Complete Process Semantics for Inhibitor Nets

Gabriel Juhds?, Robert Lorenz!, and Sebastian Mauser!

! Department of Applied Computer Science,

Catholic University of Eichstitt-Ingolstadt
{robert.lorenz, sebastian.mauser}@ku-eichstaett.de
? Faculty of Electrical Engineering and Information Technology
Slovak University of Technology, Bratislava, Slovakia
gabriel.juhas@stuba.sk

Abstract. In this paper we complete the semantical framework proposed in [13]
for process and causality semantics of Petri nets by an additional aim and develop
process and causality semantics of place/transition Petri nets with weighted in-
hibitor arcs (pti-nets) satisfying the semantical framework including this aim.
The aim was firstly mentioned in [8] and states that causality semantics deduced
from process nets should be complete w.r.t. step semantics in the sense that each
causality structure which is consistent with the step semantics corresponds to
some process net. We formulate this aim in terms of enabled causality structures.

While it is well known that process semantics of place/transition Petri nets
(p/t-nets) satisfy the additional aim, we show that the most general process se-
mantics of pti-nets proposed so far [13] does not and develop our process seman-
tics as an appropriate generalization.

1 Introduction

The study of concurrency as a phenomenon of system behavior attracted much attention
in recent years. There is an increasing number of distributed systems, multiprocessor
systems and communication networks, which are concurrent in their nature. An impor-
tant research field is the definition of non-sequential semantics of concurrent system
models to describe concurrency among events in system executions, where events are
considered concurrent if they can occur at the same time and in arbitrary order. Such
non-sequential semantics is usually deduced from the so called step semantics of a con-
current system model.

For the definition of step semantics it is generally stated which events can occur in a
certain state of the system at the same time (synchronously) and how the system state
is changed by their occurrence. Such events form a step (of events). Given an initial
state, from this information all sequences of steps which can occur from the initial
marking can easily be computed. The set of all possible such step sequences defines the
step semantics of a concurrent system model. A step sequence can be interpreted as a
possible observation of the systems behavior, where the event occurrences in one step
are observed at the same time and the event occurrences in different steps are observed
in the order given by the step sequence.

Non-sequential semantics are based on causal structures — we will also call them sce-
narios in the following — which allow to specify arbitrary concurrency relations among

185

events. Non-sequential semantics for this paper is a set of scenarios. A scenario al-
lows (generates) several different observations, since the occurrence of events which
are concurrent in the scenario can be observed synchronously or also in arbitrary order.
Therefore, a given scenario only represents behavior of the system if it is consistent
with the step semantics in the sense that all of its generated observations belong to
the step semantics of the system. Non-sequential semantics which consists only of sce-
narios satisfying this property we call sound w.r.t. step semantics. On the other hand,
all scenarios which are consistent with the step semantics represent behavior of the sys-
tem. Non-sequential semantics which contains all such scenarios we call complete w.r:t.
the step semantics. In other words, a complete non-sequential semantics includes each
causal structure satisfying that all observations generated by the causal structure are
possible observations of the system. Note here that if we add causality to a causal struc-
ture which is consistent with the step semantics the resulting causal structure is again
consistent with the step semantics (since it generates less observations). Thus, a com-
plete non-sequential semantics can be given by such causal structures consistent with
the step semantics satisfying that removing causality from the causal structure results
in a causal structure not consistent with the step semantics. Such causal structures ex-
press minimal causal dependencies among events. Altogether, complete non-sequential
semantics represent minimal causalities.

Therefore, an important aim of each semantical framework for the definition of a
non-sequential semantics of particular formalisms for concurrent systems is that a non-
sequential semantics is defined sound and complete w.r.t. the step semantics of the for-
malism. In this paper we consider this aim for Petri nets. These are one of the most
prominent formalisms for understanding the concurrency phenomenon on the theoreti-
cal as well as the conceptual level and for modeling of real concurrent systems in many
application areas [7]. The most important and well-known concept of non-sequential
semantics of Petri nets are process semantics based on occurrence nets [4,5]. From the
very beginning of Petri net theory processes were based on partial orders relating events
labeled by transitions (an event represents the occurrence of a transition): Any process
directly defines a respective partial order among events, called the associated run, in
which unordered events are considered to be concurrent. Since adding causality to a
run still leads to possible system behavior, a non-sequential semantics of a Petri net can
also be given as the set of sequentializations of runs (a sequentialization adds causality)
of the net. This set is also called causal semantics of the net, since it describes its causal
behavior. Note that in most cases partial orders are suitable to describe such behavior
but sometimes generalizations of partial orders are needed as appropriate causal struc-
tures. In the case of inhibitor nets under the so-called a-priori semantics [6], so called
stratified order structures (so-structures) represent the causal semantics.

Since the basic developments of Petri nets, more and more different Petri net classes
for various applications have been proposed. It turned out to be not easy to define
process semantics and related causality semantics in the form of runs for such net
classes. Therefore, in [13] (in the context of defining respective semantics for inhibitor
nets) a semantical framework aiming at a systematic presentation of process and causal-
ity semantics of different Petri net models was developed (see Figure 3 in Section 3):
Any process semantics should fulfill the reasonable aims stated by the framework.

186

These aims are reduced to several properties that have to be checked in a particular
practical setting. The most important of these aims is the soundness of process seman-
tics and causality semantics w.r.t. step semantics as described above. For Petri nets,
soundness means that each observation generated by a process or a run is a possible
step occurrence sequence of the Petri net. But this general framework — as well as many
other particular process definitions for special Petri net classes — does not regard the
described aim of completeness. In the Petri net context, process and causality seman-
tics are complete w.r.t. step semantics if each causality structure consistent with the step
semantics adds causality to or is equal to some run of the Petri net. Instead another aim
of the framework from [13] requires a kind of weak completeness, saying that each step
occurrence sequence should be generated by some process.

For place/transition nets (p/t-nets) a labeled partial order (LPO) which is consistent
with the step semantics is called enabled [17,18,8]. It was shown in [11] that an LPO is
enabled if and only if it is a sequentialization of a run corresponding to a process (see
also [17,18,8]). Thus, process and causality semantics of p/t-nets are sound and com-
plete w.r.t. step semantics. In particular, from the completeness we deduce that enabled
LPOs with minimal causal dependencies between events (thus maximal concurrency)
— so called minimal enabled LPOs — are generated by processes.! This is an essen-
tial property of p/t-net processes and justifies their success as non-sequential semantics
describing system behavior.

Therefore, the aim of completeness should also hold for process semantics of other
Petrinet classes. To this end, we included it in the semantical framework of [13]. We will
discuss the aim of completeness for process definitions of inhibitor nets. As stated in
[15], ”Petri nets with inhibitor arcs are intuitively the most direct approach to increasing
the modeling power of Petri nets”. Moreover inhibitor nets have been found appropriate
in various application areas [1,3]. Accordingly, for these net classes various authors
proposed process definitions regarding different interpretations of the occurrence rule
of inhibitor nets. In this paper we will focus on the most general class of pti-nets and
its process definition from [13].> We show that the general a-priori process definition
of [13] does not fulfill the aim of completeness and propose appropriate changes of the
process semantics. Thus we develop an alternative process definition which fulfills the
complete semantical framework of Figure 3 including the aim of completeness.

