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Abstract. In this paper we develop a theory for the region-based synthesis of
system models given as place/transition-nets with weighted inhibitor arcs (pti-
nets) from sets of scenarios describing the non-sequential behaviour. Scenarios
are modelled through labelled stratified order structures (LSOs) considering ~ear-
lier than” and not later than” relations between events [6,8] in such a way that
concurrency is truly represented.

The presented approach generalizes the theory of regions we developed in
[10] for the synthesis of place/transition-nets from sets of labelled partial orders
(LPOs) (which only model an "earlier than” relation between events). Thereupon
concrete synthesis algorithms can be developed.

1 Introduction

Synthesis of Petri nets from behavioural descriptions has been a successful line of re-
search since the 1990ies. There is a rich body of nontrivial theoretical results and there
are important applications in industry, in particular in hardware design [3], in control of
manufacturing systems [15] and recently also in workflow design [13,14].

The synthesis problem is the problem to construct, for a given behavioural speci-
fication, a Petri net of a considered Petri net class such that the behaviour of this net
coincides with the specified behaviour (if such a net exists). There exist theories for
the synthesis of place/transition-nets (p/t-nets) from behavioural models describing se-
quential semantics [1], step semantics [1] and partial order semantics [10]. There are
also sequential, respectively step semantics, based approaches for the synthesis of ele-
mentary nets [4,5] and extensions to elementary nets with inhibitor arcs [2,11,12].

In this paper we generalize the synthesis theory for partial order semantics from [10]
to p/t-nets with weighted inhibitor arcs (pti-nets). In [10] the behavioural specification
is given by a set of labelled partial orders (LPOs) — a so called partial language — in-
terpreted as a scenario-based description of the non-sequential behaviour of p/t-nets.
The aim in [10] is the characterization and synthesis of a p/t-net whose behaviour co-
incides with a given partial language. That means, the LPOs of the partial language
should exactly be the partially ordered executions of the searched p/t-net. Note hereby
that partial languages regard the most general concurrency relationships between events
(in contrast to sequential semantics considering no concurrency relations and step se-
mantics considering only restricted transitive concurrency relations).
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The synthesis of the p/t-net is based on the notion of regions: The p/t-net synthesized
from a partial language inherits its transitions from the event labels of the LPOs which
in turn describe the respective occurring actions. Through places causal dependencies
between transitions are added restricting the set of executions. The idea is to add all
places which do not restrict the set of executions too much in the sense that they do
not prohibit the executability of any LPO specified in the partial language. These places
are called feasible (w.r.t. the given partial language). Adding all feasible places yields
a p/t-net — the so called saturated feasible p/t-net — which has a minimal set of partially
ordered executions including the specified partial language (among all p/t-nets). Con-
sequently the saturated feasible p/t-net solves the synthesis problem or there exits no
solution of the problem. The general approach of a theory of regions is to determine
feasible places by so called regions of the behavioural model."! As the main result in
[10] we proposed a notion of regions for partial languages and showed that the set of
regions exactly defines the set of feasible places. In this paper we lift this approach to
the level of pti-nets. That means we generalize the notion of regions to a scenario-based
behavioural model of pti-nets and show that these regions exactly define feasible places.

In the following we introduce the scenario-based behavioural model of pti-nets con-
sidered in this paper. We will examine the so called a-priori semantics of pti-nets [8]
in which synchronicity of events is explicitly regarded.? Thus, as the model of non-
sequential behaviour we consider a generalization of LPOs — so called labelled strati-
fied order structures (labelled so-structures or LSOs) [6,8].% That means, given a pti-net,
scenarios are specified by LSOs with transition names as event labels, and a specified
scenario may be or may not be an execution of the net.

In an LPO ordered events are interpreted as causally dependent in the sense of an
“earlier than” relation. Unordered events are considered as causally independent respec-
tively concurrent. That means two events are concurrent, if they can occur in arbitrary
order as well as synchronously. Thus, synchronicity cannot be distinguished from con-
currency in the case of LPOs. A situation (1.) in which two events a and b can only
occur synchronously or (2.) can occur synchronously and in the order a — b, but not in
the order b — a, cannot be modelled with LPOs (obviously in both situations (1.) and
(2.) the events are not concurrent, but synchronous occurrence is possible). For these
situations LSOs include a not later than” relation between events: a “not later than” b
exactly describes (2.) and a symmetric "not later than” relation between events (a ’not
later than™ b and b “not later than” a) models (1.). Thus, an LSO is based on an LPO
(the "earlier than” relation is depicted with solid arcs in illustrations), to which a ”not
later than” relation (dashed arcs) between events is consistently added.

In [6] it was explained in detail that the ’earlier than” relation of LPOs is not enough
to describe executions of some Petri net classes such as inhibitor nets under the a-priori
semantics and that LSOs form the adequate behavioural model for these net classes. In
Figure 1 this phenomenon is illustrated: A pti-net and four LSOs describing executions

! For sequential or step semantics this theory lead to polynomial synthesis algorithms [1].

2 There are also alternative semantics of inhibitor nets. The a-posteriori semantics (which is less
general than the a-priori semantics from a causal point of view) is discussed in the conclusion.

3 Note that just like LPOs in the case of p/t-nets, LSOs can model arbitrary dependency relations
between transition occurrences of pti-nets, i.e. concurrency can be truly represented.



344

Fig. 1. A pti-net together with some executions

of the net are depicted. The pti-net has the only inhibitor arc (p, ¢) with inhibitor weight
two. This arc restricts the behaviour of the net in such a way that the transition c is only
enabled if additionally to the usual enabledness conditions of p/t-nets the place p con-
tains at most two tokens. That means, through weighted inhibitor arcs it is tested if the
number of tokens in a place does not exceed the inhibitor weight (as an enabledness con-
dition). In the a-priori semantics the respective testing precedes the actual occurrence
of the transition. That means the first LSO (from left) can be interpreted as an execution
of the pti-net in the following sense: In the initial marking c and two instances of a are
concurrently enabled (accordingly there exist no arcs modelling a causal dependency
between the respective nodes), because the double occurrence of a produces (at most)
two tokens in p. Therefore the occurrence of c is not prohibited (because the inhibitor
arc (p, c¢) has the weight two). Moreover, after any occurrence of a the transition b is
once enabled leading to the two solid earlier than” arcs between each a and b. The two
events labelled by b are concurrent. It is now important that after the double occurrence
of a and one occurrence of b the place p contains three tokens. Thereby c is disabled
by the inhibitor arc (p, ¢), i.e. b and ¢ cannot occur in the order b — ¢ (and therefore b
and c are also not concurrent). However, the two transitions can occur synchronously,
because in this situation the testing procedure (through the inhibitor arc (p, ¢)) precedes
the occurrence procedure according to the a-priori rule. Thus, it precedes the enhance-
ment of the number of tokens in p from two to three tokens through b. Furthermore,
the occurrence in order ¢ — b is obviously possible. Altogether, this behaviour of the
b-labelled events and c can be described as follows: ¢ cannot occur later than b or ab-
breviated ¢ "'not later than” b leading to dashed arcs between c and b in each case. Thus,
an execution of a pti-net is an LSO, whose events are labelled with transition names,
such that all transitions can occur in the given ordering and concurrency relations.

