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The paper proposes a new approach to describe fluctuations of reversible chemical reactions in
closed systems. The deterministic rate laws are cast into the form of nonlinear Onsager type
transport laws. By means of nonlinear transport theory a Fokker-Planck equation describing the
stochastic process of concentration fluctuations is obtained. It is shown that the stochastic
formulation reduces to the correct deterministic rate laws in the thermodynamic limit V---, ~ with the
concentrations kept fixed. Concrete examples of reactions in ideal mixtures are given and the results
of the presented approach are compared with those of the usual approach by means of a birth and
death type master equation. It is shown that both approaches lead to the same stationary probability
and exhibit the same natural boundaries reflecting the fact of a restricted state space. The proposed
Fokker-Planck equation is different from the Fokker-Planck equation obtained from the master
equation by truncating its Kramers-Moyal expansion. However, the two equations are shown to
have identical Fokker-Planck coefficients in the vicinity of the deterministic equilibrium state.
Compared with the usual master eciuation approach the proposed stochastic modeling of chemical
reactions has the advantage Of allowing for a straightforward extension to reactions in non-ideal
mixtures.

1. Introduction

On a de te rmin i s t i c  level,  chemica l  r eac t ions  are desc r ibed  by  rate laws whose
val id i ty  is well  es tab l i shed ,  at leas t  for  r eac t ions  in di lute  gases where  they  have
the fo rm of s imple  power  lawst).  On  a more  ref ined level ,  which  inc ludes
f luc tua t ions  of the part ic le  c o n c e n t r a t i o n s ,  the r eac t ion  is desc r ibed  in  t e rms  of a
s tochas t ic  process .  The  p rob l em of the m u t u a l  c o n n e c t i o n  b e t w e e n  the
de te rmin i s t i c  and  the s tochas t ic  levels  of desc r ip t ion  ar ises  qui te  genera l ly  in  the
theory  of m a n y - b o d y  sys tems .  For  sys t ems  in the l inear  regime near  equ i l ib r ium
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the Onsager theory gives a rather complete answer to this question. However,
for chemical reactions linear transport theory provides only a poor ap-
proximation2).

Recently, an extension of Onsager's.theory to nonlinear systems has been
obtained on the basis of statistical mechanical considerations3). In this approach
fluctuations are described by a "nonlinear" Fokker-Planck equation charac-
terized by a thermodynamic potential and a transport matrix. Since this theory
starts out from a molecular description in terms of continuous phase functions4),
it does not strictly apply to chemical reactions where the particle numbers vary
in a discrete state spaceS). However, for large homogeneous systems the
discreteness should be of minor importance and we expect that valuable results
can be obtained from a Fokker-Planck description.

In order to see whether such an approach by nonlinear transport theory is
appropriate for chemical reactions, we examine elementary reactions in ideal
mixtures where a comparison with the master equation approach of the
birth-and-death type is possible6).

The main results of the paper can be summarized in the following points:
a) The proposed stochastic description of chemical reactions reduces to the

correct deterministic behavior in the limit of a large volume V with the
concentrations kept fixed.

b) For reactions in ideal mixtures the newly proposed Fokker-Planck
equation has (apart from a continuum approximation by means of Stirling's
formula) the same stationary probability as the associated birth-and-death type
master equation. Further, the master equation and the Fokker-Planck equation
have the same natural boundaries. The nonlinear Fokker-Planck equation also
exhibits the multiplicative noise structure inherent in the master equation.

c) The truncated Kramers-Moyal expansion of the master equation leads to a
different Fokker-Planck equation with an approximate stationary probability
only, and the character of the restricted state space is not preserved by the trun-
cation since the resulting Fokker-Planck equation has no natural boundaries.

d) On the other hand, the two Fokker-Planck equations coincide near
equilibrium since the two drift expressions differ only by terms of higher order in
1] V, and the state-dependent diffusion coefficients have the same values and the
same slopes at the deterministic equilibrium state.

e) The approach naturally extends to nonideal mixtures where the usual
approach by birth and death type master equations fails.

