INFLUENCE OF THERMAL FLUCTUATIONS ON MACROSCOPIC QUANTUM TUNNELLING
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The quantum decay of a system which interacts with an environment at temperature T 1is consjidered.
It is found that heat enhances the tunnelling probability at T = 0 by a factor exp[A(T)Mmoqgfﬂ],
where M is the mass of the system, w, is the frequency of samll oscillations about the metastable

state, and Qo

is the tunnelling distance. For an undamped system A(T) is exponentially small,

A(T) = exp(-Two /k,T), whereas for a dissipative system A(T) grows algebraically with temperature,
A(T) = (k T/hnof‘. The exponent n is a distinctive feature of the dissipative mechanism and is 2

in the caSe of Ohmic dissipation.

There has been recent experimental and theo-
retical work on the question of whether a macro-
scopic system can be shown to tunnel out of a
metastable state (1). In macroscopic systems, the
tunnelling probability is strongly influenced by
the interaction with the environment. Caldeira
and Leggett (2) have shown that damping suppresses
the tunnelling rate at 7 = 0. Their results are in
qualitative agreement with recent experiments on
Josephson systems (3). A more detailed comparison
should have regard to the temperature dependance
of the decay rate. We have found that the thermal
enhancement of the decay rate at low temperatures
sensitively depends on the details of the coupling
to the environment (4).

Macroscopic quantum tunnelling in Josephson
systems is equivalent to the escape problem of a
particle of mass M moving in a potential V(q)
with a metastable minimum; we choose the axes so
that this lies at g = 0, V = 0. To tunnel out of
the metastable state, the particle has to pene-
trate a potential barrier of width %y (that 1is,
V(g,) = 0) before reaching the region of lower
potential. The system is assumed to be coupled
Tinearly to its environment which at low tempera-
tures can be replaced by a bath of harmonic oscil-
Tators (1). Feynman's method (5) of integrating
away the environmental modes leaves a one-dimen-
sional problem, the partition function of which
is given in terms of an effective action (1,6)
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where g(t) is a path in "imaginary time" 1
with period €, g{1+0) = q(1), where © = ﬁ/kBT.

The final term in (1) introduces dissipation.
k(t) is a O-periodic kernel given by (1,6)

k(1) = 9"1ZK(vm) exp(iv 1)
m

where vy = 2mm/0, and
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Here and in the sequel sums over the jndex m
run from -= to +=. The spectral density J(w) is
proportional to the density of environmental
modes at frequency w and proportional to the
square of the strength of their coupling to the
tunnelling system (1).

To determine the tunnelling probability we
employ the "bounce" technique originally used
by Langer (7) and popularized by Coleman (8).
The “"bounce" trajectory is a saddlepoint of the
action (1) which starts from the metastable
region at t = -98/2, traverses the potential
barrier (which is a valley in imaginary time)
and returns to the metastable region at 1 = ©/2.
As long as kBT is small compared with Tw, ,



958

where we is the frequency of small oscillations
about the metastable equilibrium, the WKB-approxi-
mation applies, and the tunnelling probability
may be written

I = N exp(-Sp/n) (2)

where S, is the action (1) evaluated along the
"bounce™" trajectory, and N is a prefactor which
can be calculated from the small fluctuations
about this path. Since the temperature dependence
of the prefactor N is negligible, we find from
(2) that to a good approximation the tunnelling
probability I'(T) at low temperatures T may be
written

P(T) = I explaSg(T) /] (3)

where T'g i1s the tunnelling probability at T =0
(including the influence of dissipation) and
ASB(T) = S,(0)-S,(T).

We have ev§1uateg (3) for various potentials. Our
principal findings for the behavior at low tem-
peratures of the thermal enhancement of the tun-
nelling probability are as follows.

(i) The thermal enhancement factor may be written

T(T)/Te = exp[A(T)Mwoq3 /4] (4)

where A(T) is a dimensionless quantity character-
izing the influence of thermal fluctuations.

(i1) For an undamped system, A(T) is exponentially
small, A(T) = a exp(-fiwo/k,T), where a is a nu-
merical factor which depengs on the potential.
This 1s in agreement with results of Affleck (9)
and of Weiss and Haeffner (10) which have been
obtained on different Tines.

(iii) For a system with linear frequency-independ-
ent damping whose classical equation of motion is
MG + nd + aV/aq = 0, the spectral density J(w)
must have the form J(w) = nw . Then A(T) increases

quadratically with temperature, A(T) =
a(a)(k,T/Mfwe)?, where a(a) is a function of the

dimenstonless damping parameter o = n/2Mw,. This
function depends on the form of the potential.
The Tow temperature power law A « T2, however
holds for all metastable potentials and is a dis-
tinctive feature of "Ohmic dissipation”.

(iv) For tunnelling centers in solids, the spec-
tral density J(w) is typically proportional to w?
for small frequencies (11). Then A(T) grows as
fourth power of temperature.

(v) If the environmental spectrum has a low-fre-
quency cut-off, as in the oxide junction model of
Ambegaokar, Eckern and Schon (12), the thermal
enhancement is exponentially small Tike in un-
damped systems.

Let us consider the practically important case of
a cubic potential, V(q) = $Ms3q® - *Mug®, more
closely. From the equation of motion obeyed by
the extremal paths of the action (1), one finds

wf o) = (/)i 0 (5)
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Further, by virtue of (5), the "bounce" action
may be written

1
S(T) = —ﬂMu(Znﬂ3)2m§nannQn+n 6)

At zero temperature, the sums in (5) and (6) are
replaced by corresponding integrals. The Euler-
Maclaurin expansions of these sums yields the
asymptotic expansions of both the form of the
saddlepoint trajectory and the "bounce" action
S.{T) for large © = fi/k, T, where the coefficients
a?e given in terms of tﬁe Fourier representation
Q%(v) = (1/2m)fdt exp(-ivt)q(t) of the “"bounce"
at T = 0. Here, we restrict ourselves to the im-
portant case of frequency-independent damping,
J{w) = nw. We then have

Sg(T) = S4(0) - %ﬂ’n[Q”(O)kBT/ﬁlz (7)

where terms of the fourth order in T have been
disregarded. From (7) we obtain a thermal enhance-
ment factor of the form (4) where

A(T) = dna(iT /g )? (8)

Here we have introduced a characteristic frequen-
cy wg =T ~! associated with the "bounce length"
T = qo Jodt q(t).The zero temperature "bounce"
t?ajectory is known explicitely for very weak and
for very strong damping (1). This yields w
for a<<l and wy, = 3we/8ma for a>>1. B
These results %ay be applied to the physically
interesting problem of quantum tunnelling in
SQUID s or current-biassed Josephson junctions(1).
An increase of A(T) proportional to T2 would in-
dicate that these systems are adequately describ-
ed by the RSJ model.
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