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Activation rates for nonlinear stochastic flows driven by non-Gaussian noise
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Activation rates are calculated for stochastic bistable flows driven by asymmetric dichotomic
Markov noise (a two-state Markov process). This noise contains as limits both a particular type of
non-Gaussian white shot noise and white Gaussian noise. Apart from investigating the role of
colored noise on the escape rates, one can thus also study the influence of the non-Gaussian nature
of the noise on these rates. The rate for white shot noise differs in leading order (Arrhenius factor)
from the corresponding rate for white Gaussian noise of equal strength. In evaluating the rates we
demonstrate the advantage of using transport theory over a mean first-passage time approach for
cases with generally non-white and non-Gaussian noise sources. For white shot noise with exponen-
tially distributed weights we succeed in evaluating the mean first-passage time of the corresponding
integro-differential master-equation dynamics. The rate is shown to coincide in the weak noise limit
with the inverse mean first-passage time.

I. INTRODUCTION

This paper considers dynamical aspects of nonlinear
systems driven by random forces of the white-shot-noise
type. Such noise is composed of a series of weighted im-
pulses which occur at Poisson arrival times (see Fig. 1).
Our interest is in nonlinear systems in which the non-
linearity leads to instabilities and bistable behavior in cer-
tain ranges of ihe control parameter. Typical systems
would be semiconductor instabilities such as Esaki diodes,
Josephson-tunneling junctions, or optical bistability, all
being driven by a noisy control parameter. In the bistable
region one expects that the deterministic stability of the
metastable state corresponds in a stochastic description to
a very slow activation or transition rate from the meta-
stable to the globally stable state. Historically such rate
processes have interested scientists and engineers over
many decades, most notably in the fields of chemical ki-
netics, transport in semiconductors, and biological sys-
tems.

Bistable systems often resemble the model of a Browni-
an particle moving in a potential with two (or perhaps
more} adjacent wells and a barrier in between, which
prevent the particles from jumping too often. In this con-
text, Kramers' work' represents a milestone in the field.
Since Kramers, a number of investigators have improved
or extended the theory in several points. As a sample of
papers, we mention here the connection between transport
theory irate approach) and the mean first-passage time for
one-dimensional Fokker-Planck processes, the exten-
sion to multidimensional Fokker-Planck systems obeying
detailed balance, 6 and those generally not obeying de-
tailed balance, ' the influence of a non-Gaussian, Mar-
kovian thermal heat bath, " and the recent work on the
role of frequency-dependent damping in various viscosity
regimes. " "

In the study of dynamical effects, the evaluation of the
mean first-passage time' ' represents an important con-
cept yielding estimates for the various physical time scales
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FIG. 1. Sketch of a realization of asymmetric dichotomic
noise (solid line). Dashed line denotes the corresponding white-
shot-noise realization.

in the system. Montroll and Shuler' were probably the
first to obtain explicit results for a special unit-step Mar-
kov process modeling low-damped activated escape. It is
worth pointing out that for a one-dimensional unit-step
(birth and death) Markov process, the mean first-passage
time can be obtained in closed form. ' lt solely can be ex-
pressed in terms of the stationary probability and a jurnp
rate, ' very much like in the case of one-dimensional
Fokker-Planck processes. ' ' Moreover, the concept of
the mean first-passage time can be formulated for general
non-Markov processes and exact closed-form expressions
can be derived for processes with unit-step and two-step
transitions. '

Compared to the vast number of papers published on
processes driven by a Fokker-Planck dynamics, results for
nonlinear systems driven by white shot noise, or more
generally, by nonwhite and non-Gaussian noise, are
scarce. Results on the stationary state have been pub-
lished in the context of phase diagrams of noise-induced
transitions.

The purpose of this paper is precisely to discuss dynam-
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II. STOCHASTIC FLOWS WITH l3ICHOTOMIC
MARKOV NOISE

We consider a (one-dimensional) stochastic tiow x de-
fined by a stochastic differential equation characterized
by the macroscopic flow f (x) being driven by generally
multiplicative [coupling function g(x)] stationary dicho-
tomic noise, i.e.,

x=f (x)+g(x)gDM(t) . (2.1)