As mentioned in the context of the a-priori semantics, LPOs are not expressive
enough to describe the causal behavior of a pti-net. Instead, so-structures are used on
the causal level. Thus the aim of completeness can be formulated for this net class in the
following way: For any enabled so-structure there is a process with associated run in
the form of an so-structure such that the enabled so-structure sequentializes the run. As
in the case of LPOs, an so-structure is enabled if it is consistent with the step semantics
of pti-nets in the above described sense.

The paper is structured as follows: First the basic notions of pti-nets, processes of
pti-nets, so-structures (see [13]) and enabled so-structures are introduced (section 2).
Then in section 3 the semantical framework of [13] will be discussed in the context of

" In case of p/t-nets and their processes (runs), not each enabled LPO is a run and there are also
non-minimal runs, but each minimal enabled LPO is a minimal run.
2 We will briefly consider alternative process definitions for inhibitor nets in the conclusion.

187

introducing a new requirement — the aim of completeness. Subsequently in the main
part of the paper (section 4) we will show why the a-priori process semantics for pti-
nets in [13] does not fulfill the aim of completeness. Based on these considerations
we propose an alternative process semantics implementing the complete semantical
framework including the aim of completeness.

2 Preliminaries

In this section we recall the basic definitions of so-structures, pti-nets (equipped with the
a-priori semantics) and process nets of pti-nets, and finally define enabled so-structures.

Given a set X we will denote the set of all subsets of X by 2% and the set of all
multi-sets over X by NX. A set can always be viewed as a multi-set m with m < 1 and
correspondingly a multi-set m < 1 can always be viewed as a set. We further denote
the identity relation over X by idy, the reflexive, transitive closure of a binary relation
R over X by R*, the transitive closure of R by R and the composition of two binary
relations R, R’ over X by Ro R/.

Inhibitor nets are an extension of classical Petri nets enhanced with inhibitor arcs. In
their simplest version inhibitor arcs test whether a place is empty in the current mark-
ing (zero-testing) as an enabling condition for transitions. In the most general version
of pti-nets, inhibitor arcs test if a place contains at most a certain number of tokens
given by weights of the inhibitor arcs (instead of zero-testing). In pictures inhibitor arcs
are depicted by arcs with circles as arrowheads. Figure 1 shows a pti-net, where the
transitions ¢ and v test a place to be empty and transition w tests a place to hold at most
one token. As explained in [6,12,13], “earlier than” causality expressed by LPOs is not
enough to describe causal semantics of pti-nets w.r.t. the a-priori semantics. In Figure 1
this phenomenon is depicted: In the a-priori semantics the testing for absence of tokens
(through inhibitor arcs) precedes the execution of a transition. Thus ¢ cannot occur later
than u, because after the occurrence of u the place connected with ¢ by an inhibitor
arc (with weight O representing zero-testing) is marked. Consequently the occurrence
of ¢ is prohibited by this inhibitor arc. Therefore ¢ and u cannot occur concurrently
or sequentially in order v — ¢. But they still can occur synchronously or sequentially
in order ¢ — wu, because of the occurrence rule “testing before execution” (details on
the occurrence rule can be found later on in this section). This is exactly the behavior
described by 't not later than u”. After firing ¢ and u we reach the marking in which
every non-bottom and non-top place of the net NI contains one token. With the same
arguments as above the transitions v and w can occur in this marking synchronously
but not sequentially in any order. The relationship between v and w can consequently
be expressed by a symmetric ’not later than” relation between the respective events -
none may occur later than the other. The described causal behavior of VI is illustrated
through the run x(AON) on the right side of Figure 1. The solid arcs represent a (com-
mon) “earlier than” relation. Those events can only occur in the expressed order but not
synchronously or inversely. Dashed arcs depict the ’not later than” relation explained
above. Partial orders can only model the “earlier than” relation, but it is not possible to
describe relationships as in the example between ¢ and u as well as between v and w,
where synchronous occurrence is possible but concurrency is not existent.

188

Fig. 1. A pti-net NI (inhibitor arcs have circles as arrowheads), an a-process AON of NI and
the associated run x(AON)

Altogether there exist net classes including inhibitor nets where synchronous and
concurrent behavior has to be distinguished.® In [6] causal semantics based on so-
structures (like the run xK(AON)) consisting of a combination of an “earlier than” and a
“not later than” relation between events were proposed to cover such cases.

Before giving the definition of stratified order structures (so-structures), we recall
the notion of a directed graph. This is a pair (V, —), where V' is a finite set of nodes
and —C V x V is a binary relation over V called the set of arcs. Given a binary relation
—, we write a — b to denote (a,b) € —. Two nodes a,b € V are called independent
w.rt. — if a /4 band b 4 a. We denote the set of all pairs of nodes independent w.r.t.
— by co_, C V xV.A(strict) partial order is a directed graph po = (V, <), where <
is an irreflexive and transitive binary relation on V. If co. = idy then (V, <) is called
total. Given two partial orders po1 = (V, <1) and pos = (V, <), we say that po 5 is
a sequentialization (or extension) of po if <;C<o.

So-structures are, loosely speaking, combinations of two binary relations on a set
of events where one is a partial order representing an “earlier than” relation and the
other represents a not later than” relation. Thus, so-structures describe finer causalities
than partial orders. Formally, so-structures are relational structures satisfying certain
properties. A relational structure (rel-structure) is a triple S = (V, <, C), where V is
a set (of events),and < C V x V and C C V x V are binary relations on V. A rel-
structure S = (V, </, ') is said to be an extension (or sequentialization) of another
rel-structure S = (V, <, C), written S C §’,if < C <’ and C C .

Definition 1 (Stratified order structure). A rel-structure S = (V,<,C) is called
stratified order structure (so-structure) if the following conditions are satisfied for all
u,v,w e V:
(C1)u i£ u. (CHuCvCwAu#w=— ul w.
(C2Qlu<v=uCv. (CHhuCv<wVu<vLCw=— u<w.

In figures, < is graphically expressed by solid arcs and by dashed arcs. According to
(C2) a dashed arc is omitted if there is already a solid arc. Moreover, we omit arcs which

3 Further examples of such net classes are briefly mentioned in the conclusion.

189

can be deduced by (C3) and (C4). It is shown in [6] that (V, <) is a partial order (thus
a partial order can always be interpreted as an so-structure with — = <). Therefore,
so-structures are a generalization of partial orders. They turned out to be adequate to
model the causal relations between events of complex systems regarding sequential,
concurrent and synchronous behavior. In this context < represents the ordinary “earlier
than” relation (as in partial order based systems) while [models a “not later than”
relation (recall the example of Figure 1).