Technically executions will be defined as enabled LSOs. We propose a definition of
enabledness for LSOs generalizing consistently the notion of enabled LPOs. Then every
pti-net has assigned a set of executions (enabled LSOs). These describe the complete
non-sequential behaviour of the pti-net, i.e. all possible causality and concurrency re-
lationships between transition occurrences. Analogously to the notion of a partial lan-
guage as a set of (non-isomorphic) LPOs we denote a set of (non-isomorphic) LSOs
as a stratified language. Therefore, the non-sequential behaviour of a pti-net repre-
sented through the set of all executions of the net is a stratified language. The respective
(scenario-based) synthesis problem can be formulated as follows:

Given: A stratified language £ over a finite set of labels.
Searched: A pti-net whose set of executions coincides with the given language £, if
such a net exists.
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As mentioned, for the less general problem with a partial language as the given be-
havioural model and a p/t-net as the searched system model the problem was solved in
[10] applying the so called theory of regions. A region of a partial language defines a
place by determining the initial marking of that place and the weights on each flow arc
leading to and coming from a transition. A region of a stratified language additionally
has to determine the weights of each inhibitor arc leading to a transition. It turns out
that the notion of regions of stratified languages can be based on the notion of regions
of partial languages. More precisely, omitting the “’not later than” relation of all LSOs
of a stratified language yields a set of LPOs forming the partial language underlying
the given stratified language. To define regions of stratified languages we start with re-
gions of the underlying partial language ignoring inhibitor arcs and complement these
by ”possible inhibitor arcs” as they are called in [2]. In this aspect the approach is sim-
ilar as in [2,11,12] (where the authors started with classical regions of (step) transition
systems and complemented these by ”possible inhibitor arcs”). Roughly speaking, we
add a ”possible inhibitor arc” if in each possible intermediate marking state when exe-
cuting a specified LSO subsequent events are not prohibited by this inhibitor arc. The
identification of such inhibitor arcs is more complicated than for elementary nets and
(step) transition systems (considered in [2,11,12]). On the one hand we have to regard
weighted inhibitor arcs. On the other hand the marking states critical for the inhibitor
tests are not directly modelled in LSOs (in contrast to transition systems). Having solved
this problem, as the main theorem of this paper we show that the regions of a stratified
language exactly define all feasible pti-net places (w.r.t. this stratified language). Thus,
the regions of a stratified language define the saturated feasible pti-net. This net has a
minimal set of executions including the given stratified language (among all pti-nets)
and therefore solves the synthesis problem or is the best approximation if no solution
exists. This solves the synthesis problem satisfactory from the theoretical point of view
(for the considered setting). Practical algorithmic considerations are a topic of further
research (see also the conclusion for a brief discussion).

The paper is structured as follows: First the basic notions of pti-nets and enabled
LSOs are introduced (section 2). Then in section 3 the general fundamentals of the
region based synthesis are developed and in section 4 the theory of regions is concretely
evolved for the formulated synthesis problem.

2 Pti-nets

In this section we recall the basic definitions of pti-nets and introduce enabled stratified
order structures as executions of pti-nets (leading to a formal model of scenario-based
non-sequential semantics of pti-nets).

By N we denote the non-negative integers and by NT the non-negative integers ex-
cluding 0. We additionally denote w an infinite integer, i.e. n < w for n € N. Given
a finite set A, the identity relation on A is denoted by id 4 and the set of all multi-sets
over A is denoted by N/ (for m € N4 we write a € m if m(a) > 0).

A net is a triple (P, T, F'), where P is a set of places, T is a finite set of transitions,
satisfying PNT =0, and FF C (PUT) x (T'U P) is a flow relation. Let (P, T, F') be
anetand x € P U'T be an element. The preset ex is the set {y € PUT | (y,z) € F'},
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and the post-set ze isthe set {y € PUT | (x,y) € F}. Givenaset X C P U T, this
notation is extended by X = J . ex and Xe = [ _ ve.

A place/transition net (shortly p/t-net) is a quadruple (P, T, F, W), where (P, T, F')
isanetand W : F — NT is a weight function. We extend the weight function W to
pairs of net elements (z,y) € (P x T) U (T x P) with (z,y) € F by W(z,y) = 0.

Definition 1 (Pti-net). A pti-net N is a five-tuple (P,T, F, W, I), where (P, T, ;W)
isap/t-netand I : P x T'— NU {w} is the weighted inhibitor relation. If I (p, t) # w,
then (p,t) € P x T is called (weighted) inhibitor arc and p is an inhibitor place of .

A marking of apti-net N = (P, T, F, W, I) is a function m : P — N (a multi-set over
P) assigning a number of tokens to each place. A transition ¢ can only be executed if (in
addition to the well-known p/t-net occurrence rule) each p € P contains at most I (p, t)
tokens. In particular, if /(p,¢) = 0 then p must be empty. I (p,t) = w means that ¢ can
never be prevented from occurring by the presence of tokens in p. In diagrams, inhibitor
arcs have small circles as arrowheads. Just as normal arcs, inhibitor arcs are annotated
with their weights. Now however, the weight O is not shown. A marked pti-net is a pair
(N, mg), where N is a pti-net and m, is a marking of N called initial marking. Figure
1 shows a marked pti-net.

According to the a-priori semantics of pti-nets, the inhibitor test for enabledness of
a transition precedes the consumption and production of tokens in places. A multi-set
(a step) of transitions is (synchronously) enabled in a marking if in this marking each
transition in the step obeys the inhibitor constraints before the step is executed.

Definition 2 (Occurrence rule, a-priori semantics). Let N = (P, T, F,W.,I) be a
pti-net. A multi-set of transitions T (a step) is (synchronously) enabled to occur in a
marking m (w.r.t. the a-priori semantics) if m(p) > >, 7(t)W(p,t) and m(p) <
I(p,t) for each transition t € T (for every place p € P).

The occurrence of a step (of transitions) 7 leads to the new marking m’ defined by
m/(p) = m(p)—>_,c, T(t)(W (p, t)—W (t,p)) (forevery p € P). We write m —— m/
to denote that 7 is enabled to occur in m and that its occurrence leads to m’. A finite
sequence of steps 0 = 71 ...7,, n € Nis called a step occurrence sequence enabled
in a marking m and leading to m.,, denoted by m —— m,,, if there exists a sequence
of markings my, ..., m, such that m omy S m, A step occurrence
sequence can be understood as a possible single observation of the behaviour of a pti-
net, where the occurrences of transitions in one step are observed at the same time or
synchronously. We use the notions for (marked) pti-nets also for (marked) p/t-nets (a
p/t-net can be understood as a pti-net with an inhibitor relation which equals w).