We want to point out that the present approach copes with the description of
local concentration fluctuations as well. The theory should be particularly useful
in situations where pressure and temperature fluctuations, and eventually
convection, have to be taken into accountT). Since the dynamics of the latter
variables is governed by nonlinear transport laws of the same structure as those



302                  

proposed here for chemical reactions 4'8), most processes in chemical physics
and hydromechanics and their mutual interactions can be treated in a unified
manner.

The paper is organized as follows: section 2 studies the deterministic
description of chemical reactions in ideal mixtures. The rate laws are cast into
the form of Onsager type transport laws. The meaning of the free energy and
the transport coefficients in these transport laws is clarified in section 3, where
these quantities are shown to emerge naturally from a stochastic theory
governed by a master equation of the birth and death type. Finally, section 4
addresses the problem of an approximate Fokker-Planck description of
chemical reactions.

2. Transport equations for chemical reactions in ideal mixtures

In this section we consider mixtures of ideal gases or ideal liquid mixtures
where some of the components undergo chemical reactions. We assume that
the system is confined to a constant volume V and that it is closed with
respect to particle exchange. An external heat bath is supposed to maintain a
constant temperature T. In particular we restrict ourselves to situations where
the chemical reactions are so slow that the system is always in mechanical
equilibrium and homogeneous.

The appropriate thermodynamic potential to describe isothermal and iso-
chore systems is the Helmholtz free energy A which for an ideal homo-
geneous system may be written 9)

A = Ao+ ~,  Ni(,pl + kBT In Ni), (2.1)
i = l

where A0 is the free energy of the nonreacting components (e.g. the solvent).
The n reacting components have particle numbers Ni, and kB is the Boltzmann
constant. A0 and the coefficients ¢i are temperature dependent.

The chemical potential (per particle) of the/-component is given by

p,i = T.V.Nj P,i + kaT In Ni, (2.2)

where
0/~ = ~oi + k~T. (2.3)

The n components undergo r reversible chemical reactions characterized by
the stoichiometric equations

~_, v~X~ = 0 (a = 1 . . . . .  r), (2.4)
i = l
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where X~ denotes the chemical symbol of the /-component ,  and the v , ' s  are
the stoichiometric numbers which are positive for reaction products  and
negative for reactants.

Due to the chemical reactions the particle number N~ change in time
according to

Ni = viX~, (2.5)
ot=l

where As is the progress variable for the a-react ion.
Since the chemical reactions are the only processes leading to a change of

the particle numbers,  the N~'s are not all independent  for r < n, but rather can
be specified in terms of their initial values N o and the progress variables

N, = N o + ~ v7(3.~ - ~.~). (2.6)
a = l

In this case, which we will consider in the following for the sake of
concreteness,  the r progress variables h~ are the independent  variables
corresponding to the r degrees of f reedom of the system. As a consequence,
the free energy A can be expressed as a function of the progress variables
only. Then,  the time rate of change of the free energy reads

-±A = X~,~, (2.7)
ct=l

where

X~ = - (2.8)
T, V.xt3

is the chemical affinity of the a-react ion.  The X~'s can be looked upon as the
thermodynamic forces driving the system towards equilibrium where the free
energy attains a minimum. The time rate of change of A can also be written

= ~.d I J~ iN i  , (2.9)
i = l

which yields with (2.2), (2.5) and (2.7) an expression for the affinities

~ ~ ~ ~ 0X~ = - V i l l i  = - vi(I-~i + k B T  In Ni). (2.10)
i=1 i = l

In thermal equilibrium we have g,  = 0, and consequent ly

Vi lL i  = - k B T  ~_, v l  In/qi, (2.11)
i=1 i=1

where the /qi's denote  the equilibrium particle numbers.  In terms of the
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equilibrium constants

T.,-" __ 0a~ = exp - v~/x~

the condition for equilibrium reads

f i N ~ = K ~  ( a = l  . . . . .  r).
i=l

               

(2.12)

(2.13)

k . =  K~ _--/~, (2.20)
V ~,~

where
n

tr ~ = ~ v~'. (2.21)

Further,  the affinities (2.10) are readily expressed as

= k s T  lnHTK~ N ~'" (2.14)X~

On a deterministic level of description the generally non-linear relaxation
towards equilibrium is determined by the rate equations. We assume that the
chemical reactions are elementary. Then, the time rate of change of the
progress variables is given by

h~ = V(k~II~_(ci)-  k'II~(ci)), (2.15)

and we have

ci = ~ ,  v ~ ( k J I ~ - ( q ) -  k'l-I~(q)), (2.16)
a = l

where ks and k" are the volume independent forward and backward rate
constants,  respectively. The c~'s are the particle densities

Ni
ci = -V (2.17)

and the symbols  II~, II_ ~ denote the products

II+(ci) = I~. c~ ~', (2.18)
i, v i > 0

II~-(c3 = ~ c ~° ,. (2.19)
i, v i < 0

These are products  of particle densities of the reaction products  and the
reactants,  respectively.

