ALPHA PARTICLE TUNNELLING IN THE FIELD OF A MAGNETIC MONOPOLE
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The influence of a Dirac magnetic monopole on the tunnelling probability of charged, spinless particles is studied. In a
Gamow type model for the a-decay, the change of the lifetime of an a-unstable nucleus, like '¢1Sm, is treated. The change of
the tunnelling probability by the magnetic monopole leads to a drastic increase in the lifetime. Possible consequences for the

detection of magnetic monopoles are indicated.

The announcement of a possible candidate for
the detection of a magnetic monopole [1] has
spurred significant renewed interest in the physi-
cal properties of systems composed of charged
particles and magnetic monopoles *'. In this com-
munication we shall elaborate only on the physical
consequences which the monopole field exerts on
the tunnelling probability of charged, spinless par-
ticles. Problems such as S-decay or y-transitions
give additional complications due to spin and
nuclear effects, which are beyond the scope of our
model study.

The archetype of this tunnelling problem is the
a-particle decay from a dyon, i.e. from a system
composed of a nucleus carying a Dirac-monopole
[3] of charge g in the center. Dirac monopoles [3]
are point-like objects with an undetermined mass.
This simplification is justified because the more
realistic monopole solutions of grand unified gauge
theories, i.e. monopoles of the ’t Hooft-Polyakov
type [4], with mass m,=10"°m_ look for dis-
tances large compared to the Compton wave length

1 A representative sample of articles is given in ref. [2).
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of the very massive gauge bosons just like a Dirac
monopole.

The enigma of the a-decay problem is indeed a
very old one. As is well known, the original works
by Gamow [5], Condon and Gurney [6] and Laue
[7] present a milestone in the theory of particle
decay. Since then, this problem has been worked
on extensively ¥2.

The goal of this work is to extend this type of
studies to the case where the a-particle experi-
ences additionally the force field of a radially
symmetric magnetic monopole field. In particular,
we attempt the study of the influence of the
monopole on the exponentially small tunnelling
probability of a-decay and contrast this with the
case of tunnelling in absence of a Dirac monopole
in its center. This problem is not only interesting
in itself, but may also be of importance for the
problem of nucleosynthesis, where the presence of
many monopoles may crucially impact the lifetime

#2 Ref. [8] gives a discussion of the more recent developments
in both the theoretical and experimental aspects of the
a-decay problem in nuclei.



of various decay processes participating in the
formation of nuclei. '

As a simplified model for a-decay in a nucleus
of charge Z, we consider the spherically symmet-
ric nuclear potential field V(r) depicted in fig. 1.
This average nuclear potential is composed of a
constant attractive potential of depth ¥ for r <R
and a repulsive Coulomb barrier, Ze?/r, for r > R.
Clearly, with such a conventional one-body de-
scription of a-decay, we are neglecting non-trivial
nuclear structure effects which might not be
negligible in a precise determination of the actual
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Fig. 1. A sketch of the nuclear potential field used in text.

Dash-dotted line: effective potential field including the centri-

fugal angular momentum barrier induced by the charge—mono-

pole system (» = %(\/g —1) = 0.618). Dotted line: correspond-

ing effective potential field for a system without monopole

with angular momentum /=1. The arrows indicate the loca-
tions of corresponding resonance energies.

tunnelling probability. However, our focus will
not be on the precise values of the corresponding
resonance energies of the tunmelling ea-particle,
but rather in the characteristic shifts of these
resonance energies, being induced by the typical
lowering of the (one-body) centrifugal barrier of
the a-particle. Thus, we will neglect the interac-
tion of the nuclear core with the monopole field.
This can be justified since the electromagnetic
interaction effect of the core with the monopole is
negligibly small compared with the strong nuclear
binding potential ¥ (r). Moreover, an important
advantageous feature of our one-body description
is the fact that it is still possible to separate the
angular and radial parts of the underlying
Schrodinger dynamics in presence of the singular
monopole field [9,10). This will no longer hold
within a many-body approach to a-decay with a
monopole at the center of the nuclear core. There-
fore, by use of the scheme of wave sections, as
pioneered by Wu and Yang [9], we separate the
angular and radial parts of the wave function

