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A one-dimensional bistable flow driven by additive, exponentially correlated Gaussian
noise is considered. The small relaxation time Fokker-Planck approximations, widely
used in the recent literature, are derived and possible shortcomings of those approxima-
tion schemes are discussed. In particular, it is pointed out that higher order non-
Fokker-Planck type contributions are generally of the same order as the Fokker-Planck
terms. In principle, those contributions cannot be neglected if the global behavior of the
probability solutions is to be described accurately. The result for the activation rate
(Arrhenius factor), as evaluated from the approximative Fokker-Planck schemes, does
not coincide in leading order in the correlation time z of the noise with a computer
simulation of the rate at low noise level. This result indicates that the wings of the
stationary probability /~(x) are in leading order in ~ not recovered correctly from the
approximative Fokker-Planck schemes. Some implications of our study for adiabatic
elimination procedures are also discussed.

1. Introduction

There has been recent interest in non-linear systems
subjected to external noise with a finite correlation
time. In many situations the influence of a finite
correlation time ~ on the dynamics of a macroscopic
variable plays a minor role such that an approxi-
mative Markovian theory, e.g. a Fokker-Planck de-
scription, modelling the statistical macroscopic flow,
is justified [1, 2]. On the other hand there exist
cases where the influence of the bath on the macro-
scopic flow of an order parameter must be modelled
with a coloured noise source [3-6]. A well-known
example of this kind of situation is the phenomenon
of motional narrowing in magnetic resonance. Kubo
[4, 7] has shown that a very short correlation time
of the fluctuating magnetic field yields a vanishing
effect on the motion of the spin; on the contrary, if
the fluctuations of the field are large and correlated
over a long time scale, the motion of the spin is
greately modified. Another important example is the
relevant influence of the correlated noise on the
activation rates in equilibrium systems [8-11] and in
driven non-equilibrium systems [12].
Generally, the finite correlation of the noise will

have an effect on the form of the stationary proba-
bility. This fact has been exploited in recent studies
of so-called colored noise induced transitions [13-
18]. Because the underlying dynamics are governed
by a non-Markovian process, the exact master equa-
tion can be obtained in special cases only [5, 12-14,
18, 19]. Therefore, one generally must invoke an
approximation procedure such as the small relax-
ation time Fokker-Planck schemes put forward by
the advocates of [14; 15, 20-22]. Moreover, it has
been pointed out previously on several occasions [1,
5, 23-25], that with a non-Markovian dynamics, the
initial preparation procedure, being reflected in the
statistical properties of the correlated noise [25], is
of equal importance as the macro-dynamical law
generated from an initial probability po(X) of the
macrovariables x(t). Therefore, caution must be
exercised in interpreting correctly the statistical in-
formation of the quantities calculated by means of a
generalized Langevin equation or master equation
dynamics [5, 25, 26].
In Sect. 2, we present the model of an overdamped
particle motion in a symmetric double-well potential
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being driven by an exponentially correlated Gauss-
ian noise source. Section 3 contains the results of the
commonly used Fokker-Planck approximation
schemes [14, 15, 20-22, 27]. Possible short-comings
of those approximation schemes are pointed out.
The activation rate is considered in Sect. 4. This
activation rate is evaluated analytically by employ-
ing the perturbative Fokker-Planck schemes and is
then compared with the exact results of a computer
simulation. The conclusions are given in Sect. 5.

2. Bistable Stochastic Flow Driven by Colored Noise

In what follows, we consider a stochastic flow of a
one-dimensional order parameter x(t). We assume a
symmetric bistable flow modelled by the set of sto-
chastic differential equations:

2 = a x - b x 3 + ~  a, b > 0  (2.1 a)

~= - 1  ~ +tl(t ). (2.1 b)
T

t/(t) is a stationary Gaussian white noise source of
zero mean and correlation function

<n(t) n(s)> = ~ -  6(t-  s). (2.1 c)

Integration of (2.1b) yields with ~(t o = 0 ) =  3o
t

(t) = ~o e-  t/~ + ~ exp [ -  ( t -  s)/z] r/(s) ds.
0

(2.2)

Assigning to the first two moments of Go the values
given by the equations

<~o> =0 (2.3 a)

