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Memory damping and energy-diffusion-controlled escape
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A recent refinement by Buttiker, Harris, and Landauer [Phys. Rev. 8 28, 1268 (1983)] of Kramers's
theory of activated escape at low damping is extended to the non-Markovian case with memory damping.

The dynamics of activated rate processes was treated first
in a historic paper by Kramers. Since that time, this impor-
tant problem has been elaborated on many times resulting
in several extensions of Kramers's original approach. In
particular, we mention here the extension to a Markovian
heat bath interaction described in terms of a master equa-
tion, the work based on the concept of the mean first
passage time in one-variable systems and multidimensional
systems, " the inclusion of physically relevant non-
Markovian effects" at moderate and large damping"' as
well as the influence of non-Markovian damping on the ex-
tremely underdamped case. ' ' In another set of papers,
the problem of activated escape has been extended to vari-
ous situations in nonthermal, driven multistable nonequil-
brium systems. '
Our concern in this report is yet on another extension of

Kramers's work for the underdamped case. Recently, an in-
teresting refinement of Kramers's original approach for the
underdamped case has been put forward by Buttiker, Harris,
and Landauer" (BHL approach). Their theory extends
Kramers's work for extremely low damping to the case of
low-moderate damping; i.e., their theory interpolates
between Kramers's result for moderate damping' and his
result for extremely low damping. The goal of this work is
the inclusion of physically relevant memory effects' ' into
the BHL approach.
Important physical underdamped processes, being con-

trolled by diffusion in energy space, are chemical reactions
such as low-density unimolecular reactions, e.g. , an isomeri-
zation I'cactlon, dcsoI'ptlon p1'occsscs of physlsorbcd
spcclcs on SUI'faces, ol' Undcrdampcd t1anspolt ln Joscph-
son junction circuits. ' The memory effects become im-
portant in cases where the relevant coordinate of description
is a molecular vibrational-type coordinate. ' ''" ' Then the
correlation time associated with the heat bath motion is typi-
cally of the same order or longer than the relevant molecu-
lar vibrational period.
The starting point of our refinement is the energy dif-

fusion Fokker-Planck equation of Zwanzig' ' and Carmeli
and Nitzan, ' which effectively does include memory effects
(for details of the derivation see Refs. 15, 16, and 23):

effective diffusion coefficient. D(E) is determined by a
correlation function expression, '6 or more explicitly, in
terms of the memory damping y(r) and the Fourier com-
ponents (x„} of the deterministic, undamped trajectory in
the potential V(x) (see Fig. 1)

x(J,@)= $ x„(J)exp(in')

by" (M denotes the mass of the Brownian particle)
OO

D(E) =~(E)2Jidkr X n'~x„~' J, ~(.) cos[n~(E)r]dr .
(4)

As a point of reference, in the Markovian limit with
y(r) =2yh(r), the diffusion coefficient D(E) reduces
1, 15

D~(E) = J(E)&kT .

At thermal equilibrium, the flux jE along the energy coordi-
nat, c

J,= -D(E) +P .(E)P(E)8
i

valllsllcs. T11us, tile cqulllbflulll probability p(E ) ls glvcl1
by

Z—1

p (E)= exp( pE), -
where Z denotes the normalization.
For thc calcUlatlon of thc rate wc consldc1 a sltUatlon as

V(x)
Jt

p, (E)= D(E) +p .(E)p, (E)9E

Hereby, the frequency v(E) is given in terms of the action
variable J by

v(E) = dE/dJ (2)

p = 1/kT denotes the inverse temperature and D (E) is the
FIG. 1, Schematic sketch of the potential used in text. The dif-

fusive flux along the energy coordinate is j~ and j«t is a horizontal
outflow acting wlthln a narro~ energy region above E&.
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sketched in Fig. 1. We inject particles at the potential well
and remove them the moment they reach the barrier Eb.
The resulting nonequilibrium current jE builds up a total in-
tegrated probability pp proportional to the escape time T:

jET= pp E dE (8)

determined from (10) for E ~ Eb one obtains

v) (Eb) = 1/(1—s ), s & 0 (17)

If we substitute the solution for q (E) into (1 la) and utilize
(8) and (1la) one finds for the rate r = 1/ T

Using the ansatz

p, (E)=&(E)P(E),
one finds from (6) for the nonequilibrium current

(9)

v)(E)P(E) dE
1—s D (E)v (E)P (E ) ]

(18)

JE= D(E-)v(E)p—B7)BE (10)

Integration of (10) from E = E~——kT to E =Eb yields for
the energy-independent current j~, E ~ Eb,

