space ( x . u )  of coordinate and velocity, respectively, 

x - u  

and 

t i  = w2x - l ' r ( t  - r)u(r)dr  + [ ( t ) .  

Here, w denotes the barrier frequency obtained by expanding the external potential 
+(x) around its barrier value, 

w2 

2 4(x) = 4 h  - -x2  + . . . ,a2 > 0, (2) 

and [ ( t )  is the thermal stationary Gaussian random force satisfying the fluctuation- 
dissipation theorem. Equation 1 completely determines the dynamics of the process 
within the barrier region. The corresponding conditional probability satisfies a 
time-convolutionless (but not memory-less) non-Markov master equation of the 
Fokker-Planck type with a mixed derivative, #/ax au.' The escape rate, 

A = Jo/no, (3) 
is obtained from the nonequilibrium diffusion current, Jo, which is obtained by 
injecting particles a t  the locally stable well, xo, and removing them at  the adjacent well, 
xb - no denotes the particle density around x,,. The result for the rate X reads (wo is the 
angular frequency at  xo) 

I 4 b  - 401 exp - - k T  ' 27rw (4) 

198 



                                                            199

where

with

a( ! )  = p(t ) ( l  t w 2  6' p(7)dT) - w2p2( f )

b ( f )  = W 2 [ p ( f )  6 ( I )  - ,6 ( f ) ' ] .

(64
(6b)

The correlation, p ( t ) ,  is defined by the inverse Laplace transform ( L - ' )

, p(f  = 0) = 0. (64I z* - w z  I 1+ Z+(Z)
p ( f )  = L I(&)) = L I

I n  contrast to the Markov result, the prefactor is determined by the (bare) parameters
wo and w and a "renormalized" quantity,

Further, if i ( z )  is meromorphic, i.e., if

with A,  < A, < - - . A,-, < A,, and A,, and A,, m, is real, then one finds that the limit a is,
in fact, equal to the limit

with A, being the largest positive pole of $ ( z ) .  A, is a characteristic function of u2 and
depends on the details of the damping y(f), but A, is not an explicit function of
temperature T in  the harmonic approximation. A non-Markovian transport over n
multiple barriers can thus be conveniently modeled by a set of ( n +  1 )  rate equations
with corresponding rates determined from (4).
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