¥(r, 8, ¢):
lll(r, 0’ ¢)=R(r)YQ,IQ,m(07 ¢) (l)

Hereby, YQ‘,Q'm(ﬂ,‘ ¢) are the monopole harmon-
ics [9,10] and Q=Z eg/hc=2Z,N/2=1 is the
magnitude of angular momentum generated by
the monopole-a-particle system for N =1 and
lo=0,Q+1, ... is the quantum number of the
total angular momentum in the presence of a
singular vector potential A, for a magnetic
monopole:

L=rx[p—2e/c)A,] — Qr/r. 2)
By use of the usual substitution R(r)-r=u(r),
the radial part of the Schrodinger equation for the

a-particle-monopole-nucleus system reads ex-
plicitly

d*u/dr®+ {(2u/R?)[E - V(r)]
[tgltg+1) - @°] 1) um o

where p denotes the reduced mass of the a-par-
ticle.

By use of the substitution

Y(r+1)=1y(lp+1) - Q% 4)
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i.e.

vb[(lQ+%\)2—Q2]l/2—§,

we observe that the problem of a-decay in pres-
ence of a trapped magnetic monopole in the center
of the nucleus can be mapped onto the ordinary
problem of a-decay in a nucleus if we only sub-
stitute the integer value of total angular momen-
tum by the irrational, effectively reduced value

lo— 3 <v<ly. (5)

The first few effective angular momentum values
are — for Q=1 - then explicitly given by /,=1
—»y=3(/5 -1)=0618...; l,=2-vr=13(21
—D=1791...; l,=3-p=3/45 —1)=
2.854.... Thus, due to this characteristic reduction
of the corresponding effective angular momentum
value in (3), which in turn yields a characteristic
reduction for the centrifugal barrier in (3), we can
already expect a characteristic reduction of the
resonance energy values towards lower values.
This, of course, then also implies that the tunnel-
ling probability of a-decay with a monopole is
exponentially suppressed over the case of usual
a-decay in absence of a magnetic monopole.
Moreover, due to its reduced centrifugal poten-
tial barrier energy, a new, higher-lying resonance
state may be pulled down from the set of con-
tinuum of energies (see fig. 1): with />» its
corresponding energy in absence of the monopole
would not fit below the effective potential barrier.
In fig. 2 we depict the resonance energies for the
model potential in fig. 1 for the element '¢}Sm
with a typical nuclear radius R = 8.677 fm and a
typical attractive nuclear potential well of V=
—13.27 MeV, i.e. the height of the potential bar-
rier at R is then U = 33.18 MeV. With this choice
of the potential parameters, the experimental val-
ues for the energy and the decay width of the
ground state of 4Sm are reproduced with a devi-
ation of less than 0.01%. Fig. 2 compares the
resonance energies ES (n=1, 2..., order of reso-
nance energy) for the case with a monopole, Q =1,
with the corresponding ones without a monopole,
Q = 0. Indeed, there occurs always a characteristic
decrease in the resonance energies. In addition,
the resonance energy EZ~', absent for Q=0 is a
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Fig. 2. Schematic alpha-particle resonance levels in 1¢Sm for

various angular momentum values /, without monopole, Q = 0,

and, correspondingly, with monopole, Q =1. With a mono-

pole, there occurs a new resonance level, indicated by the
enclosed, dashed ellipse.

new resonance state which is pulled in from the
continuum of states.

In order to determine the decay rate A, con-
nected with the resonance width I by I' = hA, we
make use of scattering theory. Following Bohr and
Mottelson [11], the scattering phase shift can be
written in the following form:

exp(2i8,) = [(L, -4, +is,) /(L,— 4, ~is,)]
x exp(2i¢,), (6a)
where
§, = arctan(F,(n, p)/G,(n, p)) | ,—&
(with p=kr, k= (2uE/h?)"*, n=2Ze%s/h’%)
(6b)

_is the “hard-sphere” phase. In terms of the regular



and irregular Coulomb fux;ct,ipns"[l2] E(n, p)
and G,(m, p), respectively, -(evaluated at real »)
(eq. (5)), the logarithmic derivative L, is given by

L= [R/u,(R)} dur)/dr|,_,
‘= (cos 8,F’ = sin §G;)/
(cosaF_hSIn Gv)lr R (6C)

w1th "X"=R dX/dr. By use of the well-known
vx‘r‘onskran relation for the Coulomb functlons we
gbtfors and 4, [13] '_ ;

s—(F2+GZ) A —s(FF +GG) (6d)

The resonance energiés are then determlm hy thc
resonance condition L

L,(E)=A4,(E,). :4;-(,57.)