We now introduce stratified order structures (so-structures) to model executions of
pti-nets as sketched in the introduction. We start with some basic notions preparative to
the definition of so-structures. A directed graph is a pair (V, —), where V is a finite set
of nodes and —C V' x V is a binary relation over V called the set of arcs. As usual,
given a binary relation —, we write @ — b to denote (a,b) €—. Twonodesa,b € V are
called independent w.r.t. the binary relation — if a 4 band b /4 a. We denote the set of
all pairs of nodes independent w.r.t. — by co _, C V x V. A partial order is a directed
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graph po = (V, <), where < is an irreflexive and transitive binary relation on V. If
co « = idy then (V, <) is called fotal. Given two partial orders po, = (V, <) and
po, = (V, <2), we say that po, is a sequentialization (or extension) of po, if <;C<s.

So-structures are, loosely speaking, combinations of two binary relations on a set of
nodes (interpreted as events), where one is a partial order representing an “earlier than”
relation and the other represents a "not later than” relation. Thus so-structures describe
finer causalities than partial orders. Formally, so-structures are relational-structures
(rel-structures) satisfying certain properties. A rel-structure is a triple S = (V, <, C),
where V' is a finite set (of events),and < C V x V and — C V x V are binary relations
on V. A rel-structure S = (V, <’, ') is said to be an extension (or sequentialization)
of another rel-structure S = (V, <, C), written S C &', if <C<"and CC’.

Definition 3 (Stratified order structure [6]). A rel-structure S = (V, <, C) is called
stratified order structure (so-structure) if the following conditions are satisfied for all
u,v,weV:

(C1)u i u. (CHuCvCwAu#w=— ul w.
(C2Qlu<v=—uCv. (CHuCv<wVu<vLCw=— u<w.

In figures < is graphically expressed by solid arcs and by dashed arcs. According
to (C2) a dashed arc is omitted if there is already a solid arc. Moreover, we omit arcs
which can be deduced by (C3) and (C4). It is shown in [6] that (V, <) is a partial
order. Therefore so-structures are a generalization of partial orders which turned out
to be adequate to model the causal relations between events of pti-nets under the a-
priori semantics. In this context < represents the ordinary “earlier than” relation (as for
p/t-nets) while — models a "not later than” relation (see Figure 1 for an example).

For our purposes we have to consider labelled so-structures (LSOs) where the nodes
of an so-structure represent transition occurrences of a pti-net (nodes are labelled by
transition names as in Figure 1). Formally these are so-structures S = (V, <,C) to-
gether with a set of labels 'I' and a labelling function | : V' — T'. The labelling function
[ is lifted to a subset Y of V in the following way: [(Y") is the multi-set over 1" given
by [(Y)(t) = |I7}(t) N Y| for every t € T. We will use the notations for so-structures
also for LSOs as well as for LPOs (since an LPO can be understood as an LSO with
<=[). We will consider LSOs only up to isomorphism. Two LSOs (V, <, ,[) and
(V' <" ', 1') are called isomorphic, if there is a bijective mapping ¢ : V' — V"’ such
that {(v) = '(¢(v)) forv € V,v < w < ¥(v) <" Y (w) and v C w < ¢Y(v) T’ P (w)
for v,w € V. By [S] we will denote the set of all LSOs isomorphic to S. The LSO S is
said to represent the isomorphism class [S].

As explained, for the modelling of system behaviour the two relations of an LSO
are interpreted as “earlier than” resp. ’not later than” relation between transition occur-
rences. If two transition occurrences are in “not later than” relation, that means they
can be observed (are allowed to be executed) synchronously or sequentially in one spe-
cific order. If two transitions are neither in “earlier than” relation nor in “not later than”
relation, they are concurrent and can be observed (are allowed to be executed) syn-
chronously or sequentially in any order. In this sense one LSO allows” many observa-
tions (step sequences). If all these observations are enabled step occurrence sequences,
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this LSO is called enabled. Formally the observations ”allowed” by an LSO are defined
through so called total linear extensions of the LSO:

Definition 4 (Total linear so-structures). Ler S = (V, <, ) be an so-structure, then
S is called total linear if co o = (CZ \ <) U idy. The set of all total linear extensions
(or linearizations) of an so-structure S is denoted by lin(S).

Total linear so-structures are maximally sequentialized in the sense that no further <-
or - relations can be added maintaining the requirements of so-structures according to
Definition 3 (adding a <- or - relation leads to causal relations of the formu = v < w).
Therefore the linearizations lin(S) of an so-structure S are its maximal extensions.

With this definition the set of step sequences (observations) “allowed” by an LSO
is defined as the set of step sequences extending the LSO (that means emerging from
adding causality to the LSO). A step sequence can be easily interpreted as a total linear
LSO: Each step corresponds to a set of events labelled by transitions (transition occur-
rences) which are in ’not later than” relation with each other representing synchronous
transition occurrences. Transition occurrences in different steps are ordered in appro-
priate “earlier than” relation. Formally, for a sequence of transition steps 0 = 71 ... 7,
define the total linear LSO S, = (V. <,C.!) underlying o by: V = |J;_, V; and
[V —= T with [(V;)(t) = 7;(t), <= UKj VixViand C= ((U, Vi x Vi)U <) \ idy.
(S, is total linear because co = J;_, Vi x V;). Altogether a step sequence o is
“allowed” by an LSO S if S, € [in(S). For example the step sequences respectively
observations “allowed” by the third LSO in Figure 1 can be characterized as follows:
To each of the step sequences cabb, (¢ + a)bb, acbb and a(b + ¢)b an a has to be added
either to one of the steps or representing a one-element step ordered in any position of
the sequence. Any such possibility has to be regarded leading to 29 different "allowed”
step sequences, e.g. including cabab, (¢ + 2a)bb, 2acbb or a(b + ¢)(a + b).

Note that for each total linear LSO S = (V, <, , ) there is a step sequence ¢ such
that S and S, are isomorphic. That means total linear LSOs can be interpreted as step
sequences and the “allowed” observations of an LSO § in this sense are exactly the step
sequences given by lin(S).

Now we define enabled LSOs w.r.t. a marked pti-net as LSOs whose ”allowed” ob-
servations are also “allowed” in the marked pti-net. More technically this means that
any step sequence extending the LSO is enabled in the marked pti-net. Such an enabled
LSO is called an execution of the marked pti-net.

Definition 5 (Enabled LSO). Let (N, mg), N = (P, T, F, W, I), be a marked pti-net.
An LSO S = (V. <,C,l)with | : V' — T is called enabled (to occur) w.r.t. (INV, mg)
(in the a-priori semantics) if the following statement holds: Each finite step sequence
o="Ty...T, With S, € lin(S) is an enabled step occurrence sequence of (N, mg).