Here f and g are nonlinear functions of x, and goM is
the stationary (asymmetric) dichotomic Markov noise.
The latter process is a discrete two-state Markov process
taking the values gDM ——a and goM=a' (see Fig. l). Sto-
chastic flows of the type in (2.1) occur in driven none-
quilibrium systems if the control parameter n is subjected
to external noise a u+gDM(t). ' Examples with f be-
ing bistable are an Esaki diode with a fluctuating supply
current, an optically bistable system with externally inject-
ed slightly incoherent light, a Josephson-junction circuit
under a fluctuating current bias or a periodically driven
Van der Pol oscillator with a fluctuating driving force.
Because the system is not in equilibrium and the non-

ical questions such as escape rates and mean first-passage
times for systems driven by an asymmetric two-state Mar-
kov process with exponentially distributed waiting times
(asymmetric dichotornic noise " ' ). One of the main
findings of a recent communication with one of the au-
thors was a characteristic exponential decrease of the ac-
tivation rate in systems driven by a symmetric dichotomic
noise as compared to the corresponding Smoluchowsky
rate (limit of white Gaussian noise}. Because asymmetric
dichotomic noise contains as limits both white shot noise
and white Gaussian noise, the interesting comparison be-
tween the Smoluchowsky rate and the rate obtained with
white shot noise of equal strength becomes possible.
Moreover, for white shot noise, we obtain the exact result
for the mean first-passage time and show the equivalence
with the result obtained from the rate approach in the
limit of weak noise.

The paper is organized as follows. In Sec. II stochastic
flows driven by the asymmetric dichotomic Markov pro-
cess are introduced. In this context, we review the results
of Ref. 27 because those will be most relevant for the cal-
culations in Secs. III and IV. In Sec. III we derive the ex-
act expression for the activation rate of a general non-
linear bistable flow driven by asymmetric dichotomic
noise. The white-shot-noise limit and the white-
Gaussian-noise limit are discussed. Section IV contains
the exact result for the mean first-passage time of a sys-
tern driven by white shot noise and the conclusions are
given in Sec. V.

thermal external noise gDM can be structured and con-
trolled by the experimenter, the fluctuation-dissipation re-
lation bet~ween the noise correlation and the dissipative
deterministic flow does not hold. Our situation is thus
drastically different from an equilibrium situation with
thermal shot noise" or thermal, generally non-white,
Gaussian noise."

The transition rates of goM(t) from a to a' and vice
versa are denoted by p and p', respectively. The master
equation for P(g »D) thus reads

P, (a) == pP,—(a)+p'P, (a'),

P, (a') =pP, (a) p'P, —(a') .

The steady- state probabilities are

(2.2)

(2.3)

Without loss of generality, we will assume that the
steady-state average value of gDM is zero, i.e.,

a—+—=0
p ]'c

(2.4)

and for the following we take a'&0 (hence a &0). We
also defin» the correlation time v, ',

(2.5)

and the ir[tensity (zero-frequency spectral density) of the
noises

D= ,' f --&(oM(rgDM(0))«=&'l ~ le
which in the sequel is always held a constant.

Since the joint process (x,goM) constitutes a Markov
process, the master-equation equivalent to (2.1) reads

P, (x,a)=—
( [f(x)+g (x)a]P, (x,a})clx

+p'P, (x,a ')—pP, (x,a ), (2.7a)

P, (x,a') = —
I [f(x)+g (x)a']P, (x,a') IBx

+pP, (x,a} p'P, (x,a') . —

For the reduced probability density p, (x),

p, (x):=P,(x,a)+P, (x,a'),

(2.7b)

(2.8)

one obtains from (2.7a) and (2.7b) the following closed
equation [taking as initial preparation at time to=0,
P, (x,a') ==0]:

p, (x)=—
( [f(x)+g (x)a ]p, (x) )

a
Bx

a+p(a —a') — g (x) expBx
[f(x)+g(x)a']+p+p' (t —r) p, (x)dr . (2.9)
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The steady-state solution p(x) of (2.9) is readily obtained and the extrema of p are solutions of the following equa-
tionn.