Since the X~ vanish in equilibrium, we see on comparison with (2.13) that
the rate constants are related by
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The relation (2.20) can be used to express the affinities (2.14) in terms of the
particle concentrat ions

X,~ = kaT  l n . - K ~  ~- (2.22)
Hi=I Ci

The deterministic rate equations may be cast into the form of nonlinear
Onsager-type t ransport  equations 3)

~.,~ = L'~X,~, (2.23)

where the flows ;(~ are expressed in terms of the driving forces X~. The
transport  coefficients are given by

K~H_(c~) (2.24)L ~ =  Vk"  H+(c i ) -  -
kBT In H+(ci) - - ~ "In K J I _ (  ci)

These coefficients depend on the state of the system, and they are always
positive since

x - y
In x - In y -> 0, for  x, y - 0. (2.25)

The L~'s are well-behaved in the vicinity of the equilibrium state ci = 0i
(;~ = ~ )  where the numerator  and the denominator  of (2.24) vanish. To first
order  in the deviations from equilibrium we find

L ~ = f 9  + ~_, LT(ci - ci), (2.26)
i=l

L ~ =/~° + ~ L~(;to - ,~), (2.27)
8=1

where

/ ~ =  V V
kBT k'II~_(Oi) = ~ kJI-~(0i) (2.28)

is the equilibrium value of L ", while

and

IviJvi
L°  = 2 - v  L ~ c.i

give the slopes.
Using (2.5) and (2.10) the t ransport  equations (2.23) may be written

(2.29)

(2.30)
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/Qi (-, ri~ [ OA \ (2.31)

where

L 'j = ,.., r i v a L  . (2.32)
a=l

The form (2.31) of the transport equations can also be obtained for r-> n.
The free energy (2.1) and the transport coefficients (2.24) are extensive

quantities of the form

A = Va(Ck, T ) ,

L ° = VliJ(ck, T ) ,  (2.33)

where a and l ° are functions of the intensive variables ck and T only. The
deterministic law (2.31) may then be written

~'i = - ~ ? .  I it Oct (2.34)
j~l ~Cj"

It might appear that these transport equations are just a complicated way of
writing the "simple" rate laws (2.16). We shall demonstrate, however, in the
following section that the free energy and the transport coefficients which
appear in the transport equations (2.34) have a well-defined meaning within
the stochastic theory of chemical reactions. They thus provide a convenient
starting point for the investigation of fluctuations in chemical reactions.

3. Master equation approach and connection with transport equations

For chemical reactions in ideal mixtures there exists a well-known method
for the formulation of the stochastic theory in terms of a birth-and-death
master equation. Since this method has been clearly presented in several
reviews and papers 6) we shall not repeat the physical and combinatorical
arguments leading to such a description, but rather will discuss two specific
reactions which will serve as examples to illustrate the connection between
the master equation approach and the deterministic transport equations given
in section 2.

3.1.  R e v e r s i b l e  u n i m o l e c u l a r  r e a c t i o n

In a first example we investigate the simple isomerization reaction
k

X 2 ~ - X , ,  X ,  - X 2  = O.
k'

(3.1)
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These  relations specify the rate constants and the stoichiometric numbers
v~ = -v2 = 1. The deterministic rate law reads*

ih = - c 2  = k c 2 -  k '  cl. (3.2)

In this example the progress variable A can be identified with the particle
number  N~ = ),, and the linear dependence (2.6) between the particle numbers
N~ and N2 has the form

N~ + N 2 =  N ° + N ° = N = Vc ,  (3.3)

where N is a constant  for  closed systems. The equilibrium condition (2.13),
(2.20) reads