In other words an LSO is enabled if and only if it is consistent with the step semantics.
This reflects the general idea for the modelling of non-sequential system behaviour that
scenarios which are consistent with the non-sequential occurrence rule represent exe-
cutions.* The presented definition is a proper generalization of the notion of enabled

* Another possibility for the definition of enabled LSOs is to consider sequences of concurrent
steps of synchronous steps instead of sequences of synchronous steps. But both notions are
equivalent, as discussed in [7].
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LPOs: An LPO Ipo = (V, <,l) with [ : V' — T is enabled to occur in a marking m
of a marked p/t-net (P, T, F, W, my) if each step sequence which extends (sequential-
izes) lpo is a step occurrence sequence enabled in mg. Since in LPOs concurrent and
synchronous transition occurrences are not distinguished, here a step is considered as a
set of events labelled by transitions (transition occurrences) which are concurrent.

Now it is possible to formally check that the LSOs from Figure 1 are indeed enabled
LSOs w.r.t. the shown pti-net. For example in the case of the third LSO one would have
to verify that the 29 step sequences “allowed” by this LSO (these are characterized
above) are enabled step sequences of the marked pti-net.

Having defined single executions of marked pti-nets the behavioural model in our
setting is defined as follows:

Definition 6 (Stratified language). Let I’ be a finite set. A subset L C {[S] | S is an
LSO with set of labels T'} is called stratified language over T (in the special case of
LPOs it is called partial language). The stratified language of executions L(N,mg) of
a marked pti-net (N, mg) is defined as the stratified language consisting of all (isomor-
phism classes of) executions of (N, my).

In the following we only consider stratified languages over sets 1" such thatevery t € T'
occurs as a label of some node of the stratified language (without explicitly mentioning
this). Moreover, since we regard LSOs only up to isomorphism, we assume for the rest
of the paper that a stratified language £ over a finite set of labels is given by a set L of
LSOs representing £ in the sense that [S] € £L <= 35’ € L : [S] = [S’]. Note that
the stratified language of executions of a marked pti-net (IV, mg) is sequentialization
closed. That means given an execution S € L(IN,mg) of (IN, mg), any sequentializa-
tion of S is also an execution of (N, my). This is a simple observation using Definition
5, since sequentializations have a smaller set of linearizations. Moreover, as in the LPO-
case, the stratified language of executions of (N, mg) is prefix closed, where prefixes
of so-structures are defined as subsets of nodes which are downward closed w.r.t. the
C-relation:

Definition 7 (Prefix). Let S = (V, <, C) be an so-structure and let V' C 'V be such
that' € V' uC v = u € V'.ThenS' = (V', < |vixv:, C |vixv/) is called prefix
of S. We say that the prefix S’ is defined by V. If additionally (u < v = u € V") for
somev € V\ V', then 8" is called prefix of v (w.r.t. S).

3 The Synthesis Problem

The behaviour of a pti-net is described by its stratified language of executions. There-
fore, for a stratified language L the question whether it represents the non-sequential
behaviour of a marked pti-net can be formulated. The answer to this question together
with a concrete characterization of such a net in the positive case are the central issues
of this paper. Technically this synthesis problem can be fixed as follows:

Given: A stratified language L over a finite set of labels.
Searched: A marked pti-net (N, mg) with L(N, mg) = L if such (N, my) exists.
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In the following we outline the synthesis principles of the so called theory of regions.
The concrete regions-based synthesis approach for the synthesis problem of pti-nets
from stratified languages is developed in the next section.

The transition set 1" of the searched marked pti-net (N, m) is obviously given
through the finite set of labels of the stratified language L (equally labelled nodes
of LSOs in L represent occurrences of the same transition). Considering the pti-net
N = (0, T,0,0,0) with this transition set and an empty set of places, obviously any
LSO in L is an execution of (N, (). This is clear because in N there are no causal
dependencies between the transitions. Therefore, every LSO with labels in 7" is en-
abled. On the other hand, there are also a lot of executions of (NN, () not specified in
L,i.e. L(N,D) 2 L. Since we are interested in L(N,mg) = L, we have to restrict the
behaviour of (N, mg) by introducing causal dependencies between transition occur-
rences. Such dependencies between transitions can (only) be realized by adding places
to (N, mg). Any place (with an initial marking) prohibits a certain set of LSOs from
being enabled. The central idea is to add all places to (N, myq) that do not prohibit LSOs
specified in L from being enabled. These places are called feasible places and lead to
the so called saturated feasible pti-net (N, myq). For this net of course L(N,my) still
includes L, i.e. the specified LSOs in L are enabled w.r.t. (N, mg) constructed in this
way, while it is still not clear if L(N, mo) = L. But now the marked pti-net (/N, m ) has
minimal (w.r.t. set inclusion) non-sequential behaviour L(N, my) including L, since all
places not prohibiting L are regarded. That means that (N, my) is the appropriate can-
didate for the solution of the synthesis problem. If (N, m) does not solve the problem
there exists no net solving the problem. This is ensured by construction because any
other net solving the synthesis problem in this case would contradict the minimality
property of (N, mg) (since it would have a smaller set of executions including L).

The construction of the saturated feasible pti-net involves the introduction of places.
Any place consists of an initial marking, a flow and an inhibitor relation to each transi-
tion and a flow relation from each transition. Consequently any place p can be defined
by the value of its initial marking mg(p) together with the flow and inhibitor weights
Wi(p,t), W(t,p) and I(p,t) for any transition ¢ € 1" as depicted on the left of Figure 2
(a flow weight of 0 respectively an inhibitor weight of w means that no such arc exists,
compare section 2). Any place p restricts the behaviour of a marked pti-net by prohibit-
ing a certain set of LSOs from being enabled. This set of LSOs prohibited by p does
only depend on this place p. That means it does not matter if we consider the one-place
net having p as its only place or a marked pti-net with a lot of places including p. More
precisely, an LSO is enabled w.r.t. a marked pti-net (N, mq), N = (P,T, F,W,I), if
and only if it is enabled w.r.t. every respective one-place net (for every p € P). Regard-
ing a given stratified language L the behavioural restriction of such a place p can be
feasible or non-feasible, i.e. too restrictive, in the following sense (F', W, I and m are
determined by the definition of p — an example of a feasible and a non-feasible place is
illustrated in Figure 2):

— Non-feasible places p w.r.t. L: There exists an LSO & € L, which is not enabled
w.r.t. the one-place pti-net (N, mg), N = ({p}, T, F,W,I),i.e. L £ L(N,my).