25, 27

p(x)=Z ' grr exp f r& dy 6(D' (x)) .
D err( )

(2.10)

Z is a normalization constant and D' is an "effective
diffusion coefficient" given by

f Dgg—' I.=;,=0

III. RATES IN BISTABLE SYSTEMS

We consider a deterministic macroscopic flow

x =f(x)

(2.19)

(3.1)

D eff(x ) D g(x) f(x) f(x) la I

(2. l. 1)

8 is the Heaviside function, expressing that the probabili-
ty is zero in the "unstable" region of negative B' . The
extrema I x, I of p(x) are the solutions of the following
equation:

Df Dgg'+ —— —
I
a

I
r.f'g

Ia Ir,

with (locally) stable steady-state solutions x[ and x2 and
an unstable state at x„(see Fig. 2). Starting from (2.1), we
now evaluate the activation rates. Moreover, we assume
in the following that D' is positive in the interval
[x~,x2], thereby guaranteeing a nonzero support of p(x)
over the bistable region. In order to calculate the forward
rate r from x~ to x2, we inject particles at x =x [p(x)
still positive; see (2.10) and (2.11)] left of the stable state
x ~ at a rate jo and remove them the moment they reach a
state around the stable state x2. The resulting particle
density n(x) in the interval [x,x2] is a solution of (2.9)
subject to the condition

2ff'
X=X

=0 . (2.12)
n(x =x2)=0 . (3.2)

P(w)= ' exp,la wla
I

D D 6(m) . (2.14)

In between the Dirac 6 peaks, yaws assumes the constant
value a ~0, and the average waiting time between two
subsequent 5 peaks is 1/p=D/I a

I
[cf. (2.4)]. In this

limit, the stationary probability density has the form
(2.10), but with the effective diffusion coefficient given by

Next we consider the following two limits (to be un-
derstood as convergence in probability to the underlying
limiting characteristic functionals).

(1) White-shot-noise limit:
0, a,D =a'/p const. (2.13)

This is equivalent to the limit a'~+co and p' + cx)

with fixed ratio a'/p'=D/
I
a

I
. In this limit

reduces to a white non-Gaussian shot noise gws. The real-
izations of the latter process (see Fig. 1) consist of Dirac 6
peaks at random time points. The weights w of the peaks
have an exponential distribution P(w), '

n (x)=p(x)p(x),
where p(x) is given by (2.10) and P(x) reads

I+r,g (y) (y)

~

X «
~

ef~f

g (y)
p(x) =—jo p(y)D'"(y)

(3.3)

(3.4)

Dividing the constant flux jo by the number of particles,
X2

n(x)dx, x &x &, one obtains the rate r:

r = f p(x)dx f
1+r,g (y) (y)

g (y)

p (y )Deff(y )
dy (3.5)

In the limit of weak noise D (i.e., 1n[p(x~ )/p(x„)]) 5)

At the steady state, one obtains for the particle density
n(x)

Dws(x) =D g (x)— g (x),,rr f(x) (2.1S)

and the extrema [x, ( obey the equation [cf. (2.12)]

f Dgg'+ f'g I„=„-=—0

(2) White-Gaussian-noise limit:

(2.16)

r, ~0, a', la I
+oo, D const. (2.17)

(2.18)

The stationary probability density is given by (2.10) with

D'f (x)=ag (x)
FIG. 2. Deterministic bistable flow with two locally stable

states xl, x2 and an unstable state x„.
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the probability p(x) has sharp extrema. Then, the rate of
escape r will be of the order of inverse of the mean first-
passage time from a point x &x„ to xz.

In the weak noise limit, we can evaluate the rate by use
of the method of steepest descent, yielding for the forward
rate r

(x,
~
x„~ )'"

2ir(lq
f

A,„/r, ) D
(3.6)

where A, i and A,„are the negative slope off at xi and x„,
A, i

—— f'(x i—) &0, A,„= f'(x„—) &0,
and exp( —b,P/D) is the Arrhenius factor, where

(3.7}

Xf—"
.

g (y)—
/a

f(y}
f(y) ~a

g(y)+

~a
~

=a', p=p', D=a r, , (3.9)

and one recovers the results of Ref. 28. In this case, it is
found that the rates increase exponentially with decreas-
ing correlation time v„being maximal in the limit of
white Gaussian noise. This conclusion generally no
longer holds for asymmetric dichotomic Markov noise.
Therefore, an increase of the correlation time v; does not
in general imply lower rates or longer mean first-passage
times.

