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The energy dissipated during the quantum decay of a metastable system which interacts with an environment at zero
temperature is considered. It is found that quantum effects reduce the energy loss as compared to simple semiclassical
estimates and that the decay is always possible for energetical reasons. Explicit results for the decay rate are obtained
from the functional integral of the partition function.

Recently, there has been a great deal of interest in
the influence of dissipation on quantum decay of me-
tastable states [1-6] and on quantum coherence in
symmetrical [7-9]  or slightly asymmetrical [8] two-
state systems. One question that is important in this
context is that of self-trapping, namely: Can the cou-
pling to a heat bath prevent a particle from tunnelling
through a potential barrier, from one potential well
to the next. Bray and Moore [7] as well as Chakra-
varty [8], have addressed this question for the case of
a symmetrical double well potential and an ohmic dis-
sipative mechanism. They have come to the conclu-
sion that, if the damping strength exceeds a critical
value, there is a spontaneous symmetry breaking at
temperature T = 0. The large damping situation corre-
sponds to the case of a twofold degenerate ground
state, in which there is an unequal average occupa-
tion of the two wells and a vanishing of the mean
tunnelling rate.

The purpose of this letter is to clarify whether
self-trapping can occur at T = 0 in an asymmetrical
potential. One would expect that a particle is trapped
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in the higher well when the energy AE dissipated dur-
ing the tunnelling process is greater than o, where o
measures the potential drop from the metastable to
the lower minimum. From a simple quasiclassical
point of view, this should always happen when the
coupling to the heat bath is only strong enough.

In the following we calculate the energy loss of a
particle escaping from a metastable well along the
most probable escape path. We consider two distinct
models for the dissipative mechanism and examine
the cases of large and small potential drops, v ~- V0
and o < VO, where V 0 is the barrier height. In the in-
teresting case of ohmic dissipation and for o < V 0 we
also calculate Im F from the functional integral of the
partition function.

Our principal findings are as follows:
(1) The particle is always allowed, from energetical

reasons, to escape into the lower well, independent of
the precise model for the dissipative mechanism. The
associated tunnelling rate, however, is suppressed to
extremely small values for very large damping.

(2) At sufficiently high damping the energy loss al-
ways saturates at a finite value AE c < o. At very low
potential drop o "~ F 0 this saturation occurs already
at very low damping.

(3) An estimate of the energy loss by quasiclassical

                                                        
                                           



                                                   

arguments gives wrong results even for low damping
and large potential drop.

Specifically we consider a particle of massM mov-
ing in a potential V(q) with a metastable minimum at
q = 0, V(0) = 0. The system is assumed to be coupled
linearly to its environment which at low temperatures
can be represented by a bath of harmonic oscillators
[2]. Feynman's method [10] of integrating away the
environmental modes leaves a one-dimensional prob-
lem, the partition function of which is given in terms
of an effective euclidean action [2,4]. At temperature
T = 0 the action can be written

s :  f dr[/M   2 + V(q)]

+ 1 ~ ,

2 f f d r ' k ( r - r ) q ( r ) q ( r ) ,  (1)

from which we identify the three terms

S = S 1 + S 2 + S 3 (2)

as being due to the kinetic energy, S 1 ; the potential,
S 2 ; and the dissipation, S 3. The kernel k(r)  is related
to the spectral density of the environment J (w)  de-
fined in refs. [2,4,6]:

o o

1keO= f dvK(v) e ivr,

f s(,o)K(v) = d¢o v 2 + w 2 ~o
0

(3)

The decay rate of a metastable state in a multidi-
mensional potential is controlled by the most prob-
able escape path [11,12]. After integrating out the
environmental coordinates, the most probable escape
path becomes an extremal path of the action (1), the
so-called bounce trajectory [ 13,14]. At zero temper-
ature, the bounce starts with zero velocity at time r
= - ~  from the metastable minimum q = 0, traverses
the potential well (which is a valley in euclidean
time) and bounces off  a turning point t7 at time r = 0
before returning to the metastable minimum at r = ~.