<r =D/z, (2.3 b)

we find

Thus, the system of differential equations in (2.1) is
equivalent to a non-Markovian Langevin equation
driven with additive Gaussian correlated noise

2 = a x - b x 3  +~(t), (2.7)

with ~(t) obeying the properties in (2.4) and (2.5).
Because (~(t)) = 0, the deterministic limit (D--, 0) of
(2.7) is clearly given by

2 = a x - b x 3 = f(x) (2.8)

which is derivable from the potential V(x)

a 2 b 4V ( x ) = - ~ x  + ~ x .  (2.9)

Furthermore, we will also implicitly assume that the
Gaussian noise ~(t) in (2.7) is independent of the
initial macroscopic random variable X(to)=Xo.

3. Approximative Fokker-Planck Schemes
It has been shown previously [5], that an exact
closed form master equation for a nonlinear flow
driven by colored noise ~(t) can in general not be
written down explicitly. With ~(t) being a stationary
Gaussian process obeying (2.3)-(2.6), the rate of
change of the probability p~(x) obeys the formally
exact relation [5, 14, 15]

fit(x) = - ~  (a x - b x 3) pt(x)
t

D 02 ~ds(exp-(t-s)/z)+7~o
�9 ( ~ 6 ( x ( t ) - x ) ~  (3.1)

\ogts) /

where 6x(t)/6~(s) denotes the functional derivative.
This functional derivative obeys an exact integral
equation [5] which for our case in (2.7) explicitly
reads

<~(t)> = 0 (2.4)

and for the auto-correlation function the time-homo-
geneous result

(~ (t) ~ (s)> = D exp [ - It - sl/z]. (2.5)

Moreover, r is Gaussian and stationary only if
prepared in Gaussian form consistent with (2.3a)
and (2.3 b), i.e.

[ ~- \,/2 r176 .lp(r ~ } ~ - )  exp [ (2.6)
(2D/z)J"

, 2 6 x ( O6~(s)6X(t)=o(t-s)'{l + ! d z [ a - 3 b x  ( z ) ] ~ } "  (3.2)

On expanding this relation into a Taylor series
around s - = t ,  and keeping only the first two terms,
one obtains upon neglect of transients the so called
short relaxation time Fokker-Planck approximation
(SRTFPA)

SRTFPA:  f t ( x ) = - ~ x ( a x - b x 3 ) p t ( x )

02
+ D 0~-(1 +z[a-3bx2])pt(x).  (3.3)
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Originally, (3.3) has been used by Stratonovich and
Lax [27]. Recently this SRTFPA-scheme has been
popularized by the authors of [14, 15]. Furthermore,
if one keeps within a formal Taylor series expansion
of the functional derivative around s - = t  [14, 15]
the terms proportional to D z", n > 0, (and only those
terms), one obtains the so-called "best Fokker-Planck
approximation" (BFPA) introduced in [15, 22]

BF PA: fit(x) = - ~ (a x - b x3) Pt(X)

82
+ D ~ H(x, z) p~(x) (3.4)

where with f ( x ) = a x - b x  3, the "effective diffusion"
H(x,z) is given by [15] (prime denotes differen-
tiation with respect to x)

H(x,'c)= f (x)  (l +'cf(x) f--~) -1 1
f(x)

= f (x)  ( 1 - z f ( x )  ~--x

f(x)

= 1 + z f ' ( x ) + z  2
- [(f'(x)) 2 - f (x) f"(x)]  + 0(z3). (3.5)

At the zeros 2={xl ,xu ,x2}  of the deterministic flow
(2.8) (extrema of V(x) in (2.9)), one finds

H(X, z) = 1 + f'(ff) z + (f,(~))2 z2 + (f,(ff))3 z3 + . . .