Nl /~1 k
-=-N2 = N - N~ = k-7 = K = / ( ,  (3.4)

where K denotes  the equilibrium constant.
For  a closed system the master  equation associated with the isomerization

reaction (3.1) reads 6b)

[gt(N1) = k ( N  - N t  + 1)pt(Ni - 1) + k ' (N1 + 1)pt(Ni + 1)
- k ( N  - N O p t ( N I )  - k ' N ~ p , ( N O ,  (3.5)

which may also be writ ten

[9, ( N , )  = ~ { W(NI---> N , ) p ,  ( N  I) - W ( N ,  ~ N I)p,(N,)}, (3.6)
Ni

where the transition probabili ty W ( N ~  ~ N [) scales with the volume V as

W ( N ~ - - ,  N~) = Vw(c~ ,  N~  - N O ,

where

W(Cl, A )  = k ( c  - Cl)6a. 1 + k'  clSa.-1.

(3.7)

(3.8)
This form of the transition probabili ty leads to natural boundaries at N~ = 0
and N~ = N .

The stat ionary probabili ty of (3.5) is given b y

1 /V~'(N -/qr0N-N'
Pst(N0 = Z '  N I ! ( N -  N O !  ' (3.9)

where/V~ follows f rom (3.4) and Z'  denotes the normalization. If we make use
of  Stirling's formula

* Note that eqs. (3.2) and (3.25) as well as the equations in section 2 involve the averages in the
thermodynamic limit of the stochastic quantities that appear in the master and Fokker-Planck
equations.
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M 3,0,

for NI! and ( N -  N1)t, the probability (3.9) takes the form

1 (~II'~N'[N - I~,~ N-~' (3.11)p  ,(NI)  = •

This may be written

1 1

where the free energy reads

{ c, c ;:
A ( N O = A ( c 1 V ) = k B T V  q ~ + c ~ l n - ~ + ( c - c ~ ) l n  c + 0  . (3.13)

The coefficient q~ depends on T and c = N I V  only. Eq. (3.12) defines the free
energy as - k a T  times the logarithm of the stationary probability of the
master equation. Note that this expression coincides with the free energy (2.1)
introduced previously on the deterministic level of description apart from
terms of 1IN.

The master equation (3.5) can be expanded into the Kramers-Moyal form 1°)

2 ( - 1)" O" ,,=1 n ~  ON~ M , ( N O p , ( N O ,  (3.14)Pt(N1)

with the Kramers-Moyal moments

M,(N1)  = V m , ( c O  = ~_, (N~ - N~)"W(N1--~ N ~)
Ni

= V { k ( c  - cl) + ( - 1)"k'cl}. (3.15)

For this reaction, the deterministic drift (3.2) equals the first Kramers-Moyal
moment

ml(cO = k c 2 -  k' Cl = - k ' { c l -  K ( c  - Cl)}.

In terms of the affinity

X(Cl) = 0C 1

the deterministic drift may be written

= ~ th(c l )x (c l ) ,ml(C1)
.~KBI

(3.16)

(3.17)

(3.18)
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where

c l - K(c  - cl) (3.19)
rh(c0 = 2k' In cl - In K ( c  - ct)"

The quantity rh(c0 is closely connected with the master equation (3.5).
Because the transition probability (3.7), (3.8) satisfies the symmetry of
detailed balance

W ( N ,  ~ N [)Pst(N,) = W(NI---> Nt)pst(N ~), (3.20)

the first Kramers-Moyal  moment  ml(Cl) may be expressed through higher
order moments 11)

1 2 ( - 1)"+~ a"ml(ct) = 2 7 r ~  ,=l n!  -Q-~ Oc7 mn+l(Cl)3Tst(Cl)' (3.21)

where

'Ti'st(Cl) = WPst(ClV) 0¢ exp{ V [a(cl). .~_~(+)]l  (3.22)
- k - ; - f

is the stationary probability for the concentration cl. If we expand the RHS of
(3.21) in terms of 1/V we obtain (3.18) with

( - 1 ) " , 1 .  t . .xfx(cO]"
rh(cO = z=,=0 (n + 1)! '""+:~'~'[ kaT J " (3.23)

Using (3.15), rfi(cl) can be determined explicitly to yield the previous result
(3.19). It is now easily checked that the transport coefficient l(cO defined by
(2.24) and (2.33) is related to rh(cO by

l(cO = ~ / ~ ( C l ) .  (3.24)

This defines the transport coefficient in terms of quantities of the stochastic
theory.