An extremal path of the action (1) satisfies the
equation of motion

-M~7"(r) + a VISq + f dr 'g(r  - r') q(r') = O, (4)

where

g(r )=2~ f dveiVrK(v)iiv. (5)

For later convenience we have integrated partially the
last term in (4) which describes dissipation.

The decay probability of the metastable state is
given by [2,3,6]

P = f exp (-Sb/h),  (6)

where S b is the action (1) evaluated along the bounce
trajectory and f i s  the attempt frequency which can
be calculated from the small fluctuations about the
bounce trajectory.

When the particle has penetrated the potential
well, it emerges from the barrier with zero velocity at
the bounce point ~ = qb (r = 0), where it continues
propagating in real time. In an undamped system one
always has V(#) = 0, whereas in a damped system one
finds V(#) < 0, as will be discussed below. Hence the
energy loss in the tunnelling process is simply deter-
mined by the relation

AE = -V(4 ) .  (7)

Another exact expression for the energy loss at T = 0
is obtained by multiplying (4) b~, ~ (r) and integrating
from r = - ~  to r = 0. This yields

o o

Let us first consider a potential with a large drop v
between the metastable and the stable well. In a sys-
tem with linear ohmic dissipation whose classical
equation of motion is MZ/" + r/t~ + a V/aq = 0 the spec-
tral density must have the form J (w)  = ~ [2]. Then
we obtain from (3) and (5)g(r)  =gl ( r ) ,  where

gl ( r )  = 2Mw 0 (ahr) r -1 , (9)

and where we have introduced the dimensionless
damping constant c~ = rff2Mw O.

By introducing the scaled time o = r/a, one finds
that the kinetic term in (4) vanishes like 1/~, 2 in the
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strong damping limit, while the remaining terms are
independent of  a. Furthermore, from (1) and (8) it
follows that for tx >> 1 the bounce action increases lin-
early with tx, while the energy loss saturates at a value
AE c which is independent of  a. Specifically, for a
cubic potential V(q) = "51 l~,J"" to 02 q2(1 - q/qo), (4) can
be solved exactly in the strong damping limit [2].
One obtains

qb(r )=  4 [1 -1 4 25qo + (too r/2tx) 2] , Sb = ~TraMtooqO

and

AE c a , ,  2~2 = ~ n w 0 ~  0 = 4 V  0,

where V 0 is the barrier height. On the other hand, by
insertion of  the bounce of  the undamped system,
qb(r)  = q0/cosh (~to0 r) 2, one finds from (8) the
weak damping result AE  = 2 2  ctzMwo qo, where the con-
stant c = 0.198 has been determined numerically. The
cross-over from the low-damping to the high-damping
situation occurs near a = 1.

Recently B0ttiker and Landauer [16] have used
the concept of  the time a particle takes to tunnel
through the potential barrier to estimate the energy
dissipated during the tunnelling process as

o o

AELB = 7? f d r~2 ( r ) .  (10)
0

This may be evaluated for weak damping by inserting
the bounce of  the undamped system. We find AELB

s 2 2= ~ aMtoo qo which surmounts the correct numerical
value almost by a factor 3. Furthermore, it follows
from (8) and (10) that the discrepancy between/XE
and ,XEL8 increases when the width of  the bounce is
increased, i.e., when the potential drop v is decreased.

For tunnelling centers in solids, the spectral densi-
ty J(to) can frequently be described by [6,13] J( to)
= r/to3/( to2 + toD)2 where we have chosen a Drude
cut-off at high frequencies. We then obtain from (3)
and (5) g(r )  = g2(r), where

g2(r) = (4M/toO)(7/rr) r - 3 ,  (11)

and where 7 = rltoo/2Mto 2 is a dimensionless dissipa-
tion constant. In the strong damping limit ~, ~ oo the
kinetic term in (4) is suppressed by a factor 7-2/3 as
compared to the remaing terms and the bounce ac-
tion increases with 71/3. The energy loss AE, how-

ever, saturates at a finite value, like in the ohmic case.
In the remainder we consider the case of  a small

potential drop between the wells at q = 0 and q = 2q0,
v -- V(0) - V(2 q 0 ) <  V 0. Now the "length" of  the
bounce 2 r l ,  which corresponds to the sojourn time
near 2q0, is very large compared to the flip time r 2.
Hence qb (r) exhibits two narrow peaks of  width r 2
which are widely separated by 2r I >> r 2.

