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Activation rates in dispersive optical bistability with amplitude and phase fluctuations:
A case without detailed balance
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For the two-dimensional model of dispersive optical bistability put forward by Graham and
Schenzle [Phys. Rev. A 23, 1302 (1981)] the activation rates of the tnetastable states at low noise are
evaluated explicitly. The rates are calculated in terms of the mean first-passage time of a two-
variable Fokker-Planck equation which does not obey detailed balance and which has a drift field
not expressable as the gradient of the corresponding nonequilibrium potential. The forward rate,
describing the transition from the state with low transmission to the state with high transmission, is
exponentially decreased with increasing detuning 5, whereas the backward rate is exponentially
enhanced with increasing 5 . The prefactor of the rate exhibits a complicated dependence on the de-
tuning parameter which for the absorptive case with zero detuning, 6=0, reduces to the familiar
Kramers result of a Fokker-Planck system with a drift field derivable from a potential.

I. INTRODUCTION

The phenomenon of optical bistability of a Fabry-Perot
etalon, driven by an external monochromatic field, is ob-
served if the etalon is being filled with an optically non-
linear medium which possesses a strong and fast nonlinear
response to the applied field. Two extreme eases can be
distinguished: For the absorptive bistability, ' the fre-
quency of the driving field coincides with both an absorp-
tion frequency of the nonlinear medium and a resonance
frequency of the Fabry-Perot etalon. For dispersive bista-
bility, ' one detunes the Fabry-Perot etalon and drives
the nonlinear medium off resonance.

In the presence of fluctuations, there occur transitions
between the two locally stable states of the transmitted
field at random times. The sojourn time between succes-
sive transitions presents a basic quantity of this bistable
system. The inverse of the mean sojourn time determines
the decay rate of a metastable state. The mean sojourn
time itself is given in terms of the mean first passage time
for a realization of leaving the corresponding domain of
attraction. Because the optical field has at the boundary
of the domain of attraction an equal chance either to re-
turn to its previous point of stability or to switch into the
new point of stability, the mean sojourn time equals twice
the mean first passage time.

By neglecting phase fluctuations of the optical field, the
rate of decay of a metastable state was investigated previ-
ously. ' In this approximation the amplitude dynamics
can adequately be described by a single-variable Fokker-
Planck equation. In this case, the mean first passage time
can be obtained in closed form by exact integrations. In-
cluding the phase fluctuations, the stochastic dynamics
can be described by a two-variable Fokker-Planck equa-
tion' which does not exhibit detailed balance, in general.

For the problem of evaluation of the transition rate, the
work by Kramers for Brownian motion in a potential
represents a milestone. Therein, the rate was calculated
from a current-carrying solution of the corresponding sta-
tionary two-variable Fokker-Planck equation. For a large

II. ACTIVATION RATE QF A METASTABLE
STATE AT LQW NOISE

Let us consider a dynamical two-variable system whose
deterministic motion is given by the two coupled non-
linear first-order differential equations

x;=K,(x), i=1,2. (2.1)

Suppose further that the system possesses a stable attract-

class of multidimensional thermal equilibrium Fokker-
Planck processes, the method of Kramers has been gen-
eralized by Landauer and Swanson' and by Langer. " A
discussion of a special class of two-dimensional nonpoten-
tial Fokker-Planck systems was recently presented by Gar-
diner. ' For one-variable systems, the path-integral ap-
proach has also been utilized. ' A different approach is
the direct calculation of the mean lifetime of the metast-
able state at weak noise in terms of the mean first passage
time rather than of the rate. In this case, the problem of
evaluating the activation rate can be formulated without
relying on special assumptions about the nature of the
metastable state or the nature of exit points from the
domain of attraction.

Matkowsky and Schuss' investigated a related problem
and obtained a lower bound for the mean first passage
time. However, the lifetime of the metastable state at low
noise has not been obtained in Ref. 14, as claimed by Mat-
kowsky and Schuss later on. ' The general problem of
calculating the lifetime of metastable states in multivari-
able Fokker-Planck systems has been treated by Talkner
and Ryter. ' Unfortunately, the original work' contained
a minor mistake which was corrected in Ref. 17 and has
also been noted in Ref. 15.