3.2. Reversible bimolecular reaction

As a second example we consider the reaction

k
2X2~-X , ,  X~ - 2X2 = 0, (3.25)k'

with vl = 1, vz = -2 .  The deterministic flow is given by

c, = -½c2 = k c ~ -  k' c,, (3.26)
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and the linear dependence (2.6) between the particle number reads

N2 + 2Ni = N O + 2 N  ° --- N --- Vc. (3.27)

Identifying the particle number N with the progress variable ;~, the free
energy (2.1) is found to be

A(NOkBT = ~b°+NIln + ( N  -2N1) ln  N -2N~ ~-Nt, (3.28)
N - 2Ni

where the equilibrium v a l u e / ~  satisfies

(N - 2/~/,) 2 - k ' ~  = K = V" (3.29)

The ideal dissociation-association reaction (3.25) is modeled by the master
equation 6b)

k16t(Nt) = v ( N  - 2Nt + 2)(N - 2N~ + 1)p , (Nt-  1)

+ k'(Ni + 1)pt(Ni + 1) - k ( N  - 2N0(N - 2Ni - 1)pt(N0
V

(3.30)
- k'Nipt(Nt).

The stationary probability of this equation is

(/VI) N'(N - 2NI) N-2N'
pst(Nl) = 1,  NI!(N - 2Ni)! (3.31)

Using Stirling's formula and proceeding as before we find

ksTv In 7rst(c,)= a(c,) + ~ ( 1 ) ,  (3.32)

where a(cO equals the free energy density given by (3.28).
The Kramers-Moyal  moments are found to be

M, (N0  = Vm,,(c~)= V { k ( c - 2 c , ) ( c -  2 c , - 1 ) + (  -~ 1)nk'c,}, (3.33)

and their asymptotic values for large V are

m:(cO = lim mn(ct) = k(c - 2 c l )  2 q- ( - 1)"k'ct. (3.34)
V---~oe

An evaluation of (3.21) in the limit V~oo  gives

roT(c0 = ~ at(cOx(cO, (3.35)



                                              311

where

X(cO = - -

while

Oa(c,)
OC t '

(3.36)

-- 2k~-~{m~(Ck)
+ • - •  ( - 1 ) "  ~ ~ }

2.,. (-- ?t-~t .2 , .  moil...i.(Ck)f(i,(Ck). . . f(i~(Ck) •
t l = t  k ' "  ~ / "  I i , . . t  n

(3.42)

On a purely deterministic level one might argue that the transport
coefficients l ~j are not uniquely defined since for multi-component systems

( -  1)~" m~+2(c,) (3.37)rh (c0  = ~ 0 ( n  + 1)!

We find

rh(cO = 2k '  Cl-- K ( c - -  2Cl) 2
In Cl -- In / ( ( c  -- 2c0 v (3.38)

which is again related to the transport coefficient l(cO by (3.24).
The above considerations can easily be generalized to multi-component

systems undergoing several chemical reactions. The conclusions can be
summarized as follows. On the deterministic level the chemical dynamics can
be described by the transport laws (2.34). The quantities to be found in these
equations have a well-defined meaning within a more detailed stochastic
theory described by a master equation. In terms of the stationary probability
7rst(Ci, V ) =  Vpst(ciV) of the master equation the free energy density a(ci)  is
given by

a(ci)  = - l i m  k.BTln 7rst(ci, V). (3.39)
V ~  V

The free energy defines the thermodynamic forces

Oa(cj) = kBT~(i(c).  (3.40)X i ( c ) = -  ~ci -

Further, in terms of the asymptotic values

m~ i.(Ck)= lira mi~ . i,(ck, V ) =  lim Mil i .(Nk) (3.41)
'" V--.ac V ~ o ~  V

of the Kramers-Moyal  moments of the master equation, the transport
coefficients lii'(Ck) are given by ref. 11
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undergoing several reactions there may be different matrices I ij which yield
the same fluxes di upon contraction with Xj- Such an ambiguity does not arise
if we consider (3.42) as the basic definition of the transport coefficients. From
the present definitions of Xj and l ~j it is also easily seen that in the limit V---~ ~
the stochastic theory described by the master equation reduces to a deter-
ministic theory described by the transport laws (2.34).

