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Quantum Tunneling in Dissipative Systems at Finite Temperatures
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A quantum system which can tunnel out of a metastable state, and which interacts with an
environment at temperature T, is considered. It is found that heat enhances the tunneling
probability at T= 0 by a factor exp[A ( T)Mcupq)/It], where M is the mass of the system, cop
is the frequency of small oscillations about the metastable state, and qo is the tunneling dis-
tance. For an undamped system A (T) is exponentially small, A (T)~ exp( It&op/'ksT), —
whereas for a dissipative system A ( T) grows algebraically with temperature.

PACS numbers: 05.30.—d, 05.40.+j, 73.40.6k
There has been recent experimental and theoreti-

cal work on the question of whether a macroscopic
system can be shown to tunnel out of a metastable
state. ' In macroscopic systems, the tunneling prob-
ability is strongly influenced by the interaction with
the environment. This coupling is often so strong
that the motion in the classically accessible region is
heavily damped. Caldeira and Leggett have shown
that damping suppresses the tunneling rate at T= 0.
Their results are in qualitative agreement with re-
cent experiments on Josephson systems. 3 A more
detailed comparison should have regard to the tem-
perature dependence of the tunneling probability
which is investigated theoretically in this Letter.
We have found that the thermal enhancement of
the tunneling rate at low temperatures sensitively

depends on the details of the coupling to the en-
vironment. Our predictions should be experimen-
tally testable and render a crucial check of currently
discussed theoretical models.

Specifically we consider a particle of mass M
moving in a potential V(q) with a metastable
minimum; we choose the axes so that this lies at
q = 0, V= 0. To tunnel out of the metastable state,
the particle has to penetrate a potential barrier of
width qp [that is, V(qp) =0] before reaching the
region of lower potential. The system is assumed to
be coupled linearly to its environment which at low
temperatures can be replaced by a bath of harmonic
oscillators. ' Feynman's method4 of integrating
away the environmental modes leaves a one-
dimensional problem, the partition function of
which is given in terms of an effective action's

e/2 8/2 8/2S[q(~)]=Jt d7. [ 2Mq'+ V(q)]+——,'Jt d7 JI dv'k(7 —~')q(r)q(~'),

where q(r) is a path in "imaginary time" v with
period 0, q(~+8)=q(~), where 8=It/kaT. The
potential V(q) includes the shift due to the cou-
pling. The final term in (1) introduces dissipation.
k(7 ) is a 0-periodic kernel given by's

k(7) =8 tx K(v )exp(iv T),

where v~ =2m m/0, and

K(v) = 1
dm

2" J(to)
V +CO

Here and in the sequel sums over the index m run
from —~ to +~. The spectral density J(to) is
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proportional to the density of environmental modes
at frequency oi and proportional to the square of the
strength of their coupling to the tunneling system. '
To determine the tunneling probability we em-

ploy the "bounce" technique originally used by
Langer6 and popularized by Coleman. 7 The
"bounce" trajectory is a saddle point of the action
(1) which starts from the metastable region at
r =—0/2, traverses the potential barrier (which is a
valley in imaginary time), and returns to the meta-
stable region at v=0/2. As long as k&T is small
compared with to~p, where pip is the frequency of
small oscillations about the metastable equilibrium,
the V(KB approximation applies, and the tunneling
probability may be written

r =N exp( —S~/t), (2)
where S~ is the action (1) evaluated along the
"bounce" trajectory, and N is a prefactor which can
be calculated from the small fluctuations about this
path. A derivation of the decay rate formula (2)
has been given by Coleman7 for an undamped sys-
tem at zero temperature and the extension to the
dissipative case has been expounded by Caldeira
and Leggett. ' They also have estimated the effect
of interbounce interactions and have shown that
they may be neglected at low temperatures even
for the dissipative case. Furthermore, we have
analyzed the decay rate for temperatures near the
crossover temperature to thermal hopping and have
found that for damping of arbitrary strength the
one-bounce contribution to the decay rate always
matches smoothly with the Arrhenius factor. It
seems therefore natural to conjecture that the for-
mula (2) holds in the whole temperature regime
where tunneling prevails.

Since the temperature dependence of the prefac-
tor N is negligible, we find from (2) that to a good
approximation the tunneling probability I"(T) at
low temperatures may be written

I'( T) = I'p exp[6, s~( T)/t ], (3)
where I'p is the tunneling probability at T=O (in-
cluding the influence of dissipation) and b,S&(T)
=s, (0)-s, (T).
We have evaluated (3) for various potentials.

Our principal findings for the behavior at low tem-
peratures of the thermal enhancement of the tun-
neling probability are as follows.

(i) The thermal enhancement factor may be writ-
ten

r ( T)/r, = exp[A (T)M(upqp /t 1, (4)
where A (T) is a dimensionless quantity character-
izing the influence of thermal fluctuations.

