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The rate of noise-induced desynehronizations (phase slips) of a driven Van der Pol oscillator is determined in the limit of 
weak noise. This is accomplished by a newly developed theory for the lifetime of metastable states, whereas Kramers' stan- 
dead method is not applicable. 

The Van der Pol oscillator driven by a periodic force, 

+ to02x - 3'(1 - x2)~  = 3'E sin tot (3' > 0), (1) 

is a standard model for many nonlinear phenomena in mechanics [ 1 - 3 ] ,  optics [4,5],  radio engineering [6] and 
chemistry [4].  An additional stochastic driving force ~(t), which is supposed to be gaussian and "white":  

(/J(t 1)~(t2)) = 2to2e~(t 2 - t l ) ,  (2) 

is often included to describe environmental influences; in laser theory this term accounts for spontaneously 
emitted light [4,5]. 

In the steady state, and for small detuning co - toO, x( t )  essentially oscillates with the driving frequency w, but 
due to the stochastic force a random motion is superimposed, which leads to occasional losses of  synchronization 
even when e is arbitrarily small. More explicitly, the phase o f x ( t )  occasionally departs by more than :tlr from that 
o f  the unperturbed motion and then acquires a shift of-+2n. Such an event is called a "phase slip". The aim o f  this 
paper is to evaluate the rate of  these phase slips in the limit o f  low noise (e -~ 0). From the theoretical point of  
view this problem has its own interest, due to the fact that a t reatment according to Kramers'  ideas [7,8] is not 
really possible. This aspect will be discussed in greater detail. 

The basic analysis of  the oscillator's mot ion was given e.g. in ref. [9] ,  and we briefly mention the essential 
points: First, it is convenient to introduce two variablesYl(t) ,Y2(t  ) referring to a frame in ( x , J )  space, rotating 
with frequency co: 

Yl = x cos tot - (k/to) sin tot, Y2 = x sin tot + (~/to) cos tot, (3) 

from which the original variables may be reobtained by 

x =Yl cos tot +Y2 sin tot, x = to( -Yl  sin tot +Y2 cos tot). (4) 

Differentiating (3) and using (4) and (1) we arrive at 

)1  = - B ( t ) t o - 1  sin cot, ) 2  = B(t) to-1 cos cot, (5) 
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with 

B(0  = (602 - ¢°2)(-Y 1 cos cot + Y2 sin cot) - 607 [1 - (y  1 cos cot + Y2 sin cot) 2 ] 0,1 sin cot - y 2 cos to o 

+ 7E sin cot + ~(t). 

From the assumption that the friction is not too large (7 ~ co) it follows that y 1 and Y2 do not change appreciably 
during one period 27r/co. It is therefore reasonable to perform the according time average in (5), which corresponds 
to the Krylow-Bogoliubov method in first order [10].  For small detuning (co + coO ~" 26o) the result is 

)1  = (coO - co)Y2 +(7/2)[1 - 0,~ +y2)/4]y 1 - 7E/2co --~l(t), 

) 2  = (co - co0)Yl + (3,/2)[1 - 0,2 +y2)/4]y 2 + g2(t). (6) 

For the noise sources ~1,2 this procedure yields with (2): 

(gl (tl)~1 (t2)) = co-2 sin cot 1 sin cot2(~(t I )~(t2)) = e8 (t 2 - t 1) = (g2(tl)g2(t2)),  

(~l( t l )~2(t2))  = 6o -2 sin oat 1 cos cot2(~(t 1)~(t2)) = 0. (7) 

The Fokker-Planck equation associated with (6) is now readily found to be 

Op/at = -O(AiP)/ay i + e(O2p/ay 2 + a2p/ay2), 

A1 =(coo - co)Y2 +(3,/2)[1 _0 ,2  +y2)/a]y 1 -TE/2co, A 2 =(co - coo)Yl +(7/2)[1 - ( y ~  +y2)/a]y 2. (8) 

Without detuning (co = coo) detailed balance holds, and the stationary solution of  (8) is 

Ps0 , l  'Y2 ) = N exp [ - ~ v  1 ,y2)~//e], (9) 
with 

~(Yl,Y2) =-0 '12 +y2) /4  +0,12 +y22)2/32 + E(2co) - ly  1 . (10) 

The function ¢ has the shape of  a Mexican hat, with an inclination depending on E/co. Since (6) with gl = 0 
= g2 can be rewritten as 

Yl = -o'a~/~Yl, Y2 = ~Ta~/ay2, (11) 

¢ may be viewed as the "potential"  for the purely frictional motion in the 0"1 ,Y2) plane. Therefore the stationary 
points of  ¢ coincide with the fixed points of  the unperturbed motion, i.e. with those of  (1 1). For E :/= 0 all these 
points lie on t h e y  1 axis (see fig. 1), and the i ry  I coordinates follow from 

4y 1 - y ~  - 4E/co = 0. (12) 

With cos ~0 A__ _33/2 E/4co the roots of  (12) are 

y~ = --(4/31/2) cos(~o/3 - 60°), y l  b = -(4/31/2) cos(~0/3 + 60°), y~ = (4/31/2) cos ~0[3. (13) 

Here a denotes the minimum of ~, which is the stable point of  (11), b the saddle of  ~ being the hyperbolic point 
of  (11), and c the maximum of  ¢ being the unstable point of  (11). We mention that E = 0 implies ~0 = 90 ° and thus 

C=0, y~ =--2 ,  y b = 2 ,  Y l 
furthermore that for the largest E admitting real roots, i.e. for E = 4co/33/2), ~0 = 180 ° and thus 

yla-- __4[3112, yb -Yl- c = 2/31/2. 