4. Fokker-Planck approximation

The concept of a Fokker-Planck description enjoys great popularity among
physicists since explicit calculations are often much easier with the Fokker-
Planck equation than with the master equation. Various authors have dis-
cussed the Fokker-Planck approximation and its limitations"-lS), and we shall
not review here this important body of work. Rather, we start out from the
observation that Fokker-Planck equations are helpful tools in order to obtain
concrete results, in particular for nonlinear systems.

The most commonly used Fokker-Planck equation for chemical reactions is
obtained by truncating the Kramers-Moyal expansion of the master equation
after the second term)°), thus disregarding the third and higher order
Kramers-Moyal moments. For the bimolecular reaction (3.24) which we shall
always consider for illustrative purposes henceforth, one then obtains

"irt(c,)={-o-~m,(c,)+ 1 a2 m2(cl)}~',(c,), (4.1)

where the drift reads

ml(c,) = k ( c - 2 c l ) ( c - 2 c l -  1 )  - k'cl, (4.2)

while the diffusion coefficients is given by

m 2 ( c , )  = k(c - 2c,)(c-2cl _1 )+  k' cl. (4.3)

We shall not discuss the results obtained from the Fokker-Planck equation
(4.1) in detail, we rather point to the following short-comings.

i) The master equation (3.30) possesses natural boundaries at N1 = 0 and
N1 = ½N reflecting the finite state space of the closed system. None of these
natural boundaries are conserved in the Fokker-Planck approximation (4.1),
i.e., the noise drives the system beyond these boundaries.

ii) The stationary probability 7r~(cl) of the Fokker-Planck equation (4.1)
does not coincide with the continuum limit (3.32) of the stationary probability
of the master equation. This means that a free energy density a~(cO defined
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by

aFP(cO = -- lim k BT In w~(c~) (4.4)
V--*= V

differs from the correct free energy density a(c~),  and this difference does not
vanish in the limit V--->~.

While these short-comings of (4.1) are not important near the equilibrium
state ~,  the wings of the probability are changed quite dramatically by the
Fokker-Planck approximation. This means that, e.g., the calculation of a
mean frs t  passage time, where the wings of the probability contribute
significantly~3), cannot reliably be based on a Fokker-Planck equation
obtained by truncating the Kramers-Moyal expansion.

In this section we therefore propose a different ad hoc Fokker-Planck
approximation to the master equation which essentially overcomes the above
short-comings. We follow a general scheme put forward recently3). In that
work the connection between a deterministic description in terms of Onsager
type transport equations and a stochastic description in terms of a Fokker-
Planck process has been investigated on the basis of statistical mechanical
considerations. It should be noted that this theory does not necessarily apply
to chemical reactions, since the microscopic description is not in terms of
continuous phase functions but rather in terms of particle numbers varying in
a discrete state space. On the other hand, for large particle numbers the
discreteness should be of minor importance. Since the discreteness is also
neglected on the deterministic level described by rate laws, a continuous
Fokker-Planck description seems to be the natural way to account for
fluctuations in a first step towards a more detailed theory.

Following ref. 3, we associate the transport laws (2.34) with a Fokker-
Planck equation of the form*

a ,~j, , r aa ( ck ) _ksT  a l :  , ,
= (4.5)

For the bimolecular reaction (3.24) the resulting Fokker-Planck equation
reads

1 02: [ - k  "'(c"}
with the drift

I arh(c~) (4.7)b l (cO = k ( c - 2 c l )  2-k'cl-~ 2 V  acl

*Note that the form of this Fokker-Planck equation is fixed by the form of the deterministic
transport laws (2.34).
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and the diffusion

b2(cl) = 2kaTl(cl) = tfi(c0, (4.8)

where dl(cj) is given in (3.38).
Clearly, the new Fokker-Planck equation differs from the one obtained by

truncating the Kramers-Moyal  expansion, and it has the following properties:
i) It is easily seen that (4.5) possesses the stationary probability

