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Stochastic phase portraits of a damped bistable oscillator driven by colored noise
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e present measurements of the stationary, joint statistical densities of velocity and displacement in a
three-dimensional system: the damped oscillator ~ith a bistable potential driven by additive, colored noise.
Approximate Fokker-Planck theories of such "higher-dimensional" systems are assessed and compared to
the measurements. Because of limitations inherent in all present theories and generally available numerical
techniques, analog simulators appear to offer the only effective, high-resolution means for obtaining the
joint probability densities of d 3 systems.

4x=v
u = x—x —yv + V„(t, T )
V„=—(I/r) V„+I (t)/v

(2a)

(2b)

(2c)

where we have used the bistable potential U(x) = —x'/2
+x'/4. The noise V„(t) is exponentially correlated with
correlation time r, as defined by Eq. (2c), with the white
noise source (I (t)I'(s)) = (2D)5(t —s) of intensity D

There has been a great deal of interest in recent years in
simple, "archetypal" descriptions of a variety of nonlinear,
nonequilibrium, macroscopic phenomena, along with a
growing appreciation of the role played by external noise in
such systems. ' One such widely studied archetype is the
damped, anharmonic oscillator

x+yx =—dU(x) + V„(t),
dx

where y is the damping, U(x ) is a potential, and V„(t) is
an additive driving force. When U(x) is a periodic poten-
tial, Eq. (1) has been used, for example, as a model for the
resistively shunted Josephson junction~' or, in the limit of
large damping, the ring-laser gyroscope. ' When U(x) is a
bistable potential, applications too numerous to list in detail
range from a driven Ge photoconductor' and a nonlinear
elastic mechanical oscillator' to models of optical bistabili-
ty." V„(t) can be either aperiodic or periodic, for which in
the latter case Eq. (I) has been used to model a number of
interesting chaotic systems. "

In this Rapid Communication, we confine the discussion
to Eq. (I) with a bistable potential and with V„(t) a purely
aperiodic noise for which there exists no evidence of chaotic
behavior. We thus consider the problem of Brownian
motion in a double-well potential, first treated by Kramers, '
and more recently by Risken and his co-workers ' and re-
viewed by one of us." We present the first measurements
of the stochastic phase portraits (SPP's) made on an analog
simulator of this system. Studies on a simulator of Eq. (I)
with a periodic potential are currently in progress. When V„
is a time-correlated noise, the system is three dimensional
(d =3):

Equations (2) are reducible to a d = 2 system in either of
two ways. First, in the white-noise limit

x=v
~=x—x'—ye+ V„(t)

(3a)
(3b)

where now ( V„(t)V„(s))cK 8(t—s); or second in the limit
of large damping

yx =x—x + V„(t, r) (4)

with V„again defined by Eq. (2c). A d = 1 system is ob-
tained when both limits apply.

Such systems have most often been studied theoretically
using an exact or approximate Fokker-Planck (FP) analy-
sis." The FP equation can, however, be solved for the sta-
tionary densities exactly and in closed form only for d = 1
systems. This is a strong restriction because, while many
highly dissipative systems can be accurately modeled in the
limit of large damping, it is not likely that any macroscopic
system is reasonably modeled in a white-noise limit as, for
example, recent experience with dye-laser transitions has
demonstrated. "

Solutions of higher-dimensional FP equations are afford-
ed by the matrix continued-fraction (MCF) method. " The
final result is, however, a matrix of infinite dimension
which must be truncated and inverted numerically, a neces-
sarily approximate procedure. It turns out that this matrix
can be evaluated with sufficient accuracy on computers
available to most laboratories (say, a VAX) only for d =2
systems. Even so, for such systems large amounts of pro-
cessing time (—1 h) are required for high accuracy. Digital
simulations are beset by similar problems. We have simu-
lated Eqs. (2) on a VAX with results which confirm the ma-
jor features of the data reported below, but even for long
processing times we were unable to resolve the detailed
structure. By contrast, as we show below, measurements of
the stationary joint probability densities P(x,x), the SPP s,
can be obtained rapidly and simply to accuracies of 10o/o or
less from analog simulators. We have recently demonstrat-
ed excellent agreement with the MCF theory of similar
measurements of P(V„,x) for a widely studied d=2 sys-
tem.""
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STOCHASTIC PHASE PORTRAITS OF A DAMPED BISTASLE. . .

addition, Fig. 1(b) shows the emergence of a third max-
imum in the P (x) cross sections cut along the x directions
at x—1.2, x—0.4 (and x ——1.2, x——0.4). It should
be noted that this feature was not observed in either the
MCF calculations' or in the analog simulations' of the
d = 2 system, though the skewing effect was clearly evident.
Since the MCF calculations require a supercomputer for
d = 3, the approximate, analytic theories do not predict any
asymmetry, and digital simulations do not yet result in suffi-
cient resolution, it is apparent that, at present, analog simu-
lations offer the only effective means by which SPP's of
high enough resolution to detect these novel features can be
obtained.
%e have also measured the effect of changing the damp-

ing y. Large damping has the effect of restoring the lost
symmetry caused by large v, awhile increasing the height of
the peaks and the depth of the valley. While the latter ef-
fect is predicted by the approximate theory [Eq. (5)], the
characteristic asymmetric effects are not.
Figure 2 shows our one-dimensional measurements of

P(x) and P(x) (noisy curves) compared to Eqs. (5)
(smooth curves) for small noise intensity D and increasing r
in (a)-(b), and for fixed r but increasing D in (c)-(d).
The normalization of the calculated curves was adjusted to
match the maxima of the measured results. It is evident
that the new approximate theory gives an accurate account
of the one-dimensional densities for surprisingly large 7 but
only for D & 0.3. On the contrary, the conventional
theories"" exhibit unphysical probability densities (diver-
gencies) for the realistic parameter values used here.

In conclusion, we have obtained the SPP's of Eqs. (2)
with unprecedented detail and statistical quality, and we
have used them to explore the range of validity of a recently
proposed approximation scheme for treating non-Marko-
vian, higher-dimensional systems. Our analog simulation
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techniques may prove useful for studies on other especially
intractable systems.
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ONR N00014-85-K-0372, and by the United Kingdom Sci-
ence and Engineering Research Council.

FIG. 2. Measured one-dimensional monomodal densities P(x),
and bimodal densities P(x), shown by the noisy curves compared
to Eqs. (5); smooth curves for y-1 and with D 0.3 for (a)
7 =0.25, (b) v =4.0; and with v -2.0 for (c} D=0.5 and (d)
D=1.0. The experimental results in {a) and {b) were obtained
from the two-dimensional densities by summing over all values of
the other variable; while in (c) and (d), the 1—d densities were
measured directly.
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