Similar to the notion of the transitive closure of a binary relation the {}-closure S® of
arel-structure S = (V. <, C) is defined by S¢ = (V, <50, Cg0) = (V, (RULC)* 0o <o
(RUD)*, (RUC)* \idy). A rel-structure S is called {-acyclic if <g¢ is irreflexive.
The {-closure S¢ of a rel-structure S is an so-structure if and only if S is {-acyclic
(for this and further results on the {>-closure see [6]).

For our purposes we will only consider labeled so-structures (LSOs). Nodes of an
LSO represent transition occurrences of a Petri net (constituted by node labels as in
Figure 1). Formally LSOs are so-structures S = (V, <,) together with a set of labels
T and a labeling function | : V — T'. A labeling function [is lifted to a subset Y of V'
in the following way: [(Y") is the multi-set over 1" given by [(Y)(t) = |[I71(t) N Y| for
every t € T'. We use the notations defined for so-structures also for LSOs.

We introduce an important subclass of so-structures similar to the subclass of total
orders in the case of partial orders.

Definition 2 (Total linear so-structure). An so-structure S = (V, <, C) is called total
linear if cox = (CZ\<) Uidy. The set of all total linear extensions (or linearizations)
of an so-structure S’ is denoted by lin(S").

Total linear so-structures are maximally sequentialized in the sense that no further <-
or - relations can be added maintaining the requirements of so-structures according to
Definition 1. Therefore the linearizations lin(S’) of an so-structure S’ are its maximal
extensions. Note that a total linear so-structure lin = (V| <,) represents a sequence
of (synchronous) steps 7; ... 7, (we also write lin = 71 ...7,). A (synchronous) step
is a set of cyclic C-ordered events (forming a so called -clique — such events can only
occur synchronously as explained in the context of Figure 1) and the sequential ordering
is caused by <-relations between these steps. That means 7 ... 7, and (V, <, C) are
related through V = (J;", 73, < = U, <jTiXTjand C = ((UZ 1 Ti X 1) \idy) U <.
For example, the linearizations of the run x(AON) in Figure 1 are the sequences of
(synchronous) steps tu{v,w} and {t,u}{v, w}. By abstracting from the nodes of a
total linear LSO lin = (V, <, C,) representing 7 . .. 7,,, every step (set) of events 7;
can be interpreted as a step (multi-set) [(7;) of transitions using the labeling function.
This is a general principle. That means we will interpret such a (synchronous) step
sequence 77 . . . T of events based on a total linear LSO lin = (V, <, C, () as a sequence
olin, = U(11) ... 1(7,,) of (synchronous) transition steps in a Petri net. Thus, we often do
not distinguish total linear LSOs and respective sequences of transition steps in a Petri
net. Lastly we need the notion of prefixes of so-structures. These are defined by subsets
of nodes which are downward closed w.r.t. the [-relation:

190

Definition 3 (Prefix). Let S = (V, <, C) be an so-structure and let V' C V be a set
of events such thatv' € V', v C v = u € V'. Then V' is called prefix w.rt. S. A
prefix V' of u € V '\ V' is a prefix w.rt. S satisfying (v < u = v € V').

The prefixes w.r.t. K(AON) in Figure 1 are the event sets {t}, {¢,u} and {¢,u, v, e}.
The only prefix of w is {¢,u}, since v and w may not occur in a prefix of w (w C v)
and v has to occur in a prefix of w (v < w). We have the following relation between
prefixes and linearizations of so-structures:

Lemma 1. Let V' be a prefix (of u € V) w.r.t. an so-structure S = (V,<,C), then
there exists lin € lin(S) such that V' is a prefix (of u) w.r.t. lin.

Proof. lin = 11...7, can be constructed as follows: 7, = {v € V' | W' € V' :
v Avf, e ={v eV \7m [VW € V' \m 9 A wv}andsoon,ie. we define
7; C V' as the set of nodes {v € V' \ (U;;ll i) | Vo' e V' \ (U;;ll ;) 1 v A v}
which are minimal w.r.t. the restriction of < onto the node set V" \ (U?;ll 7;), as long as
V' (U;;ll 7;) # 0. Then cqntinue with the same progedure on V\V'=V\ (U;:1 75),
ie. mip1 = {v € V\(Ujzym) | V' € V\ (Ujz,) : v A v} and so on. By
construction V' is a prefix (of u) w.r.t. lin. A straightforward computation also yields
lin € lin(S). O

A prefix V'’ w.r.t. a total linear so-structure lin = 71 . .. 7, always represents a primary
part of the respective (synchronous) step sequence, i.e. V' = | J j<i Ty for some 7 €
{0,...,n}. If V' is a prefix of u, then u € 7;41. -

Next we present the net class of pti-nets (p/t-nets with weighted inhibitor arcs). As
usual, a p/t-net is a triple N = (P, T, W), where P is a finite set of places, 7" is a finite
set of transitions and W : (P x T) U (1" x P) — N is the weight function representing
the flow relation. The pre- and post-multi-set of a transition ¢ € 1" are the multi-sets of
places given by *t(p) = W (p,t) and t* (p) = W (¢, p) for all p € P. This notation can
be extendedto U € N” by *U(p) = > ,.; U(t)*t(p) and U*® (p) = >,y Ut)E* (p)
forall p € P. Analogously we can define pre- and post-multi-sets of multi-sets of places
as multi-sets of transitions. Each m € N is called a marking of N and each U € N7
1s called a step of N. U 1is enabled to occur in m if and only if m > °U. In this case,
its occurrence leads to the marking m’ = m — *U + U*®.

Definition 4 (Pti-net). A marked pti-net is a quadruple N1 = (P,T, W, I, my), where
Und(NI) = (P,T,W) is a p/t-net (the underlying net of NI), mg the initial marking of
NIandI : P xT — NU {oo} is the inhibitor (weight) function (we assume oc > n
for every n € N). For a transition t the negative context ~t € (N U {oo})¥ is given
by ~t(p) = I(p,t) for all p € P. For a step of transitions U, ~U € (NU {oco})” is
givenby ~U(p) = min({occ}U{ "t(p) | t € U}). A place p with ~t(p) # oo is called
inhibitor place of t.

A step of transitions U is (synchronously) enabled to occur in a marking m if and
only if it is enabled to occur in the underlying p/t-net Und(N1) and in addition m <
~U. The occurrence of U leads to the marking m’ = m — *U + U®. This is denoted

U . . .
by m — m/. A finite sequence of steps of transitions o = Uy...U,, n € N, is

191

called a step (occurrence) sequence enabled in a marking m and leading to m,,, denoted

: . . U
by m —Z> my, if there exists a sequence of markings my, ..., my, such that m —>
U Uy
my —> ... —% my,. By EX(INI) we denote the set of all step sequences of a marked
pti-net N 1.