— Feasible places p w.r.t. L: Every LSO § € L is enabled w.r.t. the one-place pti-net
(N,mg), N = ({p},T,F,W,I),ie. L C L(N,my).
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Fig. 2. (i) The general structure of a place. (ii) A feasible place w.r.t. the stratified language from
Figure 1 (it coincides with the place p in Figure 1). (iii) A non-feasible place w.r.t. the stratified
language from Figure 1. The inhibitor arc to the transition ¢ (in contrast to (ii) with inhibitor
weight 1 instead of 2) is causally too restrictive. To verify this recall the considerations in the
context of Figure 1 in the Introduction.

Every net solving (positively) the synthesis problem necessarily does not contain a
non-feasible place. Therefore the crucial idea is to consider the marked pti-net (N, my),
N = (P, T, F,W,I), containing exactly all feasible places w.r.t. L. Considering the
above explanations this so called saturated feasible pti-net (N, mg) guarantees that any
LSO S € L is enabled w.r.t. (IN, mg) (called property (A) of the saturated feasible pti-
net in the following). Moreover, the saturated feasible pti-net (N, mg) can have more
executions than specified by L, but there is no marked pti-net with a smaller set of
executions including L (called property (B) of the saturated feasible pti-net in the fol-
lowing). This is true because any other net (N', my(,) whose set of executions L(N"', my)
includes L mandatory has less places than (/V, mg) since it may only contain feasible
places (it holds L(N', m{) 2 L(N,myg) if (N’, my) has less places than (N, my)).

Definition 8 (Saturated feasible pti-net). Ler L be a stratified language over the set
of labels T, then the marked pti-net (N, mg), N = (P, T, F, W, I), such that P is the
set of all places feasible w.r.t. L is called saturated feasible pti-net (w.r.t. L).

The saturated feasible pti-net (N, mg) w.r.t. L in general has infinitely many (feasible)
places. It fulfills (A) L € L(N,mg) and (B) L(N,mo) € L(N’, my) for each marked
pti-net (N',mg), N’ = (P, T, F', W' I'), fulfilling L C L(N’,mg) (thus fulfilling
(A)). For the solution of the synthesis problem it is enough to consider only the satu-
rated feasible pti-net, because either this net solves the synthesis problem or there is no
solution for the problem:

Theorem 1. Let L be a stratified language and (N, mq), N = (P,T, F, W, I), be the
saturated feasible pti-net w.r.t. L, then L(N, mqo) # L implies L(N',my) # L for
every marked pti-net (N',my), N' = (P, T, F', W', I').

Property (B) even tells us more than this theorem: In the case L(N,mg) # L, L(N, my)
1s the best upper approximation to L. That means the saturated feasible pti-net is the best
approximation to a system model with non-sequential behaviour given by L. among all
marked pti-nets allowing the behaviour specified by L.

Altogether, in order to solve the synthesis problem in our setting, we want to cal-
culate the saturated feasible pti-net. Therefore we are interested in a characterization
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of feasible places based on L that leads to an effective calculation method for feasible
places. In the p/t-net case such a characterization was developed for behavioural mod-
els w.r.t. sequential semantics and step semantics [1] with the notion of regions of the
behavioural model. These approaches were generalized in [10] to partial languages. In
the latter case it was shown that every region of a partial language L defines a place
such that

(1) Each place defined by a region of L is feasible w.r.t. L.
(2) Each place feasible w.r.t. L can be defined by a region of L.

In [10] we used a slightly different terminology as in this paper. In particular, we
did not use the notion of feasible places there but their characterization by the so called
token flow property. To prove the mentioned results we assumed that the set L of LPOs
representing the given partial language satisfies certain technical requirements. More
precisely, L. was assumed to be prefix and sequentialization closed, since such par-
tial languages are the only candidates as models of the non-sequential behaviour of a
marked p/t-net. Moreover, we required that LPOs which are in conflict (describe alter-
native executions) have disjoint node sets (for the exact formal definitions we refer to
[10]). We showed that such representations always exist. Since our approach is based
on the results in [10], we require analogous technical properties for the representation
L of the specified stratified language. As in the p/t-net case it is no restriction for the
synthesis problem to consider only such representations of prefix and sequentialization
closed stratified languages.

In examples we will always give such L by a set of minimal LSOs of L (minimal
LSOs of L are not an extension of some other LSO in L), such that each LSO in L is an
extension of some prefix of one of these minimal LSOs. Thus every set of LSOs which
are not extensions of each other can be interpreted as a representation of a stratified lan-
guage by minimal LSOs. For example the four LSOs in Figure 1 represent the stratified
language that exactly coincides with the stratified language of executions given by the
non-sequential behaviour of the pti-net on the left of Figure 1.

The main aim of this paper is the generalization of the region definition to our setting
such that (1) and (2) hold for stratified languages L w.r.t. pti-nets. With such a notion
of regions based on stratified languages, the saturated feasible pti-net w.r.t. a stratified
language L is directly defined by the set of all regions: Every region of L defines a
place of the saturated feasible pti-net. This is the basis for effective solution algorithms
for the synthesis problem considered in this paper: In the case of [1] as well as [10] (for
the approach of [10] we developed a respective algorithm for finite partial languages in
the recent paper [9]) algorithms for the calculation of finite representations of the set
of regions were deduced. In the conclusion we argue why this is also possible in our
setting. A detailed elaboration of this topic will be the issue of further publications.

4 Regions of Stratified Languages (w.r.t. Pti-nets)

In this section we extend the notion of regions known for partial languages and p/t-nets
to the setting of pti-nets. In [10] it is shown that the regions of a partial language in the
context of p/t-nets exactly correspond to the feasible places w.r.t. the partial language.
Our aim is to show the same for stratified languages and pti-nets.



353

Fix a marked pti-net (N, mg), N = (P,T,F,W,I),and an LSO § = (V, <,,1)
with [ : V' — T'. Assume that S is enabled to occur w.r.t. (N, my). Since the inhibitor
relation I of (N, mg) restricts the behaviour of the underlying p/t-net (P, T, F, W, mg),
S is then also enabled w.r.t. the p/t-net (N', mq) = (P, T, F, W, mg) underlying N. In
a p/t-net, transitions which can be executed synchronously can also be executed concur-
rently. Therefore, also the LPO Ipog = (V, <, ) (omitting the "not later than” relation)
underlying S is enabled w.r.t. the p/t-net (N’,mg). Altogether, for a set of enabled
LSOs w.r.t. (N, my), the LPOs underlying these LSOs are enabled w.r.t. the underlying
p/t-net (N’, mg). Considering a one place-net (N, myg) as in the definition of feasible
places, it becomes clear that we have the following necessary condition for a feasible
place p w.r.t. a stratified language L: The place p’ underlying p defined by omitting the
inhibitor relation from p is feasible w.r.t. the underlying partial language consisting of
the LPOs underlying the LSOs from L.