= (1 - f'(ff) J -  1. (3.6)

Thus, at the locally stable states x l , x  2,xl/2
= -T-(a/b)n 2

H(ffl, z) = H(~2, r) = 1/(1 + 2 a J ,  (3.7)

whereas at the locally unstable state x,

H(xu, r) = 1/(1 - a r). (3.8)

A first difficulty with those Fokker-Planck approxi-
mation schemes emerges via the effective diffusion
terms in (3.3) and (3.4), which are not necessarily
positive for all x- values [15]; thereby generating
generally unphysical boundaries. On the region of
accessible x-values, as determined from (2.7), the
probability pt(x) must stay positive (including zero)
for all times t. Keeping the correlation time of the
noise fixed, we by definition set the effective dif-
fusion in (3.3,3.4) zero within the region where it
takes on negative values. The stationary probability
/7(x) of the corresponding Fokker-Planck approxi-

mation scheme is then readily evaluated. For exam-
ple, by use of (3.4) one obtains

Z - I  {
/7(x)--H~,;c) e x p + l i  ~ d y ; O ( H ( x , z ) )  (3.9)

o n ty ,  z) j

where the Heaviside step function O(H(x,j)guaran-
tees the positive support of ig(x). Here and in the
following we implicitly assume that the noise cor-
relation time z is small enough such that i~(x) is non-
vanishing within the bistable region (xr, xz), where
xr<x 1 and Xl~'X2, XI ~X 2.
On the other hand, if one formally keeps all the
terms generated by Taylor expansions of the func-
tional derivatives 6x(t)/6~(s) around s - = t ,  one ob-
tains, upon neglect of all transients, for the rate of
change of the probability pt(x) a Kramers-Moyal
structure

,=1 n! (Kn(x,z)pt(x)). (3.10)

Clearly, due to the neglect of transients, the master
equations in (3.3, 3.4, 3.10) can be utilized only for
the evaluation of quantities determined by the
asymptotic long time behavior of pt(x), such as the
stationary probability or the leading behavior of a
mean first pasage time (MFPT) at weak noise (Ar-
rhenius factor). In this context, a recent paper [15]
contains a somewhat confusing statement: In view of
(3.10), (Eq.(2.28) in [15]) one reads: "Therefore, it is
obvious that Kl(x,  z) and K2(x, z) contain only terms
with coefficient D z" and in fact contain all such
terms". From (3.2), however, we have for example
for the second Taylor coefficient

d 2 6x(t)
d s a 5 ~ (s)~- - t  = { ( f ' (x  (t))) 2 _ f (x(t))f" (x(t))}

-f"(x(t))~(t) ,  f"(x)  = - 6 b x .  (3.11)

If inserted into the small z-expansion of 6x(t)/6~(s),
one obtains for the master operator in (3.10) the
term

82 { t
Dz 2 ~  [(f'(x)) 2 ' D ,, 8- f ( x ) f '  (x)] p,(x) + z f  (x) ~x S

0

6x(t) (5 (t -- s) ds} (3.12)" l ~ (  ~ ( x ( t ) - x ) ) e x p -  z �9

Approximating the term 8x(t)/8~(s) occuring in
(3.12) by one - see (3.2) - one finds from the last
term in (3.12) a contribution

2 2 02 ,, 0
D ~ ~ x 2 f  (X)~xPt(X). (3.13)
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This term contributes obviously both to Kl(X ,'c) and
K2(x,z ) in (3.10) if rearranged into Kramers-Moyal
form. Thus, the BFPA-scheme does not contain all
terms which contribute to the Fokker-Planck form;
only if we simply neglect all terms, which also yield
a contribution to a Kramers-Moyal moment K,(x,z)
of order n>2,  are Kl(x,z ) and K2(x,'c ) solely de-
termined by the terms proportional to D T", yielding
(3.4). More importantly, with a finite correlation
time z, one obtains the term in (3.13), which has
been neglected in (3.3, 3.4), but which is of the same
order as the terms kept in (3.3, 3.4) (e.g. this follows
directly from (3.13) by acting on pt(x) using the
ansatz pt(x, ~)ocexp- ~(x, z)/D). - The term in (3.11),
as well as any other of the higher order Taylor
coefficients occuring in the expansion of 6x(t)/6~(s)
around the "Markovian time-point" t, generates a
noise dependent term, and thus the same game starts
over and over again. This results in an infinite hier-
archy, each with infinite many series with terms
proportional to D"~", m<n, n > l  (no analytic ex-
pansion). Therefore, it is a priori not clear to what
extent the approximations in (Y3), (3.4) give a cor-
rect description of the tails of/7(x), as determined by
(3.10), when the correlation time of the noise source
is non-vanishing.
The approximation in (3.9), which is based on (3.3)
or (3.4), respectively, has been checked in special
cases in [14] (transformations of Gaussian processes)
and also in [15] and [211, by use of numerical and
analogue simulations. For certain parameter re-
gimes, those approximation schemes have provided
satisfactory results for such quantities like stationary
moments, location of maxima, etc. This very much
resembles the case of a truncated Kramers-Moyal
Fokker-Planck approximation to a Markovian mas-
ter equation (integral operator), which often yields
satisfactory results for similar quantities which are
controled by the maximal weight of the probability
p(x), despite the fact that/7(x) is not exact. Based on
the observation that all the Kramers-Moyal terms in
(3.10) are generally of the same order, one would
expect that an effective "best" Fokker-Planck ap-
proximation, modelling correctly the non-Markovian
long-time behavior, must include also information
about the higher order Kramers-Moyal moments in
(3.10). Such a "renormalized" Fokker-Planck ap-
proximation scheme, modelling the long-time dy-
namics, has been put forward recently for the case of
a Markovian master equation dynamics [28, 29].
A physical quantity, which sensitively probes the
form of the stationary probability /5(x), particularly
in regions of small weight, is an activation rate. By
use of a transport theory approach [12] to the mas-
ter equation dynamics (3.10), the leading factor of