E is supposed to  be contained within this range, excluding the limits. 
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Fig. 1. Fixpoints of the noiseless motion in the rotating frame 
of reference: a stable, e unstable, b hyperbolic. 

In what follows it is assumed that the noise is weak, i.e. that e is small. Then the stationary distribution Ps is 
concentrated in a small neighbouthood o f  a. A phase slip can now be characterized in the following way: while the 
system stays most of the time near a, it is occasionally driven to the saddle b by the noise. If then it leaves the re- 
gion o fb  on the other side than it had approached it, so that a full surrounding o f c  is achieved, a phase slip is per. 
formed. At first glance one would expect that the rate of these events can be determined by Kramers' method. 
The failure ~ applying his idea arises from the fact that both before and after a phase slip the system stays in the 
same state (i.e. near a), and a current-carrying solution of (8) vanishing at the f'mal state, but not at the initial state, 
does not make sense. A way out of this problem is provided by the following argument: a phase slip is a crossing 
of  the part Yl >Y~ of the Yl axis. Instead of considering the mean time elapsed between two such events, one can 
artiftcially assume that this half-line is absorbing and calculate the mean time T until "absorption" occurs [ 11,12]. 
One merely has to take into account that an arrival on this half-line only results in an actual crossing with probabil. 
• 1 lty ~,  since for the departure both sides of the line are equally probable. The total slipping rate (in either direction) 
is therefore { of the absorbing rate. The absorbing rate itself can readily be determined by the result of ref. [12]. 
There the mean time T until "absorption" was given by the general expression 

T = [2/e(ot + 1)]~/(a+l)v[a/(u + 1)] fdy 1 dY2 w ( f  (-dSr)w(Drr)c*/(~+l)gl/(a+l)) - 1 . .  (14) 

To apply this formula we note that here r denotes the Y2 direction, and --dS r = dy I ;the drift in the Y2 direction 
near the absorbing line is -y27(O2~/Oy2)y2= O, which gives both a = 1 and g = 7[~2~/0y2 [y2=0. Furthermore D rr 
= 2 and w =Ps- Thus (14) is now reduced to 

T -1 = (2~/e/lr) 1/2 f d y  I ps(Yl, 0)(] a2~/Oy 2 ly2=0 )1/2. (15) 
yC 

For small e, Ps(Yl, 0) only contributes near the saddle point b, and there it can be approximated by 

N exp ( ( -~/e)  [~b + (02~/ayl2)b(Yl - yb)2/2] ) '  

while I a2¢/ay 2 ly2= 0 may be replaced by its value at the saddle itself. Therefore (15) becomes 

T -1 = 2e [I 02¢~/~y 2 Ib(0E~/0y2)b-1 ] 1/2N exp [(--~/e)~b]. 

It remains to evaluate the normalizing factor N of (9). For this an expansion o fp  s around a is sufficient: 

Ps ~ N exp {(-~/e) [~a + (02~/0yl2)a(Yl - Y~ )2/2 + (02~/0y2)a(Y2 -Y~ )2/2] ) '  

which leads to 
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N = y(27re) -1 [(~2¢/ay~)a(a2tk/ay2)a ] 1/2 exp [(~/e)¢a],  

so that finally 

T -1 = ")'lr -1 exp [ ( -7 / e ) (¢  b - Ca) l [(O2¢/~y2)a(02¢/Oy2)a[ a2¢/ay 2 Ib/(a20/~y~)b ] 1/2 (16) 

In ref. [12] it is understood that the absorbing line is approached from one side only, Therefore, (2T) -1 is the 
rate o f  phase slips o f  one direction, and the total slipping rate is just given by (16). 

The second derivatives of  ¢ at a and b may be expressed in terms of  (13): 

2(a2¢/ay2)a, b -~[Yl- 3,  a,b/2,2) -- 1, 21a2~b/ay21a,b = (y~'b/2)2 -- 1. (17) 

Eqs. (16), (17), (13) and (10) give the phase-slipping rate in leading order as e ~ 0. The method presented here 
can be extended to include a detuning, but since this case requires a more detailed discussion of  the solutions o f  
the stationary Fokker-Planck equation at low noise, this will be presented separately. If  the noise is not really 
weak, the phase slip can be defined and calculated according to ref. [13] ; a simpler method, which for the present 
system gives the exact slipping rate (see ref. [14]),  is presented in ref. [15].  
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