5 Discrete dynamics perturbed by weak noise

PETER TALKNER and PETER HANGGI

3.1 Perspectives

In Chapter 9 of Volume 1, one of us elaborated on noisy dynamical flows
described by the set of first-order differential equations

Yo = folx, ) + X qailx, DEi0). (5.L.1)

Such systems exhibit already for a small number of coupled state variables an
overwhelming complexity which generally defies an analytic description. It
turns out, however, that the complexity of such systems can be extracted from a
stroboscope-like discretization in time of a single trajectory x(t). With strong
dissipation even a multidimensional flow of a huge number of coupled degrees
of freedom can be described in terms of a one-dimensional discrete iterative
mapping. That is, one can predict in a causal manner with surprisingly good
accuracy, e.g., the maximum of a state variable x,(z, , ;) of a complex dynamics
if we only know the previous maximum x,(t,); i.e. x(t,, ;) = F(x(z,); ), where 1
denotes a set of control parameters. Likewise, the set of values {x,(z,),
Xg(to+1)-..,%,(to + n7)} of a sequence of observations at constant time
intervals, 1, also obeys the same law. F(x, 4) often exhibits turning points, or
maxima and minima. This stroboscope-like procedure then yields an approxi-
mation to the stochastic flow in (5.1.1) which takes on the form of a noisy
discrete dynamics

Xn+1 =F(xm ;‘)+€n . (5~102)

Without the noisy term &,, equations such as (5.1.2) have been studied
extensively in the context of ‘deterministic chaos’ (e.g. see Coullet and Tresser,
1978a,b; Feigenbaum, 1978a,b, 1979; Grossman and Thomae, 1977; for a
review, see Schuster, 1984). In the following we shall not comment on the many
interesting results of deterministic chaos, but rather put our focus on the effects
of weak random perturbations &,. The importance of residual noise.on’ the
discrete dynamics in (5.1.1) has been recognized in numerical studies (for a
review see Crutchfield, Farmer and Huberman, 1982; some recent papers are
Linz and Liicke, 1986; B. Morris and F. Moss, 1986, and 1988, unpublished).
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Our goal in this study of discrete dynamical systems is the (predominantly
analytical) calculation of stationary probabilities, mean first passage times,
and related quantities, in the limit of weak noise (Talkner, Hinggi, Freidkin
and Trautmann, 1987).

5.2 Discrete dynamics driven by white noise

In the following we shall restrict the discussion to discrete systems driven by
white noise only. In other words, we shall consider the map dynamics in (5.1.1)
with £, being independent and identically distributed noise. It should be
stressed, however, that &, generally will depend on the state x,, or more
precisely it will depend on the iterated state F(x,); i.e.

Xp+1 = F(xp) + Ea(F (x,))- (5:2.1)

£,(x) is specified by its probability density p(, x} for finding &,(x) in the
interval (&, & + d&)

P{E(x)el&,+dE]) = p(&, x)dE. (522)

With these conditions for £,, (5.2.1) defines a Markov process; put more
precisely, {x,} in (5.2.1) defines a Markov chain (Feller, 1966).

The probability density W,(x) for finding x, in the interval [x, x + dx] then
obeys the master equation

Weai(x}= JP(Xfy) W,(y)dy, (5.2.3)
where the transition probability P(x|y) is given by

P(x|y)=plx— F»). F()). (5:24)
Often one assumes for &, a multiplicative noise structure of the form

L) =g(x)las (5.2.5}

with {, being white noise with an x-independent probability ¢({). The noise ¢,
is termed additive if the coupling function g(x) is independent of the state
variable x. The probability density for &,(x) in (5.2.5) reads (Z: normalization)

p(&,x)=g(} ™ o(E/g(x))/Z. ' (5.2.6)

In many other cases, the physics dictates a process x, that is restricted to an a
priori fixed interval I =[xV, x!21, for all times n. Then the noise £, cannot be
additive. With multiplicative noise, g(x) then must vanish at the boundary
points x*, x‘®,in order to prevent an eventual escape out of the interval. This,
however, implies that there cannot be any fluctuations at the boundary itself;
ie.

p(&,x®) =0, x® =x1 x2, (5.2.7)
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Depending on the problem under consideration the condition in (5.2.7) might
not be appropriate. As an illustrative example let us take a random number &
from an ensemble with density ¢(y); this will be taken as an allowed realization
of &,(x)if (¢ + x,)is contained in the interval. If not true, we must select another
random number. This procedure implies a state-dependent fluctuating force
with density (Haken and Mayer-Kress, 1981)

plEx) = ‘D{é)/ L,,‘P(ﬁ’_x)dé” ot ol (5.2.8)

0, otherwise.