the rate is solely determined by the ratio
F(x,)/F(xl,2) of the stationary probability [12, 29]
(independently, this follows also from the asymptotic
analysis of the MFPT of the underlying two-dimen-
sional Fokker-Planck process in (2.1) - see [30, 31]);
i.e. details of the boundary conditions reflect them-
selves only in prefactors of rate expressions. The
study of this activation rate will be the subject of the
next section.

4. Activation Rates

The activation rates of bistable flows present in-
teresting physical quantities which depend crucially
on the detailed form of the stationary probability
/~(x). Most naturally, one would like to evaluate the
rate via a transport theory approach of the type
used for dichotomic Markov noise [12]. In the ab-
sence of an exact master equation (3.10) modelling
the long time behaviour of x(t), this approach is of
no use here. Alternatively, we could evaluate the
MFPT at weak noise of the underlying two-dimen-
sional Fokker-Planck dynamics in (2.1) [30, 31].
However, because a detailed balance does not hold
for (2.1), the standard methods [32-34] fail and the
more general method of [30] and [31] is rather
cumbersome, because the stationary probability
p(x,~) must first be determined. If T denotes the
MFPT (mean first passage time) to reach the barrier
top, the activation rate is estimated as

r = 1/2 T (4.1)

where the factor 1/2 takes into account that the
random walker has equal chance to either continue
to the adjacent stable state or return to the old
stable state.
The approximations in (3.3), (3.4) are of course
meant to be useful small relaxation time approxi-
mations for the stationary dynamics. In what fol-
lows, we then look upon (3.3), (3.4) as a Fokker-
Planck approximation to the long time dynamics of
the (unknown) master equation dynamics (3.10).
Then, within the assumption of a small enough re-
laxation time -c, yielding a positive diffusion /)(x)
=DH(x) within the bistable region [xl ,x2] ,  the
MFPT T(x) can be readily evaluated [35, 36]. If x =
- o v  is a (natural) reflecting boundary and x = x, = 0
an absorbing state, one finds [35, 36] for the MFPT
T(x) of a walker which started out at x ( 0 ) = x < 0

T(x)=i dy i x P(Y) D(Y) -~o F(z) dz. (4.2)

/5(x) denotes the stationary probability of the corre-
sponding Fokker-Planck equation (3.4) or (3.3) re-
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spectively, and /)(x) is the corresponding diffusion
coefficient, i.e. D(x)=DH(x) or O(X)=D(I+z(a-
3bx2)) if (3.3) is utilized. For  a weak noise, i.e.
D <a2/b we can evaluate (4.2) by use of the method
of steepest descendent. With the BFPA, (3.4), one
obtains

rc ( l +az ~ 1/2
T = a ~  ~l--~a~! exp(Ad?/D) (4.3a)

where with ( 3 . 5 )

~f~ f(y) dy -(.Ib),/~A 0 H(y) = o~ f(y) I-1 - ' c f ' ( y )

+ z2f(y)f"(y) + O(m3)] dy
a 2

- 4 b (1 - a 2 z 2) + O ( z 3 ) .  (4.3b)

Most importantly, the term linear in ~ vanishes ex-
actly. By use of (3.3) one finds instead