The paper is organized as follows. For the sake of com-
pleteness we review in Sec. II the results of Ref. 17 as
needed for the case of a two-dimensional Fokker-Planck
system. In Sec. III, a two-variable model for the optical
bistability is presented and the transition rates are calcu-
lated explicitly.
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ing point x within a bounded domain Q of attraction.
This is the situation tacitly assumed in Refs. 16 and 17.
Later it will be shown how the assumption of a bounded
domain of attraction can be relaxed. If the system under
consideration is perturbed by white Gaussian noise, the so-
journ time within Q is generally finite —even in presence
of arbitrarily weak noise.

The perturbed system is described by a probability p, (x )

whose time evolution is governed by the Fokker-Planck
operator L,

L =— K)(x)— Kq(x)+ —,Q
8

Bx) Bxp Bx ) Bxp

with the adjoint operator J ~,

L =K, (x) +K,(x) + —,Q
8

Bx) Bx ) Bxp

(2.2)

(2.3)

Hereby we have assumed that the noise is additive and iso-
tropic, i.e., the noise is characterized by a single diffusion
constant Q.

The mean time t(x) at which a trajectory starting at a
point x in Q reaches the boundary BQ of A for the first
time is given by '

Ltt(x)= —1 for x in Q (2.4)

Lp(x) =0,
one obtains by use of the Gaussian theorem

(2.5)

—f p(x)V't(x) dS= —f p(x)d x, (2.6)

where d S denotes the oriented surface element on BO,.
In the limit of small noise (Q~O), a trajectory starting

within Q will typically first approach the attractor and
stay around its neighborhood for a long time as compared
with the time constants of the deterministic motion, until
an occassional Auctuation drives the system towards the
boundary. Hence, the mean absorption time t(x) assumes
the same large value T everywhere in Q except for a thin
layer AQ along the boundary BQ, where the noise strength
is still sufficient to cause a direct exit. Accordingly, one
may define a function f(x) which is unity in the inner
part of 0:

t(x) =Tf(x), (2.7)

t(x)=0 for x on BQ .

If one integrates (2.4) over Q with an integrable solution
p(x) of the stationary Fokker-Planck equation

Since T is exponentially large in Q ' and since clearly b,Q
shrinks to BQ for Q —+0, the inhomogeneity in the equa-
tion for f(x) following from (2.4) becomes negligible on
the boundary layer 4Q, i.e.,

L f(x)=0, (2.8)

p(x) =Z 'exp[ —@(x)/Q], (2.10)

where Z denotes the state-independent normalizing factor.
One can show that 4&( x ) is a Lyapunov function of the
deterministic system (2.1). Hence, in the limit of weak
noise, the Q integral in (2.9) is dominated by the value of
the absolute minimum of 4(x) at the attracting point x.
The leading order contribution to the integral comes from
the Gaussian approximation of (2.10) at x. For the discus-
sion of the BQ integral in (2.9) we must distinguish the
case with a constant 4( x ) on BQ from the case with vary-
ing 4(x) on BQ. The first case is not of relevance for the
following application and we refer to Ref. 17 for details.
In view of the following application we restrict ourselves
to a function C&(x) which on BQ possesses one minimum
at a point y. Because of the Lyapunov character of &b(x),
the unrestricted function 4(x ) actually has a saddle point
at y which corresponds to a hyperbolic point of the deter-
ministic system (2.1). The leading order contribution to
the BQ, integral again comes from the Gaussian approxi-
mation of p( x ) at y and the quantity V' f( x ) can be re-
placed by its value at y. The remaining unknown quantity
is 7f. In order to solve (2.8) we use for f( x) near BQ the
ansatz

2
~Q

1/2
p( ~ ) Z'

dz exp0 2
(2.11)

In view of (2.8), the function p(x ) introduced in (2.11) sat-
isfies

BXi BXp

(2.12)

Because the normal component of the drift field K(x)
vanishes on BQ, (2.12) admits a solution p(x) which
equals zero on BQ. Now, we may choose a coordinate sys-
tern in the boundary layer with one axis r along —dS on
BQ and another axis n in BQ. Typically, the r component
of the drift field does vanish linearly with r, i.e.,

with the boundary conditions stated below (2.7). With
(2.6), and (2.7), the quantity T may be expressed in terms
of p( x) and of the gradient of f on BQ, i.e.,

fute(x)d xT= (2.9)f p(x)Vf.dS

We note that for the following application the stationary
solution p( x) is known to be of the form

f(x)=0 for x on BQ,
f(x)=1 for x on the inner boundary of AQ .