For v < V 0 the turning point el = q(0)  is close to
2q0. Thus we obtain in a reasonable approximation

l 2AE = v - 5Mto0(2q  0 - #)2, (12)

where too is the frequency of  small oscillations about
the stable well. Next, we determine ~ as a function of
r 1 . Observing that the bounce qb (r) is approximately
given by a superposition of  an instanton with its far
separated anti-instanton, i.e., qb (r) = ql  (r l  + r)
+ q l ( r l  - r)  - 2q0, we obtain

c7 = 2 q l ( r l )  - 2q0.  (13)

Here, q l ( r )  is the instanton solution of  (4) in the lim-
it v = 0, which interpolates between q = 0 at r = _oo
and q = 2q0 at r = oo and has its center at r = 0.

In the undamped case we have for large r

q l ( r )  = 2q0 - aqo e x p ( - w 0 r  ). (14)

The dimensionless constant a is of  order unity and de-
pends on the details of  the barrier shape [ 17] *l .  In
the presence of  dissipation we can take advantage of
the fact that ~ l ( r )  is peaked at r = 0. Thus we imme-
diately obtain from (4) for v = 0 and large r

q l ( r )  = 211 - g(r)/Mw 2] qo. (15)

Putting now the two cases (14) and (15) together we
obtain from (13) for the bounce point

t7 = 211 - a e x p ( - t o 0 r l )  - 2g(rl)/Mto 2] qo. (16)

Here we have kept both the exponential and algebraic
behaviour in order to be able to handle the cross-over
from an undamped to a damped system.

Next the length of  the bounce 2 r  1 is determined
as a function of  v by extremalizing the action with re-
spect to r l ,  aS/Or 1 = 0. Again the result can be ex-

*i Note that the parameter A in ref. [17] is related to a by
A = 2tooqoa.
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pressed in terms of the asymptotic properties of the
instanton ql(r) .  In the undamped case one finds for
large r 1 [17]

aS/Or 1 = 4 M w 2 q 2 a 2  exp(-26o0r l )  - 20. (17)

In the presence of dissipation the instanton obeys
asymptotically a power law, 2q0 - ql (r)
"" (co 0 r ) -  s - l ,  where s depends on the dissipative
mechanism. From (9) and (15) we find s = 0 for ohm-
ic dissipation, and from (I 1) we have s = 2. The dis-
sipative part of the action S3(r 1) is most convenient-
ly evaluated in the form

o o  ¢,o

1 • ,s3 f dT f dT' t(, - ,') q(, ), ( 1 8 )
- - ~  - - o o

where al/ar = g(r), Then we obtain from (1) and (18)

OS1/OT 1 ~ (w0 rl) -4-2s, aS2/Or 1 ,~ (6o07-1) -2-2s,

0S3/0r 1 "" (w 0 T1) -l-s ,  (19)

which shows that the leading algebraic behaviour
arises from the term S 3. Finally, from a s / a r  1 = o,
we obtain by virtue of(17)  and (18)

o = 2Meo2a2q 2 exp(-2¢o0r l )  + 4q2g(2r l ) .  (20)

Eqs. (I 2), (16) and (20) are general expressions which
determine the energy loss AE for a small potential
drop v < V 0 for an arbitrary damping mechanism of
arbitrary strength.

Let us now specialize to the case of linear ohmic
dissipation, where g(r)  = gl (r) is given in (9). Intro-
ducing

4 a exp(2w0r l )
;k = Ira 2 2w0r  1 (21)

ot 0 = ~rr (v /V)  ln(aa2V/v) ,  (22)

- 1 , .  2 ~ 2  ( 2 3 )V = ~m w0~t 0 ,

we obtain from (12), (16) and (20)

o [ (~+~kV) 1/2] A E = v - ~  I + X  , (24)

o~= X ¢ + I n ( l + X ) ' ~
ct 0 l+ ;k  1\ ln (4a2V/v )] (25)

From (24) and (25) we see that the low damping
region, where AE depends linearly on a, is limited to
values of X where ;k < V/o, which corresponds rough-
ly to the range t~ < 0.9 a 0 of damping parameters. We
then have

AE = (c~/¢~0) v. (26)

For X >> V/o the energy loss AE has saturated at its
maximal value

AE c = v(1 - o/V).  (27)

This strong damping region corresponds roughly to
the range a > 2.2%. There is a narrow cross-over re-
gion 0.9 a 0 < ot < 2.2 a 0 in which AE changes from
(26) to (27). As a result we have found that, from
energetical reasons, it is alway possible for the parti-
cle to escape.