Lemma 1. Let L be a stratified language with transition labels T and let L' = {(V, <
) | (V,=<,C,1) € L} be the partial language underlying L. Then for any place p
feasible w.r.t. L (in the pti-net context) the place p’ underlying p, defined by W (p’,t) =
W(p,t),W(t,p') = W(t,p),I(p,t) = w for everyt € T and mo(p’) = mo(p), is
feasible w.r.t. L' (in the pti-net as well as the p/t-net context).

That means, any place p feasible w.r.t. L can be constructed from a place p’ which is fea-
sible w.r.t. the underlying partial language L’ and has inhibitor weights I(p’, t) = w (for
every transition ¢ € 1') by adding appropriate (respectively feasible) inhibitor weights
I(p,t). In particular, every place p feasible w.r.t. L fulfilling I (p, t) = w for every tran-
sition ¢ € T is feasible w.r.t. L’. On the other hand also the reverse holds: Every place
p’ feasible w.r.t. L’ is feasible w.r.t. L because the enabledness of the underlying LPOs
from L’ w.r.t. the one place net defined by p’ implies the enabledness of the original
LSOs from L w.r.t. this net (since they have more causal ordering). Consequently, the
sets of feasible places p with I(p,t) = w for every t € 1" coincide for L and L’. Since
L' is a partial language and the restriction I (p, t) = w corresponds to p/t-net places, we
can characterize these places using the theory of regions for partial languages and p/t-
nets from [10]: The p/t-net places feasible w.r.t. the partial language L’ are exactly the
places defined by regions of L. Thus, we can characterize the set of all feasible places p
w.r.t. L fulfilling I (p,t) = w for every ¢t € T with the regions theory of [10]. Moreover,
from Lemma 1 we know that any further place feasible w.r.t. L having inhibitor weights
not equal to w coincides with one of these feasible places p (fulfilling I (p,t) = w for
every t € T') except of the inhibitor weights.

As a consequence, the regions definition in our setting is based on the regions def-
inition for partial languages and p/t-nets. More precisely, we start with p/t-net regions
of the underlying partial language L’. This leads to the set of feasible places p fulfill-
ing I(p,t) = w forevery t € T as described above. Then we examine for each such
p which other inhibitor weight combinations /(p, t) (preserving the flow relation and
the initial marking) also lead to feasible places. For this we use that incrementing an
inhibitor weight alleviates the behavioural restriction of the respective inhibitor arc. In
particular the set of enabled step sequences and the set of executions increases. Conse-
quently incrementing the inhibitor weight of a feasible place obviously leads again to a
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feasible place (since the resulting places are causally less restrictive). That means, con-
sidering a feasible place p as above with I(p,t) = w for every ¢ € T, there is a minimal
value 7, (p, t) € NU{w} for the inhibitor weight to every single transition ¢ such that
the following holds: p is still feasible if we change I(p,t) so that I(p,t) > I (p,t)
and no more feasible if we change I(p,t) so that I(p,t) < ILnin(p,t) (preserving
I(p,t') = wforevery t’ € T\ {t}). Now it is important that we can combine these
different minimal values I,,;, (p, t) (for different ¢ € T') to one global lower bound in
the following sense: Preserving the flow relations and the initial marking, p is feasible
if I(p,t) > In(p,t) forevery t € T and p is non-feasible if I(p,t) < Lynin(p,t) for
onet € 'I'. This combination to one global bound is possible because, given a fixed flow
relation, the inhibitor arcs have no causal interrelation between each other. That means
it is possible to check the enabledness of an LSO by testing the enabledness w.r.t. the
inhibitor arcs one by one. Altogether, the set of feasible places w.r.t. a stratified lan-
guage L can be defined by the set of p/t-net places (places p with I(p,t) = w for every
t € T) feasible w.r.t. L together with a global lower bound for the inhibitor weights of
each such p/t-net place. Since the feasible p/t-net places p can be characterized by the
regions definition for partial languages and p/t-nets, we first recall the regions defini-
tion of [10]. Based on this regions definition we then identify the lower inhibitor weight
bounds 7, (p, t) for the respective places p which then leads to the set of all feasible
places w.r.t. L. This generalizes the definition of regions from [10].

The idea of defining regions for partial languages in [10] is based on the notion of
token flow functions: If two events v and v’ are ordered in an LPO Ipo = (V, <,1) —
that means v < v’ — this specifies that the corresponding transitions /(v) and [(v") are
causally dependent in the sense of an “earlier than” relation. In a p/t-net such a causal
dependency arises exactly if the occurrence of the transition /(v) produces tokens in
a place, which are consumed by the occurrence of the other transition /(v’). Such a
place will be defined by a token flow function x: Assign to every edge (v,v") of Ipo
a natural number x(v,v’) representing the number of tokens which are produced by
the occurrence of l(v) and consumed by the occurrence of 1(v') in the place to be
defined. Thus, a token flow function z describes the flow weights of a respective place.
Additionally the initial and final marking of the place have to be regarded. Therefore,
we extend an LPO lpo by an initial and final event, representing transitions producing
the initial marking of the place to be defined and consuming the final marking of the
place to be defined (after the occurrence of 1po). This leads to the x-extension lpo* =
(V*, <*, 1) of Ipo defined by V* = (VU{vg, Umax }), V0s Umax & V, <*=< U({vp} x
V) UV x {vmax}) U {(v0, vmax)}, I*(v0), 1" (Umax) & L(V'), I*(v0) # I*(Umax) and
I*|v = 1 (vg is the initial event of Ipo and vy, the final event of 1po). By defining
the token flow function on the edges of Ipo™ (instead of Ipo) also the initial and final
marking can be specified.

The natural numbers assigned to the arcs of Ipo™ by z represent the consumed and
produced tokens of the involved transitions in the respective place (whereas the tokens
produced by the initial event are interpreted as the initial marking and the tokens con-
sumed by the final event as the final marking). Since the consumed and produced tokens
of a transition in a fixed place is given by the flow weights IV, we can define the flow
weights of the place by x. Clearly, a necessary condition for the definition of W is
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that equally (with the same transition) labelled events should produce and consume the
same overall number of tokens w.r.t. . The number of tokens produced by an event v
of an LPO Ipo* = (V*, <*,1*) is called the outtoken flow of v (w.r.t. Ipo and x) de-
fined by Outy,o (v, z) = >, ., #(v,v"). The outtoken flow Outy,, (vo. x), which by
construction represents the initial marking of the place to be defined by z, is called the
initial token flow of lpo (w.r.t. x). The number of tokens consumed by an event v of an
LPO Ipo™ = (V*, <*,1*) is called the intoken flow of v (w.rt. Ipo and x) defined by
Inlpo (U> ZL’) - Zv’<*v fL’('U/, ’U).