Note that /(p,t) = k € N implies that ¢ can only occur if p does not contain more than
k tokens (as explained in the context of the inhibitor arc connected with w in Figure 1);
k = 0 coincides with zero-testing. Accordingly /(p, t) = oc means that the occurrence
of ¢ 1s not restricted through the presence of tokens in p. Thus a p/t-net can always be
interpreted as a pti-net with / = oo. In graphic illustrations, inhibitor arcs are drawn
with circles as arrowheads and annotated with their weights (see Figure 1). Inhibitor
arcs with weight co are completely omitted and the inhibitor weight 0 is not shown
in diagrams. The definition of enabledness in Definition 4 reflects the considerations
about the a-priori testing explicated above: the inhibitor constraints are obeyed before
the step of transitions is executed. For an example, see Figure 1 and the explanations at
the beginning of this section.

Now we introduce the process semantics for pti-nets as presented in [13]. The prob-
lem is that the absence of tokens in a place — this is tested by inhibitor arcs — cannot
be directly represented in an occurrence net. This is solved by introducing local extra
conditions and read arcs — also called activator arcs — connected to these conditions.
These extra conditions are introduced ”on demand” to directly represent dependencies
of events caused by the presence of an inhibitor arc in the net. The conditions are artifi-
cial conditions without a reference to inhibitor weights or places of the net. They only
focus on the dependencies that result from inhibitor tests. Thus, activator arcs repre-
sent local information regarding the lack of tokens in a place. The process definition of
[13] is based on the usual notion of occurrence nets extended by activator arcs. These
are (labeled) acyclic nets with non-branching places (conditions) (since conflicts be-
tween transitions are resolved). By abstracting from the conditions one obtains an LSO
representing the causal relationships between the events. In the following definition B
represents the finite set of conditions, I/ the finite set of events, R the flow relation and
Act the set of activator arcs of the occurrence net.

Definition 5 (Activator occurrence net). A labeled activator occurrence net (ao-net)
is a five-tuple AON = (B, E, R, Act,) satisfying:

— B and FE are finite disjoint sets,

- RC(BxFE)U(E x B)and Act C B x F,

- |®b], [b°| < 1foreveryb € B,

the relational structure S(AON) = (E, <10c, Cioe: l|E) = (F, (RoR)|pxrU(Ro
Act), (Act™t o R) \ idg, 1| g) is {-acyclic,

lis a labeling for B U L.

The LSO generated by AON is k(AON) = (E, <aox, Caon, [|g) = S(AON)?.

The relations <, and ;,. represent the local information about causal relationships
between events. Figure 2 shows their construction rule. £K(AON) captures all (not only
local) causal relations between the events (see also Figure 1). Note that Definition 5 is
a conservative extension of common occurrence nets by read arcs.

192

iy U iy
O—O O—0 OO

Fig. 2. Generation of the orders <;,. and ;o in ao-nets

The initial marking MIN 5on of AON consists of all conditions without incoming
flow arcs (the minimal conditions w.r.t. R). The final marking MAX son of AON con-
sists of all conditions without outgoing flow arcs (the maximal conditions w.r.t. R).
There are two different notions of configurations and slices for ao-nets. A set of events
D C FE is a strong configuration of AON, if e € D and f 4;26 eimplies f € D. D is
called a weak configuration of AON, if e € D and f(=<joc UCjoc) e implies f € D. A
strong slice of AON is a maximal (w.r.t. set inclusion) set of conditions S C B which
are incomparable w.r.t. the relation R o <}, . o R, denoted by S € SSL(AON). A weak
slice of AON is a maximal (w.r.t. set inclusion) set of conditions S C B which are
incomparable w.r.t. the relation R o (<. U Cioc)* © R, denoted by S € WSL(AON).
In the example occurrence net from Figure 1 [WSL| = 4 and |SSL| = 12.

Every weak configuration is also a strong configuration and every weak slice is also
a strong slice. In [13] it is shown that the set of strong slices of AON equals the set of
all sets of conditions which are generated by firing the events of a strong configuration.
An analogous result holds for weak slices and weak configurations. SSL(AON) equals
the set of all sets of conditions reachable from the initial marking MINson in AON
and WSL(AON) equals the set of all sets of conditions from which the final marking
MAXon is reachable in AON (using the standard a-priori occurrence rule of elemen-
tary nets with read arcs [13]). By MAR(C') we denote the marking resulting from the
initial marking of a net by firing the multi-set of transitions corresponding to a (weak
or strong) configuration C.

Now we are prepared to define processes of pti-nets as in [13]. The mentioned artifi-
cial conditions are labeled by the special symbol A. They are introduced in situations,
when a transition ¢ € 7" tests a place in the pre- or post-multi-set of another transition
w € T for absence of tokens, i.e. when I(p,t) # oo and *w(p) + w® (p) # 0 for
some p € P. Such situations are abbreviated by w —o t. If w —o ¢ holds, then any
two occurrences f of w and e of ¢ are adjacent to a common A -condition representing
a causal dependency of f and e. That means there exists a condition b € B such that
(b,e) € Act and *f(b) + f* (b) # 0 (remember that *f, f* € BY are multi-sets over
B) — abbreviated by f —e e (see requirement 6. in Definition 6). Thus the axiomatic
process definition in [13] is as follows:

Definition 6 (Activator process). An activator process (a-process) of N1 is an ao-net
AON = (BW B, E, R, Act,) satisfying:

1. I(B)C Pand (E) C T.
2. The conditionsin B = {b | e € E : (b,e) € Act} are labelled by the special
symbol A.

193

“

mo = l(MINAON N B).

Foralle € E, *l(e) =1(*en B)andl(e)® =1(e* N B).

5. Forall b € B, there are unique g,h € E such that *b + b® = {g}, (b,h) € Act
and l(g) —o I(h).

6. Foralle,f € E, if l(f) —o l(e) then there is exactly one ¢ € B such that [—e ¢
through c. _

7. Foralle € E and S € SSL(AON), if *e U{b € B | (b,e) € Act} C S then

(SN B) < ~le).

R

The set of a-processes of NI (given by this axiomatic definition) is denoted by a(N1T).
For AON € «a(NI) the generated so-structure k(AON) is called a run (associated to
AON).

The occurrence net AON in Figure 1 is indeed an a-process: All A-labeled conditions
satisfy 5. All A-labeled conditions which are necessary according to 6. are drawn. Con-
dition 7. must be simply verified for the strong slices produced by strong configura-
tions, e.g. MAR(0)), MAR({t}), MAR({u}), MAR({u, t}) and so on. Thus, k(AON)
is a run.

The requirements 1., 3., 4. in Definition 6 represent common features of processes
well-known from p/t-nets. They ensure that a-processes constitute a conservative gen-
eralization of common p/t-net processes. That means, the set of processes of Und(N 1)
coincides with the set of processes resulting from (/N /) by omitting the A-labeled
conditions (omitting the A-conditions from an a-process AON leads to the so called un-
derlying process UAON of AON). If N[has no inhibitor arcs (thus N/ = Und(N1))
a-processes coincide with common processes. Thus, Definition 6 can also be used to de-
fine processes of p/t-nets. The properties 2. and 5. together with the rule 6. — describing
when A-conditions have to be inserted — constitute the structure of the A-conditions.
The requirement 7. expresses that in the strong slices of AON the inhibitor constraints
of the pti-net have to be properly reflected. That means, for events enabled in a certain
slice of AON the respective transitions are also enabled in the respective marking in the
pti-net N 1.