Other examples that also cannot be modeled by multiplicative noise are
processes driven by additive noise with periodic or reflecting boundary
conditions (b.c.). In the case of a periodic b.c., (x + &) is taken modulo the
length of the interval, if not contained in I; likewise, for a reflecting b.c., (x + &)
is mirrored at the adjacent boundary as many times until the image falls into
the interval. Thus, we find for the density pp and p; for periodic b.c. and
reflecting b.c., respectively

e = 5 oI+ (5292)
with
SP(x) = 2n(x® — x) + x (5.2.9b)
and 7
SR(x) = 2n(x® — xM) + (— 1)'x. (5.2.9.)

Probability densities for the random force in the presence of more general b.c.,
such as, e.g., a sticking b.c., etc., are constructed analogously. In conclusion, the

multiplicative form in (5.2.5) does not present the most general possible noise
structure.

53 Stationary probability for weak Gaussian noise

Next we shall consider one-dimensional maps which are weakly disturbed
(strength measured by the parameter ¢ < 1) by white Gaussian noise; i.c.

Xps1=F(x,) +&'2¢, (53.1)
where ¢ >0 and £, has a density

: p(&)=(2m)~ P exp(~1&2). (5.3.2)
1 '

Fy,= lim F'(x) exists,and if |F}, | <1,

x—+t oo
there is a uniquely defined stationary probability W{x), xe{ — oo, oo}, of the
process defined by (5.3.1) and (5.3.2). This invariant probability (solution with
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eigenvalue 1) obeys the master equation

W(x)=(2ne) 172 Jm exp[ — (x — F(»))*/2e] W (y) dy. (5.3.3)

In order to solve (5.3.3) for weak noise we use a WKB-type ansatz
W(x) = Z(x)exp(— (x)/e), (534

wherein both ®(x) and Z(x) shall not depend on & This procedure is well-
known in the study of continuous-time Markov processes (Graham, 1981;
Kubo, Matsuo and Kitahara, 1973; Ludwig, 1975; Matsuo, 1977). Inserting
this ansatz into (5.3.3), one finds /

Z(x)= (2re)” 1?2 J Z(yyexp(— Y?(x,y)/2¢)dy, (5.3.5)

where we have defined

fxed

Y3(x,y) =2[®() ~ ()] + [x - FO) . (5.3.6)
Our goal is to determine @ in such a way that
Y3(x,y) >0, (53.7)

as indicated already by the notation.

In the following we shall work out a seemingly strange chain of arguments
involving the quantity Y2(x, y). This reasoning, however, will result in{5.3.13)
which provides us the key to find the potential function ®(x) occurring in
(5.3.4) ' '

First we note that the root of Y2, i.e. Y(x, y), defines for each x an invertible
transformation of the old coordinate, y, to the new one, Y. Thus, it is sufficient
and necessary that the derivative of Y(x, y) with respect to y is not vanishing;
ie.

0Y(x,y)
dy
For the moment, let us assume that we know a function @, defining a function

Y2(x, y), (see(5.3.6)), obeying the properties (5.3.7) and (5.3.8). Then we can
perform in the integral (5.3.5) a change of coordinates from y to Y;ie.

£0. (53.8)

s ¢}

Z(x)=(2ne)~ "2 j Z{y(Y,x)}

—

dy
Ia Y(x, y)/ay |y=y(Y,x).

Here, y(Y, x) is the unique solution of {5.3.6) for y. Further, if we assume that
the quantity

Z{y(Y, %) }/12Y [0y]y = yix.

x exp( — Y?/2)

(5.3.9)
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isasmoothly varying function of Y in a sufficiently large neighborhood around
Y =0,say Y< 10¢!/?, we can evaluate the integral {5.3.9) for small &. We find
up to order 0{c%)

Z() = Z{y(Y =0,x)}/10Y /0¥l yx=o0.5 (5.3.10)

This constitutes a linear functional equation in the unknown function Z{x); it
can be solved iteratively.

The positivity condition on Y2, (see(5.3.7)), has still another important
consequence, Setting x = F(y) in (5.3.6), we observe that ®(x) decreases along
the deterministic trajectory x, ., = F(x,); i.e.