For the definition of the token flow function we not only have to regard one LPO, but
a partial language L’ over T". Thus we have to consider token flow functions on a set of
LPOs. The central property that equally labelled events should produce and consume
the same number of tokens has to be extended spanning all LPOs of the given partial
language in this situation. Furthermore, since the initial marking has to be unique, the
number of tokens produced by the initial event has to coincide for all regarded LPOs.

Formally we consider a x-extension Ipo™ = (V*, <* [*) of each Ipo € L’ such
that (i) for each two LPOs (V, < 1), (V', <", 1) € L' I*(vo) = (I')*(vo) and (ii)
I (Vmax) # (') (vmax) (& T) for each two distinct (V, <, 1), (V’,<',l") € L. Then
the set (L')* = {lpo” | Ipo € L'} is called x-extension of L'. We denote E /) =
U <v 1oy <" as the set of edges of all x-extensions of LPOs in L’. A token
flow function z of L' is a function assigning natural numbers to every edge in F(,«,
such that the tokens produced and consumed by equally labelled events coincide.

Definition 9 (Token flow function of a partial language). Let L' be a partial lan-
guage, then a function x : E (1« — N is called token flow function of L', if for all
Ipo = (V,<,1),1po" = (V/, <", I") € (I')* and for all v € V*,v' € V'* there holds:
l(v) =U'(v") = (Injpo(v, ) = Inppe (V/, ) A Outipe (v, 2) = Outyper (V) 2)).

Since we required that the initial events of all LPOs in (L)* have the same label, De-
finition 9 especially implies that the initial token flows of all LPOs in L’ are equal. As
explained, the coincidence of the intoken and outtoken flow (respectively the consumed
and produced tokens) w.r.t.  of equally labelled events allows to define the corre-
sponding place p.. to x (in the net with transitions given by the node labels 7" of L’) by
W(l(v),pz) = Outipo(v, ), W(ps, (v)) = Inpe(v, ) and mo(p) = Outipe(vo, )
for every Ipo € L’ and every node v of Ipo. That means the flow weights of p, are
given by the intoken and outtoken flow of the LPO-events and the initial marking by
the initial token flow of the LPOs. In [10] the regions of a partial language L’ are ex-
actly the token flow functions of L’ as defined here. The respective feasible places are
the corresponding places.

We are now interested in token flow functions of the partial language L’ underlying
the given stratified language L. Thereto we formally define a token flow function of a
stratified language as a token flow function of its underlying partial language:

Definition 10 (Token flow function of stratified languages). Let L be a stratified lan-
guage. Then a token flow function of L is a token flow function of the partial language
L'={(V,=<,0)| (V,<,C,l) € L} underlying L.

In illustrations we annotate each <-arc of an LSO in L with the value assigned to the
respective arc in L’ by a token flow function z (the value 0 is not shown). The non-
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zero values of x assigned to edges starting from vy respectively ending in vy, are
depicted with small arrows without an initial node respectively without a final node.
We only consider minimal LSOs of L because the values of a token flow function on
the edges of an LSO already constitute the values on edges of prefixes and extensions
(as in the LPO-case). Figure 3 sketches an example token flow function of the stratified
language from Figure 1 and the respective corresponding place p (with I(p,t) = w for
all ¢ € T'). The intoken and outtoken flow of equally labelled nodes coincide (e.g. all
b-labelled nodes have intoken flow 1 and outtoken flow 2 and the initial token flow of
all underlying LPOs is 0).

Fig.3. A token flow function of the stratified language from Figure 1 and the corresponding
(feasible) place (with inhibitor weights w)

According to the above explanations, the places p corresponding to token flow func-
tions x of a stratified language L now exactly define all feasible places w.r.t. L with
inhibitor weights w. In particular, the place p in Figure 3 is feasible w.r.t. the given
stratified language. Now it remains to identify the lower bounds 1,,,;,, (p. t) (t € T) for
each of these feasible places p (such that I (p, t) > I, (p. t) forevery ¢t € T still leads
to a feasible place p but I(p,t) < Iuin(p,t) for some ¢ € T leads to a non-feasible
place p). These minimal possible inhibitor weights I,,,;,, (p, t) have to be detected with
the token flow function x of L. The strategy is as follows: Considering a node v of an
LSO § = (V,<,,l) € L we calculate the minimal inhibitor weight Inh(z, v) from
p to [(v) (where p corresponds to x), such that the occurrence of the transition /(v)
according to the causal dependencies given for v in S is possible. That means, the event
v in the context of the scenario given by S must not be prohibited by an inhibitor arc
from p to [(v) in the net if I(p,{(v)) > Inh(x,v), but it is prohibited by such an arc
if I(p,l(v)) < Inh(z,v). Choosing the inhibitor weight I(p,[(v)) too small leads to
an intermediate marking state of the scenario S in which a too large number of tokens
in p prohibits the occurrence of v. Consequently, in order to determine the minimal in-
hibitor weight Inh(x, v) not prohibiting v — called inhibitor value of v (w.r.t. z) in the
following — it is necessary to calculate the numbers of tokens in p for all intermediate
states in which v can occur according to S. Such states are exactly defined by prefixes
of v. The maximum of all these possible numbers of tokens in p in such a prefix-state
then defines the inhibitor value Inh(z, v) of v, because according to the scenario S the
transition /(v) should be enabled in each of these token allocations of p. The number of
tokens in p in one such prefix-state can be calculated by the token flow function x. The
respective number of tokens is given by the number of tokens in p after the execution of
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the prefix in the corresponding one-place net, called the final marking of the prefix w.r.t.
x. By construction, the values of = on <*-edges between events of the prefix correspond
to tokens which are produced and consumed in p by events in this prefix. On the other
hand, the values of x on <*-edges from events of the prefix to events subsequent to the
prefix correspond to tokens which are produced by events in the prefix and remain in
p after the execution of the prefix. Consequently, the final marking of a prefix can be
determined by adding the values of x on <*-edges leaving the prefix.

Definition 11 (Final marking of prefixes). Let L be a stratified language and x be a
token flow function of L. Let S’ = (V', <", ", l") be a prefix of S = (V,<,C,l) € L
and vy be the initial event of Ipos = (V*, <*,1*). The final marking of &’ (w.r.t. ) is
denoted and defined by ms:(x) = 3, cvi pav: yew T(U,0) + 32,0y (00, ).

The final marking of a prefix w.r.t. x can equivalently be calculated by firing the tran-
sitions corresponding to the prefix in the one-place net with the place p defined by
x (i.e. it is independent from the concrete token flow distribution x and only depen-
dent on p): ms/(2) = 3, cvr vgvr uw T(W,0) + 30y (V0,0) = 3 cviifug)
QO pcrw (v, w) =3 iy T(w,v)) = Out(ve, ) — > oy (In(v, 7) — Out(v, z)) =
mo(p) — D pey (W (p.l(v)) — W(l(v),p)) (the first equation follows since the values
on edges within V" cancel each other out).