7rst(ci) ~ e x p [ -  V a(ci)}, (4.9)

which coincides with the continuum limit of the stationary probability of the
master equation.

ii) The new Fokker-Planck approximation preserves the natural boundaries
of the master equation. For the bimolecular reaction (3.25), the stationary

<1probability (4.9) is only defined on the finite state space 0 -< c~ _ ~c. Moreover,
the diffusion coefficient (4.8) vanishes at the natural boundaries c~ = 0 and
ca = ½c. In other words, the thermal multiplicative noise characterized by the
nonlinear diffusion (4.8) does not drive the system beyond the natural
boundariesl6).

iii) In the limit V---~ oo the Fokker-Planck description reduces to a deter-
ministic description with the correct rate laws.*)

On comparing the two Fokker-Planck equations (4.1) and (4.6) we see that
the drift terms differ by terms of order l/V,

bj(c~) = m~(c~)+ (~(1~, (4.10)\ v /

and the diffusion coefficients are related by

~: , ~ ( - 1 )  n : :  . .fX(c0]"
b2(c,) = m2(c t ) t  2~__,CnT_t_-~im2+.tc,)L~BT j . (4.11)

As usual, we have disregarded the term of orc)er l lV in(4.3) and replaced
m2(c0 by m~(cO in eq. (4.1). Then (4.11) follows by virtue of (3.37). Note that
the difference between the diffusion coefficients is not of order I/V. On the
other hand, it is proportional to the deviation f r o m  equilibrium as measured
by the thermodynamic force X(c~). At c~ = ~ the diffusion coefficients have
the same values and the same slopes. [cf. eqs. (2.28), (2.29)].

For the Fokker-Planck equation (4.i) the drift m~(cO coincides by con-

*The newly proposed Fokker-Planck equation (4.6) is essentially determined by the properties i)
and iii). A different choice of the diffusion coefficient would either change the deterfiainistic
transport law or the leading term of the correct free energy.
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struction with the first Kramers-Moyal moment. Therefore, given at time t
the single event probability ~'t(cl), the rate of the first moment

(~,), = (m,(c,)), ( 4 . 1 2 )

is reproduced exactly. This is clearly not the case for the Fokker-Planck
equation (4.6) where

(C,)t----(b|(Cl))t  = (m , ( c l ) ) ,  + ( ~ ( 1 ) .  (4.13)

It must be noted, however, that given the single event probability ~r~(cl) at an
initial time to, the probability ~rt(cl) at later times t > to as calculated from the
Fokker-Planck equation does not coincide with the master equation evolution
of ~r,(c0. Hence, there are for times t > to corrections of order I / V  to the
single event probability as calculated from the Fokker-Planck equation which
lead to corrections of the same order to the calculated rate of the mean
concentration. The difference in (4.13) is therefore not a serious flaw against
the newly postulated Fokker-Planck equation (4.6).

Both Fokker-Planck equations (4.1) and (4.6) are ad hoc approximations to
the same master equation in the first place, and they can certainly not
reproduce all features of the master equation process. They have, however,
their limited applicability because:

i) They possess the same deterministic flow as the full master equation.
ii) They present a global asymptotic representation ~4) of the master equation

process in the sense that a L~-estimate of the difference ~.~aster_ ~rFP of the
corresponding probabilities is small for large V. (Clearly, the ratio "/l"~naster/T/'tFP
is generally not small.)

iii) They present a local asymptotic representation of the stationary equili-
brium process Cst(t) in the sense of van Kampen~2), since

lim V'/2(c~aster(t)- t~) = lim vIIE(cFP(t)- e) = y(t), (4.14)
V ~ V-~

where e is the deterministic equilibrium state, while y(t) is a stationary
Gauss-Markov process governed by the Fokker-Planck equation

~rt(y)={ O +1 O 2 D 1
-- ~-y VY ~ y - ~  J'trt(Y), (4.15)

where

0m7 IY = Oc----~ I c,=e~' D = m 2  [Cl=~-i o (4.16)

Apart from these common features of both Fokker-Planck equations, the
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newly proposed Fokker-Planck equation incorporates the correct form of the
free energy and the boundaries of the system. It is thus to be used ad-
vantageously in order to determine quantities that sensitively depend on the
equilibrium statistics.
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