We finally formally define, when we consider an LSO S to be consistent with the step
semantics £X of a given pti-net (Definition 4). Such LSOs we call enabled (w.r.t. the
given pti-net). Intuitively it is clear what enabledness means: The transitions associated
to the events of an LSO can be executed in the net regarding all given concurrency
and dependency relations. For the formal definition the concurrency and dependency
relations described by S are reduced to the set of step sequences sequentializing S
(given by lin(S)). Such step sequences can be considered as observations of S, where
transition occurrences within a step are observed at the same time (synchronously), and
step occurrences are observed in the order given by the step sequence. If each such
observation of S is an enabled step occurrence sequences of the pti-net, S is consistent
with the step semantics.

Definition 7 (Enabled LSO). An LSO S = (V, <, C, 1) is enabled w.r.t. a marked pti-
net NI = (P,T,W, I, mg) if and only if every lin € lin(S) represents an enabled
(synchronous) step sequence oy, in EX(NI) (of NI). ELCS(NI) is the set of all
so-structures enabled w.r.t. a given marked pti-net N I.

194

With this definition one can easily check that the run x(AON) in Figure 1 is enabled
w.r.t. NI: The two linearizations of K(AON) represent the sequences of synchronous
steps tu{v, w} and {t, u}{v, w} which are both executable in N 1.

Definition 7 is consistent with and a proper generalization of the notion of enabled
LPOs in the context of p/t-nets: An LPO lpo = (V, <,{) with [: V' — T is enabled
w.r.t. a marked p/t-net (P,’T', W, my) if each step sequence which extends lpo is a step
occurrence sequence enabled in m. Since in LPOs concurrent and synchronous tran-
sition occurrences are not distinguished, here a step is considered as a set of events
labeled by transitions (transition occurrences) which are concurrent.

Beside the consistency of Definition 7 with the definition of enabled LPOs, there
are two general semantical arguments justifying this definition: First the set of total lin-
ear LSOs lin(S), which are tested for enabledness in the Petri net, represents S. This is
shown in [6] by the following generalization of Szpilrajns theorem [16] to so-structures:
S = V.Nw.<.0)etins) = Nv,<,0)etin(s) ©)- Second the set lin(S) can express ar-
bitrary concurrency relations between transition occurrences of a pti-net, since con-
currency equals the possibility of sequential occurrence in any order and synchronous
occurrence. Thus, considering more generally sequences of concurrent steps of syn-
chronous steps instead of simply sequences of synchronous steps does not lead to a
higher expressivity of concurrency. These two arguments justify the choice of synchro-
nous step sequences as the operational semantics (of executions) of pti-nets. Thus the
definition of enabled LSOs based on synchronous step sequences and total linear LSOs
constitutes the adequate causal semantics.

3 The Semantical Framework

In [13] a general framework for dealing with process semantics of Petri nets was pro-
posed (see Figure 3, left part). It aims at a support for a systematic development of
process and causality semantics for various Petri net classes using a common scheme.
In Figure 3 the abbreviations mean the following. PA represents a Petri net model
together with an operational occurrence rule. £X’ are executions such as step sequences
in accordance to the occurrence rule employed by PN . LAN represents the process se-
mantics given by labeled acyclic nets such as occurrence nets. LEX are labeled execu-
tions such as step sequences of nets in LAN . Finally, LCS are labeled causal structures
describing net behavior through causality relations between events. The arrows indicate
functions that define and relate the different semantical views. They represent the con-
sistency requirements for process semantics according to this framework. w yields the
set of executions (step sequences) providing the operational semantics (Definition 4
for pti-nets). a defines the axiomatic process definition (Definition 6). x associates so
called runs to the process definition (Definition 6); x(LAN) C LCS defines the set
of runs of a net. A\ represents the operational semantics of the process definition given
by labeled step sequences (defined through a slight modification of the step occurrence
rule of elementary nets with read arcs under the a-priori semantics [13]). Through ¢ a
labeled execution can be interpreted as an ordinary execution (defined as trivial mod-
ification omitting labels). € and ¢ relate a labeled causal structure with its generated

195

PN
f“%
Y LGS T
€
¢
ELCS
Fig. 3. Left: The semantical framework of [13]. Right: The left semantical framework extended

by the completeness-requirement that any enabled causal structure has to be a sequentialization
of a run; this is depicted through £L£CS and the adjacent arcs labeled by 6 and)

LES

’
1l

labeled executions (e respectively ¢ are given as linearizations respectively intersections
in the case of LSOs). Finally, 7 represents the operational process definition starting
from executions.

This framework defines reasonable requirements for process semantics. It provides
a schematic approach to ensure that process and causality semantics developed for a
special Petri net class are consistently defined. In [13] the framework is condensed to
five properties that have to be checked in each particular setting. Two of these properties
state that all mappings in Figure 3 are total and all mappings returning sets do not return
the empty set. Consistency is formulated there as the following separated properties:

Soundness: The process definition LAN should be sound w.r.t. the step semantics EX
in the sense that every run should be consistent with the step semantics.

Weak completeness: LAN should be weak complete w.r.t. EX in the sense that £X
should be reproducible from LAN .

Construction of processes from step sequences: A process in LAN should be con-
structible from each step sequence in £X” generated by the process (by 7).

Consistency of runs and processes (called Fitting in [13])): Processes and correspond-
ing runs should generate the same step sequences.

Runs are reconstructible from step sequences (called Representation in [13])): Runs
from LCS should be reconstructible from step sequences in EX by ¢ o €.

But an important feature of process semantics relating runs and step semantics is not
present in this framework. On the one hand, ¢ o€ ensures that each run is consistent with
the step semantics (soundness). On the other hand, there is no requirement guarantee-
ing the converse, that each causal structure which is consistent with the step semantics
is generated by a run through adding causality to it (completeness). For p/t-nets this is
fulfilled (as mentioned in the Introduction), since every enabled LPO is a sequentializa-
tion of arun [11]. Together with the reverse statement that runs are enabled (soundness),
completeness guarantees that there are runs and processes which express all valid causal
behavior of the net regarding as much concurrency as possible. That means, the minimal

196

causal dependencies in a net are reflected in the process semantics. To represent such
an aim of completeness, we add new relations to the semantical framework (Figure 3,
right part) by the introduction of enabled causal structures ££LCS. The arc labeled by
o represents the definition of enabled labeled causal structures ££CS from the opera-
tional semantics £X. The arc labeled with ¢ relates enabled labeled causal structures
(ELCS) and runs (k(LAN) C LCS) in the above sense by assigning a run with less
causality to each enabled labeled causal structure (for which such a run exists). For-
mally, a labeled causal structure is said to have less causality then a second one, if each
labeled execution in £X generated by the second one is also generated by the first one
(where the labeled executions generated by a labeled causal structure are given by e).
Thus, through ¢ o 6 we add an additional property to the process framework that we
call the aim of completeness.