K, =gr, g ~0.
Thus, the function p( x) near BQ is given by

(2.13)
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p=ar, (2.14)

where a is a function of a which obeys from (2.12) the
equation

ga +K ——,
'

( V r ) a =0 .
dn

(2.15)

Note that in Ref. 16 a possible a dependence of a, yielding
the second term in (2.15), has been disregarded. However,
E vanishes at the saddle point y and we recover for the
gradient off at y the old result'6

(y")=2
Br nQ( V'r)

1/2

(2.16)

gp x d xT—
[gQ(V r)'/~]'~' f p(r =0, a, )dS„

(2.17)

(y")=0 .
Bcx

Combining the result in (2.16) with (2.9) yields the central
result

From (2.7) and (2.16) and the fact that f(x) is unity at the
maximum of the sharply peaked stationary probability
p(x), one finds that T coincides with the mean first pas-
sage time averaged over an ensemble p(x)

p( x )=p( x ) /f p ( x )d x (2.18)

of starting points.
For the following application the respective domains of

attraction are not bounded. Because the mean first pas-
sage time will then, in general, not be constant almost
everywhere in each single domain of attraction, the above
considerations seemingly do not apply. However, if one is
only interested in the mean first passage time T averaged
over the ensemble p(x), the remote parts of 0 are of negli-
gible weight and 0 can be replaced by a bounded domain
Q' contained in Q. Of course, Q' must have a shape such
that there is deterministically no outgoing flow. Conse-
quently, Q' must contain the attracting point x. Then
t(x) assumes again a constant value T almost everywhere
in 0, which is given by (2.9) if 0 and BQ are replaced byQ' and BQ', respectively. For small noise, the integrals
are again dominated by the maxima ofp( x ) which for the
Q' integral and the BQ' integral are located at x and y,
respectively.

III. FLUCTUATION THEORY OF DISPERSIVE OPTICAL BISTABILITY

A. Modeling and stationary behavior

a
p, (x»xq) =

Bx&

Following Graham. and Schenzle, the stochastic dynamics of the complex-valued transmitted electric field,
E=x

& +ixz, is modeled by the Fokker-Planck equation

xi —»2 xz+»x, —6x E+I — p, (x„x )+ x +5x, +I p, (x,x )1+x&+xz 1+x i+xz
az 02+-,'Q, +

Bx ) Bxz
(3.1)

p(xi, xz) =Z 'exp[ —@(x~,xz)/Q], (3.2)
with Z being the normalization, is known nevertheless:

I &0 denotes a coupling constant, Ep is the real-valued
incident deterministic electric field, and Q measures the
combined strength of the quantum noise, thermal noise,
and the noise of the external laser field. %'e restrict our
considerations to the case for which the atomic detuning 6
and the cavity detuning y are of equal strength, i.e., we set
5=@. For the Fokker-Planck dynamics in (3.1), the drift
is not derivable from a potential (detailed balance is not
satisfied); but the stationary probability

x ~
——a cosy, xz ——a sing . (3.4)

The deterministic equations of motions, obtained from
(3.1) in the limit Q~O, are then given by

a= —a+Eocosp —al /(1+a ),
6 (Eo/a)sing —51 /(—1+—a ),

(3.5a)
(3.5b)

and the steady states (a, y) are determined by (see Fig. 1)

t

obeying detailed balance with a potential drift field.
Next we introduce a description in terms of an ampli-

tude a and phase y, i.e.,

N(x i,x2)= x i—
'2

Ep 5Ep
$2 1 $2

2 Eo rz8'p—= , ——a 1+(I+& ) 1+a
tang =—5, (3.6b)

+I ln(1+xi+x2) . (3.3)

The case 6=0 corresponds to absorptive optical bistability

where we have introduced the scaled electric field 8'p.
Bistability with three positive roots for the amplitude a
occurs for I" ~ 8 and 8'p being inside the window
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the nonthermal dynamics of the nonequilibrium discon-
tinuous (first-order-type) phase transition in (3.1) compli-
cafes considerably the evaluation of the asymptotic mean
first passage time (2.17). The quantity that essentially
determines the sojourn time at low noise is the stationary
probability p(x), which, fortunately, has been determined
exactly [see (3.3)]. Because the local directions of the
separatrix around the saddle point (a2,((p) for a nonpoten-
tial drift field do not coincide with the principal directions
of the nonequilibrium potential (3.3), the details of the
prefactor must be evaluated with care. A linearization of
the deterministic flow around the saddle point (a2,qr)
yields with a =a2+x, y=y+p,

Q

Z=BZ,
where z =(x,P) and the matrix

b 58'()
—5c —d

(3.10)

(3.11)

FIG. 1. Plot of the deterministic steady applitudes a vs in-
cident coherent electric field Eo„Eq. (3.6a). The bistable win-
dow is bounded by two dashed lines, and the dotted line gives
the steady amplitudes at the value Eo" through the inflection
point of (3.6a).

w2ap —Ib=I —1~0,
(a 2+1)'

c=8'()/a2 —2I a2/(1+a2) (0,
d = 8'p/a2 & 0 .