Let us next consider the white-shot-noise limit (2.13).
One readily finds in the weak noise limit from (3.6) with
~, =0

rw'= (X,
~
X„~ )'"exp-

2m
" D

(3.10}

with

+~ws f " f(y)

g(y»} g(y}— (y)
(3.11)

For white Gaussian noise (2.17), one recovers the well-
known Smoluchowsky rate

rwo= (X,
~
X„~ )'"exp— (3.12)

with

~~wc f "f y
"~ g'(y)

(3.13)

For white shot noise and white Gaussian noise, the pre-
exponential factor remains the same. Since, with g(x) & 0
and with f (x) &0 in (xi,x„) (see Fig. 2)..

yaws gyWG (3.14)

(3.8)

For the backward rate r", xz x] and Eqs. (3.6)—(3.8) are
subjected to the trivial replacement x& ~xq. In the case
of symmetric dichotomic noise,

the forward. d rate r, (3.10), is with positive g(x) exponen-
tially larg r for white shot noise yaws(t), defined by (2.4)
and (2.13I, as compared with white Gaussian noise of
equal strength D. This is a consequence of the asymmetry
of the considered white shot noise gws(t), (yaws(t))=0,
whose Dirac 5 peaks (see Fig. 1) act with g (x) & 0 as posi-
tive, destabilizing Dirac 5-force peaks of infinite strength,
thereby shortening the escape time (i.e., the rate is increas-
ing} as compared to the case driven by white Gaussian
noise for which the Dirac 5 peaks are distributed symrne-
trically [see (2.13);

~

a ~,a' ao,' p,p' oo]. Indeed, it is
easily verified that an opposite result holds for white shot
noise of v;inishing average with Dirac 5 peaks pointing to-
wards negative values, i.e., g(x) &0. For the backward
rate r, x& ~x], where positive Dirac 6 peaks have a sta-
bilizing ef]/ect, just the opposite results are found.

As an example we mention here the case of overdamped
Brownian motion in a bistable potential field
V(x) =——,cx + 4 dx", c & 0, d & 0, driven by white shot
noise gws(t) The .nonequilibrium bistable stochastic flow
then reads

x =cx dx'+g—ws(t), c &0, d &0 . (3.15)

In virtue of (3.11}and (3.14), this bistable flow yields with
xi&& ——+(c/d)', x„=0, an exponentially enhanced for-
ward rate as compared to the standard Smoluchowsky
rate (3.12) (white Gaussian noise of equal strength), i.e.,
from ('.l l), (3.14), and g = 1, we have

=c /4d. An application to a model of ge-
netic selection in population dynamics, originally intro-
duced in Ref. 25 (genetic model), will be presented else-
where.

IV. MEAN FIRST-PASSAGE TIME
FOR BISTABLE FLOWS DRIVEN

BY MULTIPLICATIVE WHITE SHOT NOISE

In contiast to the case of white Gaussian noise, ' the
problem of calculating the mean first-passage time of
one-dimensional flows of the type in (2.1) is not straight-
forward. :Basically this is due to the fact that with a non-
Gaussian white noise the master operator becomes an in-
tegral operator or equivalently an infinite-order differen-
tial operator. In the following, we will derive the master-
equation dynamics for the flow in (2.1) driven by white
shot noise:, (2.13)—(2.1S), and derive from it an exact
equation obeyed by the mean first-passage time [see (4.3)
and (4.5) below]. The resulting equation is of the same
structure as the mean-first-passage-time equation of a
Fokker-Planck dynamics. The boundary conditions, how-
ever, differ from those for simple diffusion processes.
Because our prime interest is only in the (exponential) Ar-
rhenius factor of the rate and in the leading term of the
prefactor of the rate expression, an elegant alternative
method, (4.14)—(4.18), is developed which bypasses the
difficult problem of deriving the absorbing boundary con-
dition for the mean first-passage time of a master-
equation dynamics. This method will be based on a
Fokker-Planck modeling of the long-time dynamics of the
underlying master-equation dynamics. '



C. Van den BROECK AND P. HANGGI 30

Performing the white-shot-noise limit (2.13), we obtain
from (2.9) a Markovian master-equation dynamics, which
is given explicitly by

transitions, there is usually no problem in determining the
corresponding boundary conditions ' (reflecting or absorb-
ing) for T(x). Because

p, (x)=——
l [f(x)—

I
a

I g (x)]p,(x) l
8
Bx f yaws(r)dr=+ w8(t —fo) pw—of (4.6)

—
I
a

I
g(x)- p, (x)8 1

1+ g(x)
p Bx

where with wo D/I a I——, I
a

I =pwo,

4ws(t) =kiwi&(t —tt) pwo (4.2b)

and P(w) is the distribution of weights I w I in (2.14), i.e.,

exp ——8(w) .N

No
(4.2c)

Because the dynamics (4.1) is Markovian, the mean of the
first-passage time T(x) of a random walker which started
out at x (0)=x and is moving towards an exit point
xy =x 2 obeys 17, 18

(4.3)

where I „ is the adjoint master operator

=I „p,(x) .