Definition 8 (Aim of completeness). The mapping 6 assigns a set of step sequences
EX onto the set of causal structures ELCS enabled w.r.t. EX. The mapping 1 assigns
a run LCS with less causality to each enabled causal structure in ELCS for which such
a run exists.

The aim of completeness states that the mapping 1 is total, i.e. that each enabled
causal structure adds causality to some run.

The absence of the aim of completeness in the framework of [13] leads to process defin-
itions that do not have to represent minimal causal behavior. According to [13] a process
definition that equals the operational step semantics (processes are step sequences) is
a valid process semantics. But the set of step sequences is not a reasonable process
semantics and process definitions not producing the minimal causalities are not really
useful. The aim of completeness in our framework solves this problem. It implies that
minimal enabled labeled causal structures coincide with (minimal) runs: On the one
hand a minimal enabled labeled causal structure has to be a sequentializations of a run,
on the other hand runs have to be enabled — so runs cannot have less causalities than
minimal enabled labeled causal structures.

4 Process Semantics of Pti-nets

The definition of a-processes from section 2 meets all requirements of the left semanti-
cal framework in Figure 3 as shown in [13]. In the setting of pti-nets the additional aim
of completeness states that each enabled so-structure extends some run of the pti-net.
We show in this section that a-processes do not fulfill the aim of completeness. More-
over, we develop an alternative process definition preserving all the other requirements
of the semantical framework, such that the aim of completeness is fulfilled.

The basic intuition behind the fact that the a-processes from Definition 6 do not
generate minimal causalities is as follows: The definition uses constraints introduced
through artificial A-labeled conditions. They do not have counterparts on the pti-net
level, but rather represent dynamic causal relationships between events. Therefore, it
is possible that the definition of the A-conditions does not reflect the causalities in the
original pti-net such that too many constraints are introduced in the runs generated by

197

Ot O
Oﬂ‘

Fig.4. A pti-net NI, an a-process AON;.; of NI; and the associated run K(AON; 1) to-
gether with an ao-net AON; 2 that is a candidate to be a process of N/, and the associated
run K(AON/.2). This example from [13] shows that a-processes (mandatory) introduce unneces-
sary causalities.

a-processes. In this section we will step by step illustrate via examples why the aim of
completeness does not hold for a-processes and adapt their definition such that this aim
is finally fulfilled (all the other requirements will be preserved).

In the following we give two examples of LSOs enabled w.r.t. a marked pti-net,
which do not extend a run of the considered net. Each of these examples leads to a spe-
cific modification of Definition 6. We assume that events in these examples are labeled
by the identity mapping, i.e. u, t and z are events representing the occurrence of the
transitions [(u) = w, [(t) = t and I(z) = z. The place connected to z by an inhibitor
arc in each example we denote by p.

The first example gave the authors of [13] themselves. The a-process AON; ; in
Figure 4 shows that the technique of introducing A -labeled conditions according to De-
finition 6 in general generates too many constraints in the associated run K(AONj ;):
”One may easily verify that we can safely delete one of the activator arcs (but not both),
which leads to another a-process generating weaker constraints than AO N7 ;”. Indeed,
deleting for example the A-condition between ¢ and 2 the resulting ao-net AON1 5 is
a reasonable process. The other A-condition orders v and z in sequence © — z and ¢
can occur concurrently to this sequence. On the other hand, omitting the A-condition
between ¢t and 2z contradicts 6. of Definition 6 because there holds ¢ — 2. That means
AON; 5 is not an a-process (in particular the quoted statement is not exactly true). Thus,
the LSO x(AON; 5) is enabled but does not sequentialize a run (since it can only be
generated by an ao-net without a A-condition adjacent to ¢ and 2). An analogous ob-
servations holds symmetrically when deleting the A -condition between v and z instead
between ¢ and z. Consequently, the first modification of Definition 6 is to replace re-
quirement 6. by requirement 6.”. According to 6.”, the unique condition ¢ € B is only
possible instead of required. Then the problem discussed above is solved and the ao-net
AON; 5 is actually a process.

6. Foralle, f € F, if f —e e then there is exactly one ¢ € B such that f —e e through
c.

198

SEEE

OnoN, K(AONZ)

Fig.5. A pti-net NI, an ao-net AON> that is a candidate to be a process of N2, and the
associated run k(AON32). The ao-net models executable causalities that cannot be generated
with a-processes.

The net N I, of Figure 5 shows that the aim of completeness is still not fulfilled: If
u and ¢ occur causally ordered in sequence u — ¢ then z can fire concurrently to this
sequence because the place p never contains more than one token. It is even possible to
fire z concurrently to the synchronous step {u, t}. Consequently x(AONj), requiring
solely that u occurs “not later than” ¢, is enabled (check Definition 7). The only pos-
sibility to introduce such a causal dependency between u and ¢ on the process level is
through a A-condition between u and ¢. This is illustrated by the ao-net AON; (compare
Figure 2). But according to 5. of Definition 6, AONj5 is not an a-process, since [(u) o
[(t). Thus, a run which is extended by x(AON3) has no ordering between u, ¢ and z.
This is not possible because such a run is not enabled (the step sequence t — z — u
cannot be fired). That means x(AON;) does not sequentialize a run. Altogether, in 5.
an important possibility of generating causal dependencies from inhibitor arcs via A-
conditions is not present. Allowing A-conditions as in AONj solves this problem lead-
ing to a process having x(AONy3) as its associated run. This A-condition represents the
causal dependency of u and ¢ caused by the inhibitor arc (p, z). It reflects the inhibitor
testing of z and not of v or . A generalization of 5. allowing A-conditions also in sit-
uations as in this example is a next necessary step towards the aim of completeness.
Loosely speaking, we will allow to insert A-conditions additionally in the following
situation: If a transition, testing some place via an inhibitor arc, occurs concurrently to
transitions consuming and producing tokens in this place, these transition occurrences
must eventually be ordered via a A-condition. This A-conditions is intended to ensure
that tokens are consumed not later than produced in order to restrict the maximal num-
ber of tokens in this place according to the inhibitor weight. To this end, we replaces 5.
by the weaker requirement 5.”. It introduces a more general structural construction rule
of A-conditions using this intuition as follows:

5’ Forall b € B, there are unique g, h € F such that *b + b* = {g}, (b,h) € Act
and additionally I(g) — I(h) or *I(h) Ni(g)* N ~z# (D foraz € T.

