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We note that the result of the thermal activation rate in presence of non-markovian damping, given in a recent treat-
ment by Guardia, Marchesoni and San Miguel, is generally not uniquely defined. We also clarify the connection with pre-
vious work and show that the modelling of the memory kernel used by Guardia et al. is subjected to restrictions which are
generally not met.

The study of  non-markovian effects on the escape
rates in equilibrium systems has attracted attention
among various research groups [1 -5 ] .  The approach
to the activated escape rate is based on the model of
the non-markovian equilibrium dynamics of  a brown-
Jan particle in a potential field U(x). With a unit
mass, the linearized dynamics around the barrier top
X =x  b = - O , u ( x )  = U ( O ) -  1 2 2 ~cob x + ..., is thus consis-
tent ly  given by [ 1 - 3 ]

t
Yc'= co2x - f ¢(t "- T)k(T) d7 + ~(t), (1)

0
where ~(t) is a stationary, non-white gaussian random
force of  zero mean obeying the fluctuation-dissipa-
tion theorem

(~(t) ~(s)) = k B r ¢ ( t  - s). (2)

In a recent study to the same problem [5], the uni-
form memory in (1) has been modelled by use of an
enlarged markovian phase-space description of  the
heat bath coupling. Unfortunately, the advocates of
ref. [5] have misrepresented the content and some of
the results of  the previous work in this field [ 1 - 4 ] .
Grote and Hynes [1] and Hgnggi and Mojtabai [2,3]
have treated the non-markovian escape problem asso-
ciated with the barrier dynamics; i.e. the rate deter-
mining step is controlled by the diffusion at the top
of  the potential barrier. This is also the situation con-
sidered in ref. [5]. In the weak noise limit, the activa-
tion rate rhas  then the form [ 1 - 3 ] :

                                                        
                                           

p = (X0/cob)(co0/27r) e x p ( - E b / k  B T).  (3)

Hereby, E b denotes the barrier height, co o is the an-
gular frequency in the bot tom of  the potential well
and co b > 0 is the angular frequency at the barrier
top. The effective frequency X 0 is determined solely
by the angular frequency CO b and the memory kernel
~p(t); i.e. within the harmonic barrier and harmonic
well approximation, X 0 is not an explicit function of
the temperature T. In the derivation of  H/inggi and
Mojtabai the form of the memory kernel ~;(t), which
might exhibit a non-exponential arbitrary slow long-
time decay, has not been restricted. It has been
shown in refs. [2,3] (see also the appendix of  ref.
[4]) that X 0 in (3) is unique and equals the largest,
real and positive pole, z = X 0 > 0 of  a function ~ (z)

~(Z) = [Z 2 -- 0)2 + Z~(Z)]- l ,  (4a)

where ~(z) denotes the Laplace transform of ¢(t).
Clearly, this is equivalent with X 0 being the largest,
positive and real solution of

X 0 = co2/[X0 + ~(X0) ] . (4b)

In proving this assertion, it has been assumed [2] that
~b(z) has a representation as a meromorphic function
(including a slight generalization thereof [2]). Eq.
(4b) is known as the Grote-Hynes  relation [1]. How-
ever, those authors did not specify X 0 as being the
physically relevant solution among possibly several
positive solutions of  (4b); nor did the authors of  ref.
[5] which rederived (4b) by use of  a special form of
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the heat bath coupling consistent with eqs. (2) and
(3). In ref. [5] it was assumed that ~5(z) admits the
continued fraction representation

~(z)  = z + T 1  + z + 7 2  + ' ' ' z + T n  (5)

This form implies of  course that ~)(z) has a representa-
tion as a meromorphic function ([n - 1/n]-Pad6-ap-
proximant) and thus this case is contained in the
treatment of  ref. [2]. More importantly, due to the
special choice of the markovian modelling of the
memory  function in ref. [5], obtained by introducing
a certain coupling to additional bath variables, it fol-
lows from the equilibrium potential of  the extended
markovian heat bath description (see eq. (8) in ref. [5])
together with the markovian fluctuation-dissipation
relations in eq. (6) of  ref. [5] that the parameters oc-
curring in (5) are actually sub/ected to the restrictions
/ ' , 2 > 0 ,  i = 1 , . . . ,n ,  Ti~>0, i = 1 .... ,n. (6)

Now let us assume that the memory  kernel ¢(t)  ad-
mits a Taylor series expansion

"

+ ~0 (0) ,2
~ ( t ) = ~ ( 0 ) +  . t - 7 - . ,  ' + . . . .  ( 7 )

Then, the corresponding high-frequency series of ~b(z)
can be recast into a continued fraction representation
of  generally infinite order of  the form in (5) [6].
However, the set of  coefficients {k, 2, 7i) are generally
not all positive (including zero) [6]. A particularly
simple counter-example is given by the two term ex-
ponentially decaying memory

¢ ( - t )  = ¢(t)  = e x p ( - t )  + e x p ( - 2 t ) ,  t > 0, (8a)

which has the Laplace transform

2 - 1 / 4
~(z )=  z + 3/2 + z + 3/2 ' (8b)

1 < 0. Actually, most of  the relaxationwhere zX 2 = - ~
functions of  the type in (8) will not satisfy the restric-
tions in (6). Therefore, the approach put forward in
ref. [5] does not have its broad applicability as has
been claimed originally.

We should also point out here that the result in
(3) fails if the rate determining step is given by the
energy accumulation process in the potential well.
For the extremely underdamped case, i.e. ~?(z = 0)
--> 0, the rate r can be identified with the inverse mean

first passage time r (Eb)  , r = 1/r(Eb), to reach the bar-
rier top [7,8]. Based oi1 a recent refinement [9],
which extends Kramers' original approach [10] (limit
of white gaussian noise) of the extremely under-
damped case to the full underdamped regime, the non-
markovian rate within this full underdamped regime
has been investigated in ref. [I 1]. For weak noise,
which is equivalent to a deep potential well, one ob-
tains

{[I+4(kBT)2/D(Eb)]I/?-I} D(Eb) co0

× e x p ( - E b / k  u T). (9)

D(Eb)  denotes the energy-diffusion coefficient of  the
non-markovian dynamics [7,8,11 ]. In terms of the
action variable J (Eb)  at energy E b of  the undamped,
deterministic motion one obtains for the case of  a
smooth barrier region [4,8,11]

D ( E b )  ~ k B TJ(Eb) @(z = 0),  (10a)

whereas for a cusped-shaped barrier region [ 11 ]

D(Eb)  ~ k B TJ(Eb) Re (~?(z = ioo0/21r)} , (10b)

where Re denotes the real part. In contrast to the re-
mit in (3), valid for moderate-large damping, the rate
in (9), valid in the underdamped regime, incorporates
via Y(Eb) information of the global potential shape.
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