Note that the deterministic limit (3.1) follows from (4.1)
in the limit phoo, a=a /p~0. The master equation
(4.1) is within the Stratonovich interpretation
equivalent to a stochastic differential equation driven by
white shot noise with exponentially distributed weights,

x =f(x) +g(x)gws(r)

we have a continuous spectrum of jump widths given by
(4.2c) and hence the determination of the corresponding
boundary conditions becomes nontrivial. Considering the
interval (x,x2), x &&x„, for the random walker, we ob-
serve that T(x), (x~x},approaches asymptotically a con-
stant value. Therefore, we can use the natural boundary
condition

dT(x)
dx

(4.7)

T(x =X2)=0 . (4.8)

In order to write down the solution T(x) of (4.5), subject
to the boundary conditions (4.7) and (4.8), it is convenient
to introduce the following quantity g(x):

The solution for T(x) still contains one more undeter-
mined constant which is fixed by the value of T(x) at the
exit point x =x2. In principle, T(xz) must be determined
from the full master-equation dynamics and the physical
restrictions on the transition probabilities. ' Generally,
the values T(x2) and T'(x2) are not independent of each
other. Clearly, different boundary conditions for T(x)
at x =x2 will give different results for the prefactor of a
rate r =1/T(x). In the following we use without further
justification the simple boundary condition

PNOI,+ =[f(x)—pwog (x)] +g (x)
Bx Bx' 1- .g(x) 'Bx

(4.4a)

f (y)+pwog(y)g'(y) —wog(y)f'(y)
exp Deff( )

Deff( )
(x)=

(4.9)
P LUO 8= [g(x)—pwog (x)] g(x)

Bx cl Bx1- .g(-) 'Bx

(4 4b)

Multiplying both sides of (4.3) from the left by the opera-
tor [1—wog(x)(B/Bx)] one finds (prime denotes differen-
tiation after x)

where D' is given by the expression (2.15). t((x) has the
meaning of the stationary probability of a substitutive
Fokker-Planck process with diffusion D' " [first term in
the left-hand side (lhs) in (4.5)] and drift given by the
second term in the lhs in (4.5). It is related to the true sta-
tionary probability p{x), (2.10), of the master equation
(4.1) as follows:

g2
I wog (x)[pwog (x)—f(x)] I T

Bx
t((x)=p(x)exp[ —y, (x)]

with

(4.10)

+[f(x)—wog(x)f'(x)

+pwog(x)g'(x)] T= —1 .2

Bx
(4.5)

This equation is of first order in BT'/Bx and thus can easi-
ly be integrated. In order to solve (4.S), two boundary
conditions must be supplied which must be consistent
with the Markovian dynamics (4.1). ' For a master-
equation dynamics governed by discrete finite step-size

T(x)=f rr f P(z)dz
g(y)D'""(y)

(4.12)

which within a steepest descent approximation reduces to

p&(x)=in lg(x) I

—f g y y dy . (4.11)
la lg(y) —f(y)

In terms of this substitutive stationary probability, the
mean first-passage time takes the following familiar form:
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1/2(A, , ii,„ i
)T(x) T 2m.

gy WS
Xexp P)(x))—P)(x„)—

mean first-passage time is now readily evaluated. Us-
ing the well-known fact that the absorbing boundary con-
dition at;c =x2 for T(x) for a Fokker-Planck dynamics is
giuen by (4.8), we readily obtain from (4.17), observing
also (4.7),