But the modifications proposed so far still do not ensure that AONj is a process,
since AON> does not fulfill 7. of Definition 6: The conditions resulting from only firing
¢ in the initial marking establish a strong slice S and z fulfills *z U {b € B | (b, z) €
Act} C S. That means that using the standard occurrence rule of elementary nets with
read arcs under the a-priori semantics [13] .S constitutes a reachable marking in the
process net and z is enabled in this marking in the process net. But obviously in the pti-
net 2 is not enabled in the marking resulting from firing ¢. This problem can be resolved

199

as follows: In AONj, the event ¢ can fire in the initial marking, although the A -condition
generates the ordering ”u not later than ¢”. Thus, firing ¢ in the initial marking disables
u. This means that we could have omitted u from AONs which leads to a different
ao-net. Consequently, it is a proper assumption that ao-nets should model only such
behavior in which every event of the ao-net actually occurs. Under this assumption,
firing ¢ in the initial marking is not a valid behavior of the ao-net and therefore the
problematic marking S is not a marking of interest. The markings of interest are the
markings reachable from the minimal conditions (MIN Ao,) in the ao-net from which
we can reach the maximal conditions (MAX aon,). That means, all events of the ao-net
not fired yet can still be executed starting in the respective marking. These markings are
represented by the weak slices of the ao-net. Therefore, we replace 7. by 7.”, where SSL
(strong slices) are replaced by WSL (weak slices) reflecting the above assumption:

7° Foralle € E and S € WSL(AON), if *cU{b € B | (b,¢) € Act} C S then
1(SNB) < ~le).

This is a generalization of Definition 6 since WSL C SSL. From the intuitive point
of view the two alternative formulations 7. and 7.” focus on different aspects: While the
consideration of SSL. completely reflects the occurrence rule of elementary nets with
read arcs, the consideration of WSL additionally postulates that no event of the ao-net
may completely be disabled. This second assumption is also used in [13] for defining
the executions LEX through the mapping A in the semantical framework of Figure
3: X represents all step sequences of an a-process in LAN in which every event of
the process occurs. In this sense the change of the occurrence rule of ao-nets explained
above is an adaption to the idea of mandatory regarding all events used in the operational
semantics of ao-nets anyway. Therefore, this slightly altered occurrence rule of ao-nets
(that we will use) is completely consistent to the executions of ao-nets and thus even
fits better into the semantical framework.

Replacing 5., 6. and 7. by 5., 6. and 7.” in Definition 6 as described here ensures
that the ao-net AONj is a process. So the above considerations lead to the following
alternative process definition and thus a change of the mapping o in Figure 3 (denoted
by o instead of « in Definition 9):

Definition 9 (Complete activator process). A complete activator process (ca-process)
of NI is an ao-net AON = (BW B, E, R, Act,l) satisfying:

1. I(B)C Pand(E) C T.

2. The conditionsin B = {b | 3e € E : (b,e) € Act} are labelled by the special
symbol A.

3. mg = l(MINAON N B)

4. Foralle € E, *l(e) =1(®en B)andl(e)® =1(e* N B).

5. Forallb € B, there are unique g, h € E such that *b + b® = {g}, (b,h) € Act
and additionally [(g) —o l(h) or *l(h)NI(g)* N ~z# D foraz € T.

6. Foralle, f € E, if f —ee then there is exactly one c € B such that f —e e through
c.

7. Foralle € Eand S € WSL(AON), if *e U{b € B | (b,e) € Act} C S then
(SN B)< ~le).

200

The set of ca-processes of N I is denoted by o/ (NT). For AON € o (N1) the generated
so-structure k(AON) is called a run (associated to AON).

Note that the requirements 1.,3.,4. of Definition 6 are preserved in Definition 9 and thus
also ca-processes constitute a conservative generalization of common p/t-net processes.
Omitting the A-conditions from a ca-process AON leads to the so called underlying
process Und(AON) of AON, which is a process of Und(/N7). We will show now as
the main result of this paper that the ca-process definition actually fulfills the aim of
completeness. Due to lack of space, we only give a sketch of the proof (which has three
pages). The complete proof can be found in the technical report [10].

Theorem 1. For every enabled LSO S = (E,<,,1) of a pti-net N1 there exists a
ca-process AON € o/ (N1) whereas S is an extension of the run k(AON).

Proof (Sketch). The LPO lpog = (FE, <, 1) underlying S is enabled w.r.t. Und(NT).
Thus there exists a process UAON = (B, E, R',l") of Und(N) fulfilling that Ipog
sequentializes the run x(UAON). The basic idea is now to construct an ao-net AON
from UAON by adding all A-conditions to UAON which can be added according to
property 5.” while not producing causal dependencies contradicting S. Then this ao-net
AON = (BWB, E, R, Act, 1) is the sought ca-process. It is clear that AON satisfies 1. -
4.,5.” and 6.’. Thus, it only remains to show that AON meets con~dition 7. of Definition
9, i.e. that givene € F and S € WSL(AON) with *e U {b € B | (b,e) € Act} C S
it holds that I(S N B) < ~l(e). For this, we fix a weak configuration C' of AON with
S = MAR(C) and show that [(e) is executable in the pti-net after the occurrence of
the transitions corresponding to events in C'. To this end, we define a prefix Cp,. of
e in § containing as many events from C' as possible. Using that S is enabled, we
can deduce that [(e) is executable in the pti-net after the occurrence of the transitions
corresponding to events in C),..: By Lemma 1 there is lin € lin(S) such that C),. is a
prefix of e w.r.t. lin. Because S is enabled the total linear so-structure lin = 71 ...7,
represents an enabled synchronous step sequence of NI with C),.. = U;;ll 7; and
e € 7; (fori € {1...n}). This implies that e can occur after C),.. Finally C),. can
be transformed in several steps into the set C' and in each step it can be shown that the
transformation does not disable /(e). O

In the following we briefly explain that the other aims of the semantical framework are
still fulfilled by the new process definition:

Soundness: Using Proposition 5.19 of [13] it is easy to see that every run is enabled, i.e.
if AON € o/(N1), then ¢(e(k(AON))) C w(NT).

Consistency of runs and processes: Processes and runs generate the same step se-
quences, i.e. if AON € o/(NI), then e(k(AON)) = A(AON) (that means the rules for
constructing causal relationships between events from processes as shown in Figure 2
are correct). This follows since in proposition 5.19 of [13] this relation was shown for
arbitrary ao-nets (note here that the construction rules of the involved mappings A,
and € have not changed in contrast to [13], only the process definition constituting the
starting point of this relation is changed).

201

Weak completeness: Any execution of the pti-net (X' given by w(/N 1) is generated
from a ca-process, i.e. for any execution 0 € £X there exists an ca-process AON &
o/ (NT) witho € ¢(A(AON)) (w(NT) C UAONEQ,(NI) ?(A(AON))). This also holds
for ca-processes, because this is the relation generalized in comparison to a-processes
(the aim of completeness is a generalization of the weak completeness property).

Runs are reconstructible from step sequences: Each run is the intersection of all obser-
vations it generates, i.e. ¢ o € reconstructs a run. This relation holds because of the gen-
eralization of Szpilrajns theorem to so-structures described in the preliminaries (note
that in this context nothing is changed in contrast to [13]).