(3.12a)

(3.12b)

(3.12c)

8 (1),(2)
0

p2
( I 2 g)1/2

2 2

X 1+ I +(I 2 8)1/2

8'p ' & 8'p & 8'p ', where'
1/2

(3.7)

A, +———,
' (5 —d )+—,

' [(b+d ) —45 c8'p]'

with corresponding eigenvectors v+ (see Fig. 2)

v+( —58'p, d+ A, ),

(3.13)

(3.14a)

The two principal frequencies A, + of the relaxation matrix
8 are readily evaluated to be

a'"'=a, =W3, (3.8)

where superscripts (1) and (2) refer to the plus and minus
signs, respectively. With I & 8, (3.6a) always has a single
inflection point, located at (a'",8'p" ),

v ( —58'p, d+A, +) . (3.14b)

The eigenvector v of the transposed matrix 8 to the
eigenvalue A, + is perpendicular to the stable direction, i.e.,
v i v =0 where

8","'=v 3(1+r'/4),
and with the 1ocaHy stable states for the transmitted opti-
cal amplitudes at

8 v =1+v
with

(3.15a)

a) ———, 1~31 —[31 —4 (1+I /4)]'/ I

V3 as I —+op,
3

(3.9)

v =(A,++d, 58'p) . (3.15b)

In terms of this vector, the equation of the separatrix
around (a2,y) reads locally (see Fig. 2)

a =—,
' I1 31 +[31 —4 (1+I /4)]'/ I

2— I as I

Note that for 8'o——8'o" all three steady amplitudes do not
depend on the detuning parameter 6.

B. Activation Rate

Compared to those situations where the drift term in
the Fokker-Planck equation is derivable from a potential,
the nonpotential character of the drift field together with

FICr. 2. Form of the local separatrix around the saddle point
(a2,@)with corresponding eigenvectors introduced in the text.
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z v =0=x(k++d)+~@'oP . (3.16) This equation exhibits explicitly the vanishing of K,
linearly in r,

x=S p

Next we introduce an appropriate coordinate system in the
boundary layer with one axis (r) (see Sec. II), along the U

direction (r =0 on the separatrix and r & 0 in the domain
of attraction).

In particular, we use a coordinate transformation S:
(x,P)—+(r,a) such that

r k++d d@o x
0 1 P (3.17)

E,=—gr =X+r, (3.19)

and for (Vr) we find

(V'r)'=(k++d)'+(5Ão/a, )' . (3.20)

The components of the oriented surface element dS occur-
ring in (2.17) follow from (3.16) and (3.17):

The components X, +p of the drift field in the new sys-
tem of coordinates are then given by

K„
=SBS

P, CK

dS, = 1

~++I
dS =0.

(3.21)

0 At low noise, the integrals in (2.17) can be calculated with
the method of steepest descent to yield for the activation
rate k; the main result

a2[&&,",(a;,y)@~+(a;,y)]'~ IA, +[(A, ++d) +(58'o/a2) ]I'~
2W2ma; I ~

@,",(a,y) ~
[58'o/(A++I)] +@q~(a2,y)I'~ (A++0)

(3.22)

+I in[(1+a2)/(1+a; )],
and the curvatures of the potential are

4,",=2[1+1 (1—a )/(1+a ) ],
4~~=28'oa .

(3.23)

(3.24)

Expanding the Arrhenius factor 5@around 5=0, one ob-
tains

64 =b,4 +(az a; )Eo5—
with

(3.26)

where i =1 denotes the rate for the forward transition
a ~ ~a 3 and i =3 the backward rate k3 ~ 03 +Q J The AI-
rhenius factor b.4 equals

b@=C(a2,y) —C (a;,y)
w2 A A=a,—a; —28'o(aq —a; )

k5=0
0 1/2

Q2
~0
Qg

pep[4o, (a™.)
~

4&,,(a 2 )
~

]'~ exp

(3.28)

This latter result follows also readily by use of the stan-
dard methods. '-"
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