(ii) For an undamped system, A ( T) is exponen-

tially small, A ( T) = a exp( t—coo/'kz T), where a is
a numerical factor which depends on the potential.
This is in agreement with results of Affleck8 and of
Weiss and Haeffner9 which have been obtained on
different lines involving a Boltzmann average of
energy-dependent rates.

(iii) For a system with linear frequency-inde-
pendent damping whose classical equation of
motion is M q+qq+ 6 V/rlq =0, the spectral den-
sity J(oi) must have the form J(0~) =qoi. ' Then
A ( T) increases quadratically with temperature,
A ( T) = a (~) (kz T/t cup), where a (a) is a func-
tion of the dimensionless damping parameter
o.=q/2Mpip. This function depends on the form of
the potential. The low-temperature power law
A cc T2, however, holds for all metastable potentials
and is a distinctive feature of "Ohmic dissipation, "
that is a dissipative mechanism characterized by a
damping coefficient which becomes frequency in-
dependent at low frequencies.

(iv) For tunneling centers in solids, the spectral
density J(oi) is typically proportional to Oi3 for
small frequencies. 'o Then A ( T) grows as the
fourth power of temperature.

(v) If the environmental spectrum has a low-
frequency cutoff, as in the oxide junction model of
Ambegaokar, Eckern, and Schon, " the thermal
enhancement is exponentially small as in undamped
systems.

(vi) The increase of A ( T) with temperature is in-
timately connected with the asymptotic behavior for

~ of the "bounce" trajectory q(v. ) at zero
temperature. Both of these asymptotic forms can
be related to the long-time behavior of the zero-
temperature kernel k(v ).
There is space here only to give the general out-

line of our calculations. Let us first consider a sim-
ple model potential

2 Mpipq for q + qpVq=
for q ) qp,

which is the limit for n ~ of the smooth poten-
tial

V(q) = 2 M~oqo [(qlqo)' —(qlqo) "1.

The motion in "imaginary time" in the potential
V(q) corresponds to a motion in real time in the
inverted potential —V(q).7 The saddle-point tra-
jectory reaches qp at r = 0 and bounces off the in-
finitely high barrier of the inverted potential.
Hence, the "bounce" trajectory has a cusp at 7 =0
with q (0 ) = —q (0+ ) = v. Taking this discon-
tinuity of the velocity into account, and expanding
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the saddle-point trajectory into a Fourier series

q(~) =(2n/0)X Q exp(iv r), (6)
we obtain from the equation of motion

(v +O+( )Q =&/~.
where g =K(v )/M, and where v is determined
by the requirement q(0) = (2n/&)$Q = qp.
Thus, our results for the "bounce" trajectory q(~)
and for the action Ss( T) of this path are

q (r ) = qoQ (T)8
x X exp(iv ~)(v'+coo+( ) ', (7)

Ss(T) = —,'MQ(T)q02 = 'tq—/(q ) (8)
where ( q2) q =t/MQ ( T) is the dispersion of a har-
monic oscillator with frequency ~0 which is damped
by the same dissipative mechanism as the tunneling
system, and where

Q(T) '=8 'X (v'+o)zo+( ) '. (9)
To proceed further we need to particularize the

coupling to the environmental modes. Let us first
consider an undamped, or free, system where J(co)= 0. We then have (q ) I,

= (t/2M&co) coth(&coo/
2) which by virtue of (8) leads to a thermal
enhancement factor of the form (4), where

A ( T)= 2 exp ( t co 0/ks T)—
at low temperatures. From (7) we obtain for the
saddle-point trajectory at zero temperature
q (~)= qo exp( —~o~r ~) which for large ~ shows the
same asymptotic behavior as A(T) for large 8
=t/ks T.
Next we consider the case of a system with linear

Ohmic dissipation where J(cu) =geo. ' Then
=q~v ~/M, and one has

Q(T)-'=M(q') „/t

= (Oo)02) '+ [m(zt —zz) ]

X [y(1+8&~/2n )—f(1+HX2/2n )].
The psi function, Q(z), is the logarithmic derivative
of the gamma function, ' and A. ~ z= a)p[u
+ (az—1)'iz], where n = q/2M coo. Using the as-
ymptotic expansion of f(z) for large ~z ~,

'z we find

S,(T)=-,'MQ, q,'[1-—,', '(&QgM 2)

X (ksT/to)0)4]

where terms of order (ksT/tcoo)4 have been disre-
garded, and where Qo= Q (0). This shows that

A ( T) = 3 m (Q 0/o) 0)2 (ks T/t o)0) 2

increases proportional to T2 at low temperatures.
At T= 0, the asymptotic behavior of the "bounce"
trajectory for 7 ~ reads q (~)= (2/7r)~(Q 0/
~0)qo(cuow) z. This algebraic decay obeys the
same power law as the decrease of A (T) as a func-
tion of 8 for 8
The coupling of tunneling centers in solids to the

phonon mode' can frequently be described by a
spectral density of the form'3 J (co) = geo /
(ao'+ cuD ). We now have g = gv~/M (coD
+ ~v ~), and one finds after some algebra

Sg(T) = —,
' MQoqp2 [1——,', n 3(7iQ0/Mo)D)

x (kaT/to)0) ]

where terms of order (k&T/tcoa)6 have been disre-
garded, and where Qo= Q(0), which depends on

Q)p, and coD. The quantity A ( T) defined in (4)
now increases proportional to T4 at low tempera-
tures.

