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Bistability driven by colored noise: Theory and experiment
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A nonequilibrium, bistable flow driven by exponentially correlated Gaussian noise is considered. An ap-
proximate, nonlinear Fokker-Planck-type equation, modeling effectively the long-time dynamics of the bi-
stable, non-Markovian flow is constructed, and the mean sojourn time is evaluated in the limit of weak
noise. Keeping the noise strength constant, the mean sojourn time is predicted to undergo an exponential
increase with increasing noise-correlation time. Representing the bistable, colored noise dynamics with an
electronic circuit, the mean of the sojourn time and the sojourn-time distribution have been measured ex-
perimentally. The experiments confirm the exponential increase for the mean sojourn time and close quan-
titative agreement with this newly proposed theoretical approach is found. In contrast, previous approxima-
tion schemes which expand around the Markovian theory (zero-noise correlation time) would predict for
this case an exponentially decreasing mean sojourn time upon increasing the noise-correlation time, in
marked disagreement with the present measurements.

Over the last years, there has been a steadily growing in-
terest in nonlinear systems in which the nonlinear coupling
induces instabilities and bistability within certain ranges of
the control parameter regime. ' Moreover, one now realizes
that the role of fluctuations is far less trivial in systems far
from equilibrium than in systems in thermodynamic equili-
brium. 7 One of the more puzzling enigmas that has em-
erged recently is the observation that the weak noise
dynamics of Fokker-Planck systems in state-space dimen-
sion d ~ 2 is generally beset with trouble which can be re-
lated to erratic, chaotic behavior. One such model system
exhibiting bistability is the two-dimensional Fokker-Planck
dynamics9

where V(x) denotes the symmetric bistable potential field

V(x)= ——x2+—x4, a &0, b&0
2 4

(2)

and where V'(x) is its derivative. The dynamics in (1) does
not obey detailed balance, which in practice renders expli-
cit analytical studies impossible. Following Ref. 9, we im-
pose correlation-free initial conditions, i.e., the initial proba-
bility po(x,y) factorizes in the variables x and y, and use for
y ( t = 0) a stationary Gaussian with mean value zero and
variance (y2) =D/r Then, th. e. dynamics in (1) can be
mapped onto the one-dimensional, but non-Markovian,
Langevin equation driven by additive, exponentially corre-
lated Gaussian noise

x = ax—bx'+ g ( t ) (3a)
p, (xy) = + [V'(x)p, (xy)]—y p, (xy)QX QX

+— [yp((x.y) ]+1 Q D
T Qp 7

(g(r)g(s)) =—exp( —It—sl/r)D (3b)
T

The rate of change of the single-event probability p, (x) of
the bistable, non-Markovian flow (3) then obeys the for-
mally exact equation '

p, (x) = — (ax—bx )p, +— ds exp[ —(t—s)/r] 5(x(t)—x)6 g2 ) t Sx(t)
QX QX2 "0 Sg(s)

where the functional derivative [Sx(t)/5((s)] obeys the integral equation
(

nx(r) ' '
2 8x(r)=8(t—s) 1+ dT[a —3bx2(r)]

8$ s ~b 5 s

(4)

(5)

At this point, it becomes clear that all of our original difficulties are only being transferred to an evaluation of the non-
linear functional in (5). Upon a repeated use of (5) one can rewrite the average in the second term in (4) in the form

(
t W T)

( 3(tx) —x) )+ d i(a —3bx ( ~)) )x+ d a(a —3bx~( a))(l+ ) ) (6)
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If we now neglect transients (i.e., we let t ~), and make
use of a decoupling ansatz„ thereby neglecting induced
correlations'0 among the successive functionals in (6) we
end up with an effective "nonlinear" (approximate)
Fokker-Planck dynamics

( T) ~ R =p(x = —(a/b)' 2)/p(x =0) (9a)

leading behavior depends only on the leading behavior of
the ratio R of the stationary probability p, taken at the
stable states xti2= +(a/b)'i2 and the unstable state x=0,
i.e.,

p, (x)= — (ax—bx') p, (x)Bx
D Q2+ I+r(3b(x2) —a) Bx2 (7)

Because (7) models effectively the long-time dynamics of
the non-Markovian process x(t), one obtains for the lead-
ing behavior of the mean sojourn time6 9 of (7) (by use of
the method of steepest descent)

p (T) = exp( —T/( T) ) (8)

The mean sojourn time (T) is exponentially large and its

where the quantity (x2) depends itself on the (un'known)
solution p, (x). Clearly, this type of "nonlinear" approxi-
mation will work best for a small correlation time ~ and
converges for v =0 to the well-known Smoluchowski equa-
tion3 ~ 6' (the Gaussian white noise limit). Because the sta-
tionary second moment" (x2),=0 changes for a symmetric
double well potential only little as D is varied (e.g. , with
a = b=1, one obtains D =0: (x2) =1, D=0.1:
(x ) =0.87, D=1: (x2) =1.01, D= 100: (x2) =1.34) we
can identify for small r the parameter (x') with the white
noise result. Note also that (x ) = a/b; therefore, the ef-
fective diffusion coefficient in Eq. (7) is always positive.