The decay : Wldth I followis from the Kr&kagner ‘

u(‘ aL /aE+aA JOE) | g - (8)

The quantities L, and 9dL,/dE are readily

evaluated as

L,=1+«&Rj/(xR)/j,(xR),

k?=(2p/R*)(E+ |V, 1), (9a)
and
dL,/dE | p_p,
= (wR2/R*){[»(»+1) - 4,(4,-1)] /xR
-1}, o (9b)

where j, denotes a spherical Bessel function at
irrational index ». In order to arrive at a closed
expression for the decay rate, respectively for A,
and 04,/9E, we use in the regime r> R for the
regular and irregular Coulomb functions [14] the
WKB-approximation. A somewhat cumbersome
evaluation then yields

8, = ~R{[1/4/(R)] 4f(r)/dr) -
AR, (100)

with

(r) = @u/R) [V (r) - E] + (v + 1) /1%,
- ‘ (10b)

and for its derivative we get

aAw/aE | E=E,
= (pR?/R*){1/R[f(R)]"*
—[1/2R2(R)] df(r)/dr|,.x}.  (10c)

Upon combining (8), (6), (9) and (10) we then
obtain a closed form expression for the decay
width:

187 =1 /pR?) e/ FX(n. ) + G} (n, )]}

X {1 —[r(»+1)-4,(4,-1)] /x*R?
—[1/2RF2(R)] df(r)/dr|,_x
+1/RIF(RT) g (11)

This expression presents the main result of this
communication. Alternatively, we may recast the
result in (11) in the Gamow form

T2 =49 exp(-G), (12)

where for the model potential in (3) the Gamow
factor is given by

6=2["((2u/m)[V(r) - E]

+v(v+1)/r? }1/2

= rok{arcsm([2\/_(1 —2R/ry) + 2a]/(4c + 1))
+2/c —2a+ 2/;10g[{1 + 2cry/R

+2[cr0/R + cz(ro/R)2 - c] l/2}/

(4c+ 1)]}, » (13a)
with
c=(r/2p)[v(v +1)/4Z%*| E, r,=2Ze*/E,
a=[c+R/r0 (R/rp )] (13b)

The results of (11) are depicted in fig. 3 for the
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Fig. 3. Resonance widths (in MeV) for '¢3Sm without mono-

pole, (O), and with monopole, (®). The prefactor varies weakly

within the hatched region. The inset exhibits the more detailed
behaviour of this prefactor.

typical case of '$Sm. The widths for the
nucleus-monopole system are exponentially sup-
pressed over the case without a monopole. The
prefactor 4%, defined in (12), varies rather weakly
as function of angular momentum and resonance
energy E, (see fig. 3 and inset), i.e. the suppression
of the tunnelling probability is thus controlled by
a typical increase of the Gamow factor, given in
(13). The range of relative magnitude of this ex-
ponential suppression for the decay widths, or the
corresponding exponential enhancement of the
lifetime, respectively, may become of the order of
10'°! Moreover, the calculated prefactor in (12)
coincides typically up to a factor of 2 with the
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simple WKB estimate
2
AZ(WKB) = [(r2/2uR?)(E+ 1V, )] (14)

In conclusion, the characteristic result of exponen-
tial suppression of the tunnelling probability might
be of importance for aspects of the nucleosynthe-
sis. For example, the element '¢7Sm has an a-de-
cay lifetime of 1.06 X 10" yr which compares with
the age of the universe T, =2 X 10" yr [15]. An
alternative experimental scheme for possible
monopole detection, which makes use of this char-
acteristic suppression, might be as follows: Con-
sidering y-induced resonance activation of a-de-
cay tuned for the case of nucleus plus monopole
might result in a measurable response, thereby
indicating the existence of a monopole.
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