As a last example, we consider a case where the
environmental spectrum has a low-frequency cutoff
co, .' J(cu) =0 for co(co„J(co)=7ico for co) co .
In this case, one has K(v) = (2qv/m )arctan(v/co, ).
Since K(v) has no cusp at v =0, one finds that the
zero-temperature kernel k (~) decays exponentially
for large ~. This leads to an increase of A ( T) with
temperature which is exponentially small as in a
free system.
So far, we have given results for the discontinu-

ous model potential (5) only, which allows for an
explicit evaluation of all quantities of interest.
However, we have found the same leading depen-
dence of A (T) on temperature for smooth poten-
tials. The reason is as follows. The saddle-point
trajectory at low finite temperatures differs from
the "bounce" at T=0 primarily by the fact that the
turning point in the metastable region is reached at
a finite "imaginary" time 7 =il/2 and not only for

~. For large 0, this change in the wings of the
trajectory occurs far from the discontinuity of the
potential (4). Thus, although the simple model can
give poor results for the "bounce" action at T=0,
it gives correct results for the difference Ss(T)—Ss(0) at low temperatures, apart from a numeri-
cal factor which depends on the form of the poten-
tial and the strength of the damping but not on
temperature.
Let us consider the practically important case of a

cubic potential, V(q) = —,
' Mco02q2 ——,

' Muq, more
closely. Inserting the spectral expansion (6) of the
saddle-point trajectory into the equation of motion
obeyed by the extremal paths of the action (1), one
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finds
(v'+to2p+( )Q =(27tu/0)X„Q p„Q, (10)

Further, by virtue of (10), the "bounce" action
may be written

Stt(T) = ', v—rMu(2vr/0)2XQ~Q„Q~+„. (11)
m, n

At zero temperature, the sums in (10) and (11) are
replaced by corresponding integrals. The Euler-
Maclaurin expansion'z of these sums yields the
asymptotic expansions of both the form of the
saddle-point trajectory and the "bounce" action
Stt(T) for large (l=t/k&T, where the coefficients
are given in terms of the Fourier representation

re

QP(v) = (I/2m) d7 exp( —iv7)q(v)
of the "bounce" at T=O. This analysis confirms
the conclusions drawn from the simple model dis-
cussed above.

In the remainder of this Letter, we restrict our-
selves to the important case of frequency-indepen-
dent damping, J(co) =geo. '4 To determine the
Fourier coefficients Q of the saddle-point trajecto-
ry at finite T, we compare (10) with its zero-
temperature limit using the Euler-Maclaurin formu-
la. The result for Q may be inserted into (11) and
the sum can be approximated again by means of the
Euler-Maclaurin formula. This yields finite-
temperature corrections to the bounce action arising
both from the discreteness of the sum in (11) and
from the corrections to the form of the trajectory.
The intermediate result can be simplified by use of
the integral equation satisfied by QP(v). We finally
obtain

S (T)=S (0)——', m'7)[QP(0)k T/lt], (12)
where terms of the fourth order in T have been
disregarded.
From (12) we obtain a thermal enhancement fac-

tor of the form (4) where

A ( T) = ,' wn(kaT7t—t/t)2 (13)
Here we have introduced the "bounce length" ~it= qp

' fdr q(v). The zero-temperature "bounce"
trajectory is known explicitly for very weak and for
very strong damping. ' This yields rtt=4/top for«( 1 and ~tt = 87m/3top for n )) l.

At the crossover temperature to thermal hopping
Tp= (lt top/2'trka) [(1+n2)' 2—n] the "bounce"
ceases to exist. There Stt(T)/lt reaches the value
and the slope of the classical Arrhenius factor. In
the strong damping limit, where (10) can be solved
exactly, the Tz power law for A ( T) holds up to Tp.
This overdamped case has also been studied by Lar-
kin and Ovchinnikov. '5'6 In the weak damping
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limit, the T power law holds only for temperatures
below lt q/Mka.
These results may be applied to the physically

interesting problem of quantum tunneling in
SQUID's or current-biased Josephson junctions. '
An increase of A ( T) proportional to T2 would indi-
cate that these systems are adequately described by
the resistively shunted junction model.
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