So far we have concentrated our discussion on the
properties of the stationary point of the action (1).
But, as is well known, for decreasing potential drop v
the "breathing" mode of the bounce becomes in-
creasingly important which may have a dramatic ef-
fect on the prefactor in formula (6). In the following
we show, however, that our findings can be substan-
tiated from a careful evaluation beyond steepest de-
scent of the functional integral for the partition func-
tion Z. For reasons of space we only sketch the calcu-
lation of the escape rate and restrict ourselves to the
strong damping case a > 2.2 %.  One starts by writing
down an expression for Z as a power series in A 2,
where A 0 is the "bare" tunnelling frequency in the
symmetrical case o = 0 with the flip-flip interactions
omitted. Since the time scale of the problem is of the
order A~ 1 >~ 6o~ 1 we may neglect the inter-bounce
interactions which can be shown to vanish asymptoti-
cally like (6o0r)-2. Proceeding along the lines of
Zinn-Justin [18] we then arrive at the following ex-
pression

t~o

z(o = h/kB r)  = Z) r2.  (0), (28)n=0
] e , o _  e

r=. = (0/2.) f dse-*e[-s-x,(s)]",
- i * * -  e

*(s) = f dr  e sr e - g ( r ) ,  (29)
ro
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where r 0 is a cut-off parameter and U(r) is the intra-
bounce interaction, U(r) = -or /~t  + 2K ln(co0r),
where ~ = 8~ V--/~r~ 0 . Here we have assumed V"(0)
= V" (2q0) = Me:02. (Our parameter K is identical to
the parameter a in ref. [9]). The integral I(s) is only
defined by a distortion of  the integration contour at
the saddle point r I = 2K~/(~s + o) into the upper
half-plane ,2 along the direction of  steepest descent
[ 15,12]. Thus, l(s) acquires an imaginary part which
may be expressed in terms of  the inverse r-function.
The sum in (28) can be easily performed,

i O° - - E

Z ( 0 ) = - ~ ( 2 r r i )  -1 f dse -s° ~p'(s)/~p(s), (30)
-i**-e

where ¢ ( s )  = 1 + A2I(s)/s. Furthermore, the integra-
tion contour in (30) can be deformed to enclose the
poles o f  1/~(s) in the right-hand-side half plane. Since
we have at T =  0, 1" 0 = - 2  ImF/~, we f'mally obtain for
the escape rate (6) the remit

V 0 = (2rr/w0) A2(vfllWO) 2~-1 [r(2K)] -1. (31)

This result holds in the range V 0 >> v ~" ~ F 0 and for
damping parameters a > 2.2 s 0 or equivalently

K > 1.1 ( v / ~ o )  ln(4Va2/v).
Eq. (31) exhibits that the escape rate is always non-
vanishing, although it is extremely suppressed for very
large damping and for v <~lco 0.

The same analysis can be carried out in the zero
damping limit where U(¢) = -vr /h  - 4Va 2
X exp( -w0r) /hco0 ,  which gives the escape rate

,2 The distortion of the integration contour corresponds to
a distortion of the potential in such a manner that fez q
> 2q 0 V(q) < V(q"), which is the ease in a zeal decay prob-
lem.

P0 = (21r/wo) AO 2 (4Va2,/'t~Wo) °/tk°° [1-'(1 + offi6Oo)] - I
(32)

The crossover from (31) to (32) will be discussed in an
extended version of  this work, where also different
types of  the dissipative mechanism are treated.

We would like to thank M. Biittiker and R.
Landauer for useful discussions and for stimulating
our interest in this problem.
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