QF() — )= —37*(x,»)<0. (5.3.11)
To putit differently, ®(x) is a Lyapunov function of the deterministic dynamics
Xn+1=F(x,). Now we shall establish an equation for ®(x) itself. In order for
(5.3.8) to hold true at each pair of points (x,y) at which ¢Y%(x, y)/dy =0,
Y2(x,y) must vanish too. First we obtain from (5.3.6) that for every y with

F'(y) #£0 (prime indicates differentiation) there exists an x-value such that
dY?%/8y vanishes; ie.

x=(®'W)/F)+ F(y). (5.3.12)

Now, however, in order that dY/dy # 0 holds, (see (5.3.8)), for all x and y,
Y2 (x, y) must vanish for those x given by (5.3.12). With (5.3.6) this yields the
desired equation for ®(x) itself

JOG)F O+ DG)— D (q’ )

F
Thisis a nonlinear functional differential equation for the potential function ®.
At first sight, this equation looks even more complicated than the linear
integral equation (5.3.3), which was our starting point. Equation (5.3.13),
however, can be related to a two-dimensional Hamiltonian system with

discrete time, which can be solved iteratively (P. Talkner, manuscript in
preparation).

+ F(y)) =0. (53.13)

5.31 Examples

Rather than developing the general theory for the solution of (5.3.13)} we shall
now discuss two examples. First, let us check the theory for a linear map with a
stable fixed point at x =0; i.c.

Example 1

F(x)=Ax, A} <1. ' (5.3.14)
From (5.3.13) we find _

(CD’(y))z+2A2(I)(y)—2A2d)(Ay+?%4(—y—)) =0. (5.3.15)
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Making the ansatz ®(y) = By* we find from (5.3.15) three values for B, namely

B,=3(1—A4%), By,=—342, B,=0. (5.3.16)
The solution B, yields with (5.3.6) a positive Y?2:
Y2(x, ) = (y — Ax)2. (5.3.17)

Equation (5.3.10) for Z(x) becomes
Z(x)=Z{4x),

which implies a constant; i.e. Z(x) = const. The solution B, yields via (5.3.6) a
negative Y?2(x, y) for some (x, y)-pairs. Thus, it must be excluded. The solution
B; implies the trivial solution ®(x)=0; therefore it must be excluded, too.
Hence, the invariant density for a linear map in the presence of Gaussian
noise reads '
2

Wix) = (1 —A

2ne

Actually, this is the exact solution for (5.3.3) and (5.3.14); it has been obtained
previously by other means (see, e.g, Haken and Wunderlin, 1982).

)m exp[— (1 — A2)x?/2¢]. (5.3.18)

Example 2
In our example we consider weakly nonlinear maps of the form
Fx)=x—aU'(x), a>0, (5.3.19)

where a is a small positive parameter, and U(x) is a smooth potential. In this
case (5.3.13) reads

HY'())* + (1 - aU" () ()

" , '(y)
—(1—aU (y))z‘l)(y— aU'G} +1—W@)

If we set ®(y) = a¢(y) we find in leading order in a the following a-independent
equation for the scaled potential ¢:

—He G+ U' D)) =0.
Again we disregard the trivial solution ¢’(y) = 0 and obtain up to an arbitrary

constant - .
o(y)=2U(y). (5.3.20)

From (5.3.6) and (5.3.20) we obtain a positive Y?(x, y), yielding to leading order
ina

Yx,p) =y —x—alU'(y)—2(UG) - U —x)]
At Y=0, we find

y(Y=0,x)=x —al’(x) + 0(a?).
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and
oY (y,
M — 1 + 0((12).
ay y=y{Y=0,x) \
Equation (5.3.10) thus gives a prefactor
Z(x)=Z(x—aU'(x))(1 + 0(a?)). (5.3.21)

Hence, up to corrections of order O(a?), Z({x) is a constant.
Combining (5.3.4), (5.3.20) and (5.3.21) the stationary probability at weak
noise (small g} thus reads (note that a/e may be large)

W(x) = N exp( — 2aU(x)/e). _ (5.3.22)

This result agrees with a previous treatment (Talkner et al., 1987) of the same
class of map functions specified in (5.3.19). Corrections to the leading order
result (5.3.22) will be discussed elsewhere (P. Talkner, manuscript in
preparation).