(1 + 2a 77~ 1/2
T = a ~  ~ \ ~ ]  exp(A(o/D) (4.4a)

with

A' ~1 f(y)dy

a 2
= ~ (1 - a 2 z2/2) + O(~3). (4.4b)

Because (3.3) takes into account only the term of
order D~, the term of order z2 in (4.4b) is, of course,
meaningless. Again, the term of order z in A q5 van-
ishes. For  v = 0  both results (4.3) and (4.4) coincide
and r = l / 2 T  equals the well-known Smoluchowski
ra te /35 ,  36].
Most importantly, we note that the Arrhenius factor
of T(x)

exp(A4/D) (4.5)

does not exhibit a correlation time dependence in first
order in z! Based on the SRTFPA in (3.3), the
advocates of Ref. 15 construct an approximation for
the stationary probability of (3.3) of the form [-15,
16]

/~(x) = Po (x) + ~ P l (~) + O(z2) (4.6)

where po(x) is the white noise stationary probability
po(X), which in our case reads

Po (x) = Z -  1 exp - -  . (4.7)

By use of their result in (2.23) of [15], one obtains in

our case (2.7)

p(x)=po(x){ l+z[C-(a-3bx  2)

1 _bx3)2 ]}2D ( ax

where

(4.8)

1 §
C = - 2 ~  ~ (ax-bx3)2po(x)dx<O. (4.9)

- o o

This approximation for /7(x) is not necessarily posi-
tive. Considering (4.8) as a short-time approximation
in first order, the bracket in (4.8) is now exponen-
tiated [15]. This ad hoc [153 exponentiation guaran-
tees a positive ig(x), which explicitly reads

p(x)=po(x)

Dz
�9 exp -

[ICl+(a-3bx2)+21~(ax-bx3)2]).

D
(4.10)

If we take (4.10) seriously, we would obtain a rele-
vant factor of T given by

~(x 1) a2/4b+3Dza
/7(x = 0) - exp D

=exp,3  a   exp t
In this case, the relevant factor does exhibit a de-
pendence on z, but in the form of a mere prefactor
correction, exp(3az). The results in (4.3), (4.4) and
(4.11) are in clear contrast to a result found for
symmetric dichotomic noise where the Arrhenius
factor increases with increasing correlation time
[121. In view of the absence of a term proportional
to -c in the Arrhenius factors (4.3), (4.4), (4.11), we
performed a numerical simulation for T based on
the bistable flow (2.7). The results are given in Fig. 1.
In contrast to our forecastings in (4.3), (4.4) and
(4.11) Aq5 is increasing with increasing correlation
time z. The increase is proportional to first order in

and is not really dependent on the small noise
parameter D. These results imply the following con-
clusions:
(i) Because the calculated Arrhenius factors disag-
ree with the simulation, the Fokker-Planck approxi-
mation schemes in (3.3), (3.4) cannot be correct in
leading order in z if viewed as a long time approxi-
mation to the master equation dynamics (3.10). In
other words, the stationary probability/~(x), (3.9), of
(3.4) cannot be equal to the exact stationary proba-
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Fig. 1. A q~, defined in (4.5), versus the noise auto-correlation time
~. The computer simulation of (2.1) has been carried out by
applying the numerical algorithm of Ref. 15 with an integration
step of 0.01. The values of the parameters are a=b= 1, D=0.1 (o)
and D=0.05 (,). T is the average over 1,000 first passage times
occurred from the initial conditions (2.6) for ~-o and p(x,0)=
5 (x -x  ~) for x. The maximum error bar in our numerical simulation
is estimated to be about 10 %. The arrow denotes the white noise
limit, A 4~ (z = O)

bility/~(x) in leading order in z as determined from
(2.7) or, equivalently, from the (unknown) master
equation dynamics (3.10).
(i i)  The approximation in (4.11) based on the ad
hoc exponentiation scheme of (4.6) can also not be
correct in leading order in z if compared with the
exact probability. This fact is not remedied if (4.6) is
used in connection with (3.4) instead of (3.3); the
correlation time ~ is merely substituted by a "renor-
malized" correlation time z R [151.