=exp[y, (x, )—y, (x„)]rw' . (4.13)
T(x):=—f f p(z)dz .1 " dy

D x p(y)L (y) i (4.18)

p(x) =Z 'exp[ [pp(x)+Dp~(x—)]/D I, (4.14)

with (pp(x), q&, (x) determined via (2.10) and (2.15). The
deterministic flow (3.1) can then be recast as a transport
law""

x =—L (x)Xp(x)=f(x), (4.15)

where Xp(x)=Bqrp/Bx is a generalized thermodynamic
force and L (x),

r

L (x)=D' (x)/D =g (x) g (x}——eff f(x} (4.16)

is the corresponding "Onsager coefficient. " Following
Ref. 32, the bistable master-equation long-time dynamics
in (4.1) can be modeled by the Fokker-Planck dynamics
(X,( )=[a~,( )/a ])

p, (x)= L (x) Xp(x)+DX)(x)+D p, (x)=a a
Bx Bx

(4.17)

which has (4.14) as the unique stationary probability. The

Most importantly, we note that the Arrhenius factor in
(4.13) coincides with the Arrhenius factor in the escape
rate (3.10). The prefactor differs by a term of order 1

which in the white Gaussian limit, i.e.,
~

a
~
~+ ao,

equals 1. Clearly in this limit, (4.13) coincides precisely
with (3.12) with 64 =5P

The problem with the prefactor between (3.10) and
(4.13} can be resolved as follows. First, note that for a
master-equation dynamics the boundary condition (4.8) is
not equivalent with an absorbing boundary condition.
In the white-Gaussian-noise limit the boundary condition
in (4.8) becomes an exact absorbing boundary condition of
the resulting Fokker-Planck dynamics and the corre-
sponding prefactor difference between (3.12) and (4.13)
vanishes. This is just the situation for which within the
weak noise limit of a Fokker-Planck dynamics the
equivalence between the rate obtained from transport
theory and the inverse mean first-passage time with
x =x2 absorbing has been shown. ' Thus, in order to
correctly compare the prefactors one should look for a
Fokker-Planck approximation to the long-time dynamics
of (4.1). Such an equivalent Fokker-Planck modeling of
the master-equation long-time dynamics has been put for-
ward recently in Refs. 31 and 32. Then, the boundary
conditions for the mean first-passage time of the resulting
Fokker-Planck dynamics are well known. ' ' More-
over, the mean first-passage time can be evaluated in this
case by use of recently developed techniques. ' If ap-
plied to the master equation in (4.1), we first note that the
stationary probability p(x) of (4.1) can be recast into
WKB form

Within the transport-theory approach [(3.2}—(3.5)], one
models via (3.2) an absorbing boundary condition which
for the long-time Fokker-Planck dynamics (4.17) of (4.1)
is given by (4.8), yielding (4.18). From (4.18), one now re-
covers for the activation rate r = 1/T(x) within the
steepest descent approximation exactly the result in (3.10).
Moreover, note that the two Fokker-Planck structures in
(4.5) and (4.17), which serve different purposes, have iden-
tical diffusion coefficients; the noise-induced drift terms
of order j), however, are not identical.

V. CONCLUSIONS

As mer[tioned earlier, the evaluation of activation rates
and mean first-passage times is of considerable interest for
a large variety of physical, chemical, and biological appli-
cations. Itn this paper we have obtained activation rates
for bistable flows driven by non-Gaussian and generally
nonwhite (colored) noise, Eqs. (3.5), (3.6), and (3.10),
without hiaving to refer to the concept of a mean first-
passage time. In general, the evaluation of the mean
first-passage time in flows not driven by Gaussian white
noise is nontrivial. Only for the exceptional case of white
shot noise: with exponentially distributed weights have we
been able to derive a finite-order differential equation sa-
tisfied by the mean first-passage time. We have not suc-
ceeded in deriving a similar type of equation for the case
of a nonlinear non-Markovian flow driven by multiplica-
tive dichctomic noise (2.1). This clearly demonstrates the
advantage: of using a transport theory approach
[(3.2)—(3.5)] in cases with non-Gaussian and generally
colored noise sources.

Keeping the noise strength D constant (implying identi-
cal free self-diffusion coefficients D), we have investigated
the influence of a finite correlation time of the noise and
the character of the noise statistics on the activation rate.
No general conclusions could be drawn in the case of
asymmetric dichotornic noise. In particular, an increase
in correlation time does not generally imply a decrease of
the escape rate. IiI contrast, for symmetric dichotomic
noise the forward and backward rates are enhanced ex-
ponentially with decreasing correlation time, independent
of the multiplicative coupling g(x) and specific form of
deterrnini, 'tic bistable flow. Interestingly, the activation
rates also depend generally on the noise statistics: White
shot nois{ and white Gaussian noise of equal strength
yield exponentially different rates depending on the sign
of the shat noise impulses.
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