5.4 Circle map: lifetime of metastable states

In this section we shall elaborate on the noise-induced escape in a periodically

continted map (circle map) F(n + x)=n + F(x). Specifically we take the
climbing sine map

Xp41 =X, + asin(2nx,) + &'?&,, (5.4.1)
with £, being independent, Gaussian distributed noise (5.3.2). The strength of
the sine-force is denoted by a > 0, which will be assumed to be small, a <
(2n)~'. For £ =0, the deterministic map has unstable fixed points at x* =n,
and stable fixed points at xi=(2n+1)/2, n=0,+1,1+2,.... A trajectory
which starts in the interior of the interval I =[0,1] will be attracted by the
stable point x*=14, and never leaves the interval I. For arbitrarily small
g, however, the interval will be left eventually. A quantitative measure for the
occurrence of these rare events is the mean first passage time (MFPT), ie. the
mean number of steps after which a random walker starting at xe[0, 1]
reaches the exterior of [0, 1] for the first time. For a discrete dynamics the
MFPT obeys the inhomogeneous backward equation (Haken and Wunderlin,

1982; Talkner et al., 1987)
‘ -
tx)—1= f P(ylx)t(y)dy, xin [0,1]
1]

t(x)=0, x outside [0,1]. (54.2)
With (5.2.4) and (5.3.2) we find

t(x) —1=(2re)™ 12 Jl ty)exp[-(—F (x))*/2¢]1dy,
xel =[0,1]. ' (5.4.3)
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For physical reasons this equation has a unique, bounded solution for all
£> 0. Due to the symmetry of the corresponding potential U(x) = cos(2nx}/
27 in (5.4.1) {see (5.3.19)) around x,=1%, t(x) itself becomes a symmetric
function about the stable fixed point x, =1, and attains its maximal value
at x = x, =4%. Setting #(3) = T, it follows from (5.4.3) that

T—1=(2me)" 2 f: t(y)exp(—(y—1?/2¢e)dy

< T(2ne) 172 fi exp(— (y —3)?*/2e)dy. (5.4.4)
s}

Hence, the MFPT does obey the inequality

1 -1
t(X) <T< [erfc (W)] » (545)

with erfc (x) denoting the complementary error function. This estimate just
happens to agree with the approximation by Arecchi, Badii and Politi (1985).
In contrast to the case of Markovian Fokker—Planck processes we shall see
that t(x) possesses jumps at the exit boundaries x =0 and x = I*, If we start at
a boundary, say x = 0, the trajectory can return into the interior of the interval
[0, 1] with finite probability

1

p=(2me)™ 1 f exp (— y*/2¢)dy;
[}

For weak noise, £ « 1, p almost equals 1/2. This finite return probability p thus
implies a non-zero jump £(0) > 0. A more precise estimate for the jump can be
devised from (5.4.3); i.e

t0)— 1 =(2me)~ 112 Jl t{(y)exp(— y*/2e)dy, (5.4.6)
or °

t(=CT+1. (54.7)
In terms of the form function Ji(x)

t(x)=Th(x), h(x)<1, (5.4.8)

the constant C in (5.4.7) is given by
1
C=(2ne)~ 12 j h(y)exp(— y2/2e)dy < 1. (5.4.9)
Q
It then follows from the behavior of k(y) at weak noise (see (5.4.11)and (5.4.12)

* Similar jumps for the MFPT occur for continuous time processes driven by colored noise
(Hiinggi and Talkner, 1985) or white non-Gaussian noise sources (Knessl, Matkowsky, Schuss
and Tier, 1986; Troe, 1977; Weiss and Szabo, 1983).
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R
: _—' x
0 1
Figure 5.1. Qualitative sketch of the MFPT ¢(x) versus x. Illustrated are the

absorbing lines outside the domain of attraction, as well as the characteristic
boundary jumps at the exit points.

below) that the constant C is of the order O(c®); in other words the jump does
not approach zero as ¢ —+ 0. In Figure 5.1 we depict the qualitative behavior of
the MFPT t(x).

541 Weak noise analysis of the MFPT

Ata weak noise level the trajectory remains for most of the time near the stable
fixed point, and only rarely will it make a large excursion. Thus, the MFPT
attains a very large value inside the internal [0, 1] which deviates only little
from its maximal value; i.e. t(x) ~ T. Significant deviations from the constant T
occur only near the exit boundaries. Thus i(x) defined in (5.4.8) becomes a
boundary layer function which deviates from the value (x) =~ 1 only in a small
neighborhood near the boundaries. The width of the boundary layer function
will turn out to be of order O(g"/2).

We now insert the ansatz (5.4.8) into (5.4.3) to find

h(x)— T~ ' =(Q2nreg)~ 112 Jl h(yexp(—(y — F(x))*/25)dy. (5.4.10)
0

Because the integral kernel is sharply peaked around y = F(x) we can for x

near zero linearize F(x) around x = 0. In terms of the scaled boundary layer
function h(x)

h(x) = h((26)""2x) (5.4.11)

we thus obtain the following integral equation:

h(x)=n"112 r h(y)exp(—(y—Ai)Z)dy, (54.12)
where ¢
A=F(0)=1+42na. (5.4.13)
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In arriving at (5.4.12) we have neglected the small inhomogeneity, T!, and
approximated the upper limit of integration, £~ /2, by infinity. The solution of
(5.4.12) must be normalized to an asymptotic behavior, h(x) — 1 as x — . The
results of a numerical solution of A(x) for various A-values, (5.4.13), are shown
in Figure 5.2.