For deep wells, the integrals in (18) can be evaluated within
the harmonic approximation

Jr E(E)P(E) dE
exp(PEb), (19)

pD(Eb)v(Eb)p(Eb) p D(Eb)vp

je= [q(Et)—q(Eb) ] where vp is the frequency in the potential well. Therefore,
D (E)v (E )p (E ) the result for the non-Markovian rate r for the under-

damped case and deep wells reads

For energies E & Eb, we continue to allow a flux due to
damping and fluctuations as determined by (6). Following
the reasoning of Buttiker, Harris, and Landauer ' we allow
an outflow j,„, from each energy range (E, E + dE ),
E ~ Eb (see Fig. 1); i.e. ,

dj«&= vn( E)q( E) P(E) dE (12)

In the steady state, this outflow is compensated by a diver-
gence in the vertical flow up in energy

1Jg
dE
= —nv(E)7t(E)P(E) (i3)

The parameter o. measures the strength of the outflow.
From a more physical point of view, the requirement of a
finite outflow around a relatively narrow energy range above
Eb [implyingP (E) & 0, E ~Eb] models for low-moderate
damping the adiabatic coupling of the energy variable to the
relevant position coordinate. Inserting (10) into (13) and
utilizing (7) one finds the equation

t

D(E) d'5+ dD(E) D(E)P dn -0 (14)dE' dE ] dE

Within the small energy range above Eb one can assume
essentially a constant diffusion coefficient, i.e., D (E)=D (Eb), dD (E)/dE = 0.

g(E) = c exp(sPE), s ( 0 (15)
yielding an exponentially decreasing density pp above Eb,
solves (14). The physical solution follows from (14) as

i' t i/2
4o.s= —— 1+—

D (Eb)P

Setting Yi(E) = rt(Eb) exp[sp(E —Eb) ] and matching at en-
ergy Eb the constant current je in (1 lb) to the current

Observing that the integration in (1 la) for deep wells is
controlled by its upper integration limit, one obtains with
q(E)) =1
js=[1—~(E )b)D( E)bpZ 'exp( pEb), —E~Eb

(»b)

[ (1+4 /D (E )P') ' '—1 P'D (E, )v, exp(—PEb) .1+4nD Eb p t+I
(20)

The parameter o. can be determined by use of computer
simulations. Relying on the simulation results in Ref. 21,
the appropriate value for the quantity o. is around one. The
result in (20) has the same structure as the result for white
noise2' which follows simply from (20) by substituting the
Markovian limit D~(E ) = Jy kT, (5), for the non-
Markovian diffusion coefficient D (E), (4). Because in
(18)

fOOD(E) & kTJ(E) J y(r) dr
the influence of memory generally results in a decrease of
the prefactor with increasing correlation time of the memory
y(r). For a smooth barrier (~) and for a cusp-
shaped barrier (~ ), the diffusion coefficient D(Eb)
occurring in (20) is readily evaluated: Note that for a
smooth barrier v(Eb) = 0; i.e.,

D(Eb) =—D, (Eb) = kTJ(Eb)y(v = 0)
[y(v): one-sided cosine transform of y(r)]; on the other
hand, for a cusp-shaped barrier (truncated harmonic poten-
tial) v (Eb )= v p, i.e.,

D(Eb)—=D, (Eb) = kTJ(Eb)y(vp) (D, (Eb)
For moderate-large damping, '4 the rate in (20) clearly be-
comes incorrect. A rate formula covering the whole damp-
ing regime could in principle be obtained by use of a fitting
procedure between the current solutions of the correspond-
ing two Fokker-Planck equations describing the correspond-
ing diffusion regimes. Unfortunately, with an underlying
two-dimensional phase-space dynamics [(x,x) or (x,E)]
such a fitting procedure cannot be chosen uniquely.
Note added. A bridging between the Kramers limits' (lim-

it of white Gaussian noise) has been recently presented by
Carmeli and Nitzan. Moreover, a different treatment of
this bridging has been put forward by Matkowsky, Schuss,
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and Tier, 25 which overcomes an imperfection in Ref. 24 and
is superior to the semibridging result of Buttiker, Harris,
and Landauer, ' which starts to fail within the moderate
damping regime. Based on the concept put forward in Ref.
25, a useful approximation of the uniform rate expression
rUNtF, in presence ofmemory damping, is then given by

with cob & 0 the (instable) angular frequency at the barrier,
p, the memory-renormalized frequency evaluated in Refs. 13
and 14, and r(Eq) the mean time to reach the barrier ener-
gy Eb as determined via the energy diffusion dynamics in
Eqs. (1) and (4) (see Ref. 15).
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