5. D i s c u s s i o n  and C o n c l u s i o n s

We presented a study of a simple nonlinear bistable
flow which is driven by exponentially correlated,
additive Gaussian noise and evaluated the leading
behavior of the activation rate at low noise. This
leading term of the activation rate is determined by
the leading order of the ratio of the stationary prob-
ability, taken at the locally unstable state x = x  u and
the metastable state x = x  1 (or x2). Our numerical
results for this leading term indicate that the com-
monly used Fokker-Planck approximation schemes
[14, 15, 22, 27] yield a stationary probability p(x, ~)
in which the tails are not recovered correctly. This
important short-coming should not come as too big
a surprise. The exact relation in (3.1) inherits via the
functional derivative 6x(t)/5~(s) a rather complex

                                                                  

structure. This functional derivative embodies the
complex nonlinear dependence of x(t) on the pre-
vious noise history {~(s), t o < s < t } .  This complexity
becomes exposed immediately if one attempts to
expand this nonlinear functional around the "Mar-
kovian" time-point s - =  t (see Sect. 3), which in turn
yields a never ending infinite hierarchy of infinite
many contributions. This is the price being paid by
having reduced the underlying two-dimensional
phase - space dynamics (x(t), ~(t)), (2.1), onto a one-
dimensional, but non-Markovian dynamics. In par-
ticular, it should also be kept in mind, that for a
nonlinear, nonequilibrium dynamics of the type in
(2.1), even the asymptotic dynamics at a low noise
level is almost never integrable [30b, 37].
All of that clearly causes headaches for the theorists;
- an "a priori" use of those perturbative (truncated)
Fokker-Planck schemes [14, 15, 22, 27], together
with related perturbative methods for the probability
itself [15, 16, 38] is generally somewhat suspect.
Those cases, for which the effective Fokker-Planck
structure becomes exact, can be related to nonlinear
(eventually also time-dependent) transformations of
non-Markovian Gaussian processes [-5, 14, 19]. In
general, the master equation has the structure of an
integral operator, (3.10), and a Fokker-Planck ap-
proximation to the long-time behavior should then
also include information about the integral operator
structure [28, 29] if the global behavior of stationary
probabilities is to be described accurately.
Part of the above reasoning equally well applies to
the numerous papers written on the subject of sys-
tematic adiabatic elimination procedures such as e.g.
the study of corrections to the Smoluchowski equa-
tion and alike [-39]. The bulk of those papers im-
plicitly contain some of the same assumptions in-
herent in the derivation of the approximative Fok-
ker-Planck schemes in (3.3), (3.4) [14, 15, 22, 26, 27,
39]. Furthermore, related there is also the problem
of correct initial values; i.e. initial preparation effects
[23b, 25, 40, 41]. Different initial preparation
schemes (for the details see in Refs. 23 b, 25) give rise
to different (memory-dependent or time-convolution-
less) master equations propagating the single-event
probability Pt [5, 25], and related, different non-
Markovian Langevin equations [25]. It should be
noted, that the non-white noise properties, such as
the conditional average ~ ( t ) l x ( t o ) = x  ) (or also in-
itial correlations ~( to )X( to ) ) )  depend on the initial
preparation scheme. The preparation scheme con-
sistent with (3.1) refers to a "correlation-free" initial
preparation; i.e. the initial probability pr(~o,X ) of
the total system factorizes

pT (~o, x)= 0(40) po(X)
where P(~o) denotes the Gaussian in (2.6) and po(X)
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denotes the (otherwise arbitrary) initial macroproba-
bility. Also, the dependence of the stochastic kernels
on the initial preparation [5, 25] does in general not
die out (because the initial preparation, determining
e.g. the projector operator kernels, is not being
propagated in time); nevertheless, with an ergodic
behavior [1], the single-event probability Pt ap-
proaches the stationary probability, limpt=~, which,

of course, is not dependent on the initial preparation
scheme./7(x) just represents the zero-mode of gener-
ally preparation dependent [25] limiting (Limt~oe)
master operators of the type in (3.10), where the
transient terms have died out. Therefore, if the noise
source has a nonvanishing correlation time z, the
limiting (non-Markovian)master operators of the
type in (3.3), (3.4) and (3.10) yield information about
quantities which involve zero-modes only; e.g. the sta-
tionary probability if(x), or current carrying sta-
tionary non-equilibrium probabilities [9-12], which
clearly also do not depend on the initial preparation.
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