An analytic expression for the constant large lifetime T can be obtained as
follows: multiply (5.4.3) by the stationary probability W(x), and integrate over
all x in [0,1]. Then use the invariant property of W(x), (5.3.3), to obtain

jl t(x) Wix)dx — J‘l Wix)dx
0

[

= Jl t(Y)W(y)dy~(2ﬂ£)_1’2{Jo + Jw }dx
0 cw .

X {J. t(y)exp [ — (y — F(x))?*/2¢] dy}W(x). (5.4.14)
43

Utilizing (5.4.8) we thus find the central result

0 1 '
” dx W(x)j dyRG)exp(— (5 — F(x))2/26)
T-1 = 2(2mg)" 12 0

— ™

jl W(x)dx
0
(54.15)

Hereby we made use of the symmetry about x* =1, The result in (5.4.15)
is an exact expression for t(3) = T. At weak noise it can be simplified further:
the invariant probability, W(x}= N exp(—®(x)/e), is sharply peaked at
x*=1. For small nonlinearity, a, we can now use the results of Example 2
in Section 5.3; i.e. with (5.3.19), (5.3.22) and (5.4.1) we have

D(x) =%cos(2nx). (5.4.16)

With a steepest descent approximation the denominator of (5.4.15) thus

becomes
! 1/e\? al) -
W) dx~N-{ - — .
Jwacmns() (L)

The numerator of (5.4.15) simplifies for weak noise as well. The map F(x) can
be linearized around x* =0, and the invariant probability can be approxi-
mated around x® =0 by

W(x) ~ N exp ( - 1—%) exp (4nax?).
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h(x) | 1 T T T | T T T T I T T T T l T T T T [ T T T T {
1.0
08| ]
0.6} —
L ]
04 o _-
L .
: :. .”. / :
0 ;/ j/ i
2 b -
/ _
0 1 ] i 1 ; 1 L 1 1 l —_— 1 1 1 l L 1 1 1 | 1 I L 1 i
0 2 4 6 8 x
Figure 5.2. Numerical solution of the scaled boundary layer function h(x) for
the following A-values: —--~ A=109; A=1.07,
—--—A=105———A=1.03; A=10I1.

Collecting everything thus yields for (5.4.15)

1 2a
T= 2(1”2—]2(,41)eXp (E)’ (54 173.)
where (A =1+ 2na, see (5.4.13))
R(A) = j erfc(Ah(y)exp[(42 — 1)y*] dy. (5.4.17b)
4]

The quantity R{4) is an e-independent function which can be evaluated
numerically. For small positive @, one finds within numerical accuracy

R(4)= (Azn_ 1)”2 +0(4%2-1). (5.4.18)

Combining (5.4.18) with (5.4.17a) we find for the lifetime T at weak noise the
result

1 {2a
T=— — }. 4.
3, 5%P (ns) (54.19)

97




A M.

PETER TALKNER and PETER HANGGI

T is determined by an Arrhenius-like exponential leading part and a
prefactor, (4a)™'.

From the lifetime T one obtains for the rate, 4, at which there occurs an
escape from the metastable state at x = % across the boundary x =0 or x =1

A=iT 1=2% 44", (5.4.20)

The factor of (1) takes into account that, in the absence of a capture beyond the
unstable fixed points, x =0, 1, half of the number of random walkers would
return into the original interval [0, 1] (Matkowsky and Schuss, 1979). For the
individual rates of escape either to the left, 1™, or to the right, ™, respectively,
we have

At =4 =11=@AT)"1. (5.4.21)

These rate results (5.4.20) and (5.4.21) can also be derived by an alternative
method (Talkner et al., 1987) which utilizes ideas underlying Kramers’ flux
method (Hinggi, 1986; Kramers, 1940); i.e. one evaluates the rates as the ratio
of anonvanishing, stationary probability current across the exit points and the
population inside the interval

In our present situation of a periodically continued map function, the random
walker undergoes a noise-induced diffusive motion across periodic barriers
with a diffusion constant D

{x,—{x,>)?>—=2Dn as n—o0. (5.4.22)

D itselfis determined by the forward and backward hopping rates 1+, 17, and
the step size L=1; ie.

D=i2*+A7)*=(¢4dT)"". {(5.4.23)
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