A quantity which sensitively probes the form of the wings
of the stationary probability is the mean sojourn time ( T)
in the stable state. For small-noise intensity D, the trajecto-
ry x(r) [see Fig. 1(b)] stays for a long time around one of
the stable minima before eventually crossing over into the
neighboring well. Owing to such a clear-cut time separation,
those successive jumps back and forth between the two
wells can be looked upon as independent random events;
i.e., the sojourn times T are exponentially distributed as'

(T) = ~ exp Sy(r)

where

(a2/4b) [1+7(3b(x2) —a) ]

(9b)

(10)
Thus, the "nonlinear, " somewhat crude, approximation
scheme in (7) predicts an exponential increase for (T) with
increasing noise-correlation time 7.' In contrast, using the
usual approximation scheme, 6'4 which expands the func-
tional in (5) around the Markovian theory, one predicts that
A$(r) actually decreases in proportion to r2 with increasing
noise-correlation time (no uniform convergence to the white
noise limit). ~
We have found Eqs. (9) and (10) to be in quite good

agreement with measurements of (T) obtained using an
analog electronic circuit similar to ones we have used previ-
ously. '5 The circuit, which is shown in Fig. 1(a), approxi-
mately solves

x(t) = (I/r;) „(a'x—b'x3+ V„)dt

The integrand is Eq. (3a) scaled by r;, the integrator time
constant, with a'/r, = a, b'/r; = b, and V„/r; =g(t).
Throughout this experiment ~ I= 100 p, s. The scaled,
mean-square noise intensity is then given by

( V2)/T 2 D'/r (12)
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(T) = g TIP(TI), (13)

where ( V2) was measured at the output of the noise filter.
The circuit was designed with an overall scale factor of unity
so that measurements of x(t) at the integrator output in
volts correspond numerically to solutions of Eq. (11).

An example output (realization) is shown in Fig. 1(b),
where random switching between potential wells whose
minima are near 1 V is evident. The realizations x(r)
are digitized by the computer, and the sojourn times T; are
measured between threshold crossings near zero as shown.
The computer then assembles the density p(T) which ap-
proaches the stationary density P( T) for a sufficiently large
number of samples. Our measurements of p(T) are quite
accurately represented by Eq. (8). The mean sojourn time
is then obtained from

FIG. 1 (a) A schematic diagram of the circuit. All summation
and multiplication operations are.performed with standard, commer-
cially available analog components. The computer functions only as
a measuring instrument. (b) An example time function, measured
at the integrator output.

where X was typically 1000. A sequence of measurements
of (T) was made by varying r, while holding D' constant.
These results are shown in Fig. 2, where it is obvious that
(T) rapidly increases with r for all observations. For all
data, 7 (( (T), so that successive jumps occur indepen-
dently. [This condition is necessary in order to ensure that
p( T) is accurately exponential. ] The scatter for each set of
data is representative of the statistica1 errors.
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FIG. 2. Measured values of (T) vs r for several values of the
unscaled, dimensionless noise intensity D: crosses: 0.073, open cir-
cles: 0.083, closed circles'. 0.114, squares: 0.153, and triangles: 0.212.
The scaled noise intensity is obtained from Eq. (12). The theoreti-
cal white noise limits, predicted by Eqs. (9) and (10) with no adju-
stable parameters, are indicated by the lozenges.

In order to compare these results with the theory, we
have obtained b,@ for each datum point using the scaled
version of Eq. (9b). The data were then replotted on Fig. 3,
where the solid lines are fits to the scaled version of Eq.
(10):

ay = (1/4r, ) [1+{r/~, ) (3 (x') —1)], (14)
for a'= b'=1, using (x2) as the only adjustable parameter.
Fits were made to the triangles and closed circles as shown
by the solid lines in Fig. 3. As a test of the theory we have
calculated (x2) from the white noise, scaled density func-
tion

p'(x) =Xexp(r; /r ( V2) ) (x'/2 —x~/4)

by numerical integration, with the result that
(x2) „&,=0.83 V and 0.86 V for the triangles and closed cir-
cles, respectively. The experimentally obtained values are
0.84 V and 0.60V, respectively (see Fig. 3). Note that the
closed circles (Fig. 3) correspond to a lower noise intensity,
i.e., stronger exponential suppression of probability of the
unstable state. This explains the expected larger difference

FIG. 3. The data are replotted to. show b,@ vs noise-correlation
time r. The solid hnes are Eq. (14) for the values of (x2) shown.
The lozenge indicates the white noise limit of Eq. (14), with no ad-
justable parameter.

between approximate, theoretical value and the experimen-
tal value. Keeping in mind that the approximations made
leading to (7) are rather crude, -. the agreement found is
more than satisfactory. Moreover, the close agreement
between the measured density p(T) and (8) indicates that
the measured escape is controlled by the Arrhenius factor
given by (9a) and (10).

In this work we have shown that a finite noise-correlation
time 7 can complicate matters considerably, but yet can lead
to important effects. With r finite the (manifest) detailed
balance of a one-dimensional Fokker-Planck equation is
broken. This work then demonstrates that nonlinear ap-
proximation schemes of the type used in (7), which partially
incorporate the complexities of the non-Markovian process
x(t), are essential in order to model accurately the colored-
noise dynamics. In particular, this is true in bistable
flows'~ ~here the exponential suppression of probability of
the locally unstable state depends sensitively on the details
of the noise properties. Thus, these systems are ideal to
test different theoretical approximation schemes for colored
noise 10~ 14' 16

The importance of colored noise has recently also been
recognized in nonlinear optical systems which undergo a
Hopf-bifurcation-type instability. ' The study of colored
noise in optical bistable systems too, yields several such key
results. '
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