Construction of processes from step sequences: There is no obvious way to generalize
the constructive definition of 7 from [13] because especially the new requirement 6.” of
Definition 9 is problematic: Now it is no more mandatory but optional to introduce A-
conditions between certain transitions (the transition candidates can be identified with
5.7) and one has to check whether 7.” holds (7. holds by construction). There is the fol-
lowing constructive process definition that is based directly on the axiomatic definition:
Given an enabled step sequence o of NI a ca-processes can be generated as follows:

Construct a usual p/t-net process of Und(/N I') (based on an occurrence net) starting
from o.

Introduce arbitrary A -labeled conditions in accordance with 5.” and 6.” of Definition
9.

Check 7. of Definition 9: if it is fulfilled the construction is finished, else perform
the next step.

Introduce further A-labeled conditions in accordance with 5.” and 6.” of Definition
9, then go back to the previous step.

All processes constructible with this algorithm produce the set of ca-processes /(o)
generated by o. Moreover, the ca-processes generated from a step sequence o are the
ca-processes having o (provided with respective labels) as an execution. This algorithm
always terminates because there are only finite many possible A-labeled conditions in
accordance with 5.” and 6.” of Definition 9. Introducing all such possible A-conditions
obviously leads to a ca-process, 1.e. 7. is then fulfilled in step 3. More precisely, the
number of possible A-conditions is at most quadratic in the number of events which
means that the number of repetitions of the steps 3 and 4 of the algorithm is polynomial.
Thus, only checking 7.” in step 3 may be not efficient, since there exists an exponential
number of (weak) slices in the number of nodes. But current research results on a similar
topic summarized in [14] show that there exists an algorithm polynomial in time solving
this problem: In [14] we present an algorithm (based on flow theory) that can be used
to calculate step 3 in polynomial time (of degree O(n?)). Therefore, with this construc-
tion the requirements interrelated with the mapping 7 in the semantical framework of
Figure 3 are also fulfilled.

5 Conclusion

In this paper we have developed a general semantical framework that supports the defin-
ition of process semantics and respective causal semantics for arbitrary Petri net classes.

202

The framework is based on the semantical framework from [13] additionally requiring
that process semantics should be complete w.r.t. step semantics: Each causal structure
which is consistent to step semantics — such causal structures we call enabled — should
be generated from a process net. Since for the description of causal net behavior of pti-
nets under the a-priori semantics labeled so-structures are applied, the notion of enabled
so-structures has been introduced. We were able to show that the process definition for
pti-nets from [13] is not complete w.r.t. step semantics and to identify a structural gener-
alization of this process definition which is complete (while still satisfying all the other
requirements of the framework of [13]).

Possible further applications of the results of this paper are on the one hand the
usage of the semantical framework on further Petri net classes in order to check existing
process semantics and to evolve new process semantics. In the context of the paper, this
is in particular interesting for existing inhibitor net semantics [19,6,2,12,13,8]: While
most aims of [13] are checked for those process semantics, the new aim of completeness
is not (probably because this is the most complicated aim). Nevertheless a lot of these
process semantics seem to satisfy the aim of completeness (at least for the process
semantics of elementary nets with inhibitor arcs under the a-priori semantics as well
as the a-posteriori semantics there are formal proofs [9]). On the other hand the ca-
processes of this paper constitute a process definition for pti-nets under the a-priori
semantics expressing minimal causalities and can thus be useful e.g. for model checking
algorithms based on unfoldings.

References

1. Billington, J.: Protocol specification using p-graphs, a technique based on coloured petri nets.
In: Reisig, W., Rozenberg, G. [20] pp. 293-330

2. Busi, N., Pinna, G.M.: Process semantics for place/transition nets with inhibitor and read
arcs. Fundam. Inform. 40(2-3), 165-197 (1999)

3. Donatelli, S., Franceschinis, G.: Modelling and analysis of distributed software using gspns.
In: Reisig, W., Rozenberg, G. [20], pp. 438—476

4. Goltz, U., Reisig, W.: The non-sequential behaviour of petri nets. Information and Con-
trol 57(2/3), 125-147 (1983)

5. Goltz, U., Reisig, W.: Processes of place/transition-nets. In: Diaz, J. (ed.) Automata, Lan-
guages and Programming. LNCS, vol. 154, pp. 264-277. Springer, Heidelberg (1983)

6. Janicki, R., Koutny, M.: Semantics of inhibitor nets. Inf. Comput. 123(1), 1-16 (1995)

7. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. In:
Monographs in Theoretical Computer Science, vol. 1-3, Springer, Heidelberg (1992) (1994)
(1997)

8. Juhas, G.: Are these events independend? it depends! Habilitation (2005)

9. Juhas, G., Lorenz, R., Mauser, S.: Synchronous + concurrent + sequential = earlier than +
not later than. In: Proceedings of ACSD 2006, pp. 261-270 (2006)

10. Juhds, G., Lorenz, R., Mauser, S.: Complete process semantics of inhibitor net (2007) Tech-
nical report http://www.informatik.ku-eichstaett.de/mitarbeiter/lorenz/techreports/complete.
pdf

11. Kiehn, A.: On the interrelation between synchronized and non-synchronized behaviour of
petri nets. Elektronische Informationsverarbeitung und Kybernetik 24(1/2), 3—18 (1988)

12.

13.

14.

15.

16.

17.

18.

19.

20.

203

Kleijn, H.C.M., Koutny, M.: Process semantics of p/t-nets with inhibitor arcs. In: Nielsen,
M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 261-281. Springer, Heidelberg
(2000)

Kleijn, H.C.M., Koutny, M.: Process semantics of general inhibitor nets. Inf. Comput. 190(1),
18-69 (2004)

Lorenz, R., Bergenthum, R., Mauser, S.: Testing the executability of scenarios in general
inhibitor nets. In: Proceedings ACSD 2007 (2007)

Peterson, J.: Petri Net Theory and the Modeling of Systems. Prentice-Hall, Englewood Cliffs
(1981)

Szpilrajn, E.: Sur ’extension de 1’ordre partiel. Fundamenta Mathematicae 16, 386389
(1930)

Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets. LNCS, vol. 625.
Springer, Heidelberg (1992)

Vogler, W.: Partial words versus processes: a short comparison. In: Rozenberg, G. (ed.) Ad-
vances in Petri Nets: The DEMON Project. LNCS, vol. 609, pp. 292-303. Springer, Heidel-
berg (1992)

Vogler, W.: Partial order semantics and read arcs. In: Privara, 1., Ruzicka, P. (eds.): MFCS
1997. LNCS, vol. 1295, pp. 508-517. Springer, Heidelberg (1997)

Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets II: Applications, Advances in Petri
Nets, the volumes are based on the Advanced Course on Petri Nets, held in Dagstuhl, Sep-
tember 1996. LNCS, vol. 1492. Springer, Heidelberg (1998)