Summarizing, the calculation of Inh(z, v) is achieved by identifying all prefixes of
v and calculating the final marking w.r.t.  for each such prefix. The maximum over
all these numbers gives Inh(z, v); the inhibitor value Inh(z, v) specifies how small the
inhibitor weight /(p, [(v)) may minimally be without prohibiting the event v.

Definition 12 (Inhibitor value). Let L be a stratified language, x be a token flow func-
tion of L and v be an event of an LSO S € L. The inhibitor value Inh(z, v) of v w.rt.
is defined by Inh(x,v) = max{mgs/(z) | S is prefix of v w.r.t. S}.

Figure 4 shows the token flow function from Figure 3 supplemented with the inhibitor
values of all nodes (depicted in circles attached to the nodes). For example, consider
the c-labelled node of the first LSO (from left). This node has four prefixes: the empty
prefix with final marking 0, two prefixes consisting of one a-labelled node each with
final marking 1 and a prefix with both a-labelled nodes and final marking 2.

Having determined Inh(z,v) for all nodes v of all LSOs in L one can specify the
minimal inhibitor weight I (p, t) from p to some transition ¢ such that no ¢-labelled event

Fig.4. The token flow function from Figure 3 supplemented with the inhibitor values of all
LSO nodes and the feasible place corresponding to the respective region with minimal inhibitor
weights
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is prohibited by the supremum of all Inh(z, v) for events v labelled by ¢. This leads to
Imin(p, 1) because the fact that no such ¢-labelled event is prohibited by the inhibitor
weight I (p, t) exactly describes that the place p is still feasible with this inhibitor weight

I(p,t) (instead of w): Lnin (p,t) = sup({Inh(x,v) | v € Vi, l(v) =t} U{0}), where
Vi =Uw,<,ciyer V is the set of all nodes of L. That means we calculate the inhibitor
values of all nodes (over all LSOs of L) w.r.t. a given token flow function z using
the method described above. The suprema of all inhibitor values of equally labelled
nodes lead to the minimal inhibitor weights defining a feasible place w.r.t. L which
corresponds to x. These minimal inhibitor weights I(p,t) = I, (p,t) represent the
strongest behavioural restriction through inhibitor arcs for the place p defined by x
guaranteeing the feasible-property. Thus regions of stratified languages w.r.t. pti-nets
are defined by token flow functions z (defining p/t-net places) attached with inhibitor
weight mappings I : 7' — N U {w} determining an inhibitor weight to every transition
t € T which exceeds I, (p, t):

Definition 13 (Region). A region of a stratified language L with labels T’ w.r.t. pti-nets
is a tuple r = (x,I) where x is a token flow function of L and 1 : T' — NU{w} is a map-
ping assigning inhibitor weights to all transitions satisfying I(t) > sup({Inh(z,v) |
v € Vy,U(v) = £} U {0}).

The place p, (in a net with transition set 1) corresponding to a region r = (x, I) of L
is defined by the flow weights and the initial marking of the place p,. corresponding to
the token flow function x (i.e. W (L(v). p,) = Outipe(v, ), W(pr, l(v)) = Injpe (v, z)
and mo(p,) = Outipe(vo, ) for LPOs lpo underlying LSOs in L) and the inhibitor
weights I (p,,t) = 1(t) fort € T.

The token flow function x in Figure 4 together with the mapping I given by I(a) =
3,1(b) = 3,I(c) = 2 defines a region r = (x,I). In fact this is the respective region
with minimal inhibitor weights, i.e. ¥’ = (x,I") is also a region if I’ > I but no region
if I’ 2 L. On the right the feasible place p corresponding to r is depicted.

The main theorem of this paper showing the consistency of the above regions defini-
tion now states (1) and (2) (compare Section 3) in this setting. Its proof essentially uses
the definition of the enabledness of an LSO via the enabledness of its linearizations.
According to the following lemma the enabledness of an event after some prefix of an
LSO can be examined on the set of its linearizations.

Lemma 2. Let S = (V. <, ) be an so-structure, V! C V andv € V. Then V' defines
a prefix of v w.r.t. S if and only if there is a linearization S' € lin(S) such that V'
defines a prefix of v w.rt. S'.

Proof. The if-statement clearly follows from S’ O S.

For the only if-statement we construct a sequence of event-sets V7 ...V, with V =
Vi U...UV, defining S’ through <s/= UKj VixViand Cs= (U, Vi X V;)U <s
)\ idy as follows: V1 ={veV | WeV v Lo}, Vo ={veV\V |
Vo' € V'\ Vi : v A v} and so on, i.e. we define V; C V' as the set of nodes
{veV\ (UZ V) | W e VI (UZ 1V;) : v 4 v} which are minimal w.r.t.
the restriction of < onto the node set V' \ (UZ ! 1 Vj),aslongas V' \ (UZ ; Vi) #
Then continue with the same procedure on V' \ V! = V' \ (U;:1 Vi), ie. Vigr = {v €
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VA (U;:1 Vi) | W' e V\ (U;:1 V;) : v 4 v} and so on. By construction V' is a
prefix (of v) w.r.t. §’. A straightforward computation also yields S’ € lin(S).

Theorem 2. Given a stratified language L with set of labels T': (1) Every place cor-
responding to a region of L is feasible w.r.t. L and (2) every feasible place w.r.t. L is
corresponding to a region of L.

Proof. (1): Let p be corresponding to a region r = (x,I) of L. We have to show that
S € L is enabled w.r.t. the one-place net (N, mg) having p as its only place. Since x
is a token flow function (called region in [10]) of the partial language L’ underlying L
the main result of [10] tells us that the LPO lpog € L’ underlying S is enabled w.r.t.
the place p, corresponding to z. Consequently also S (since lin(S) C lin(lpog))) is
enabled w.r.t. p,.. In order to show that S is enabled w.r.t. p (differing from p, only in
the inhibitor weights), we consider a sequence of transition steps o = 7 ... T,, whose
underlying LSO S, is a linearization of S. We have to show that ¢ is an enabled step
occurrence sequence of (N, myg). For this, we show inductively that if o, = 71 ... 7%
is an enabled step occurrence sequence, then 7441 is a transition step enabled in the
marking m reached after the execution of o5 for 0 < & < n — 1. The above con-
siderations (S enabled w.r.t. p,) already imply the first condition of Definition 2 that
m(p) = X ier, . Tkt ()W (p, t). It remains to verify the condition of Definition 2
that m(p) < I(p,t) for each transition t € 74,1. If Sp, = (Vi, <k, Ck, li) is the LSO
underlying o3, and S, 2O S is the LSO underlying o, then S,, is a prefix of an event
v € V with [(v) = ¢t wrt. S,. By Lemma 2, Vj, also defines a prefix Sy of v w.r.t. S.
It is enough to show that m(p) = ms, (z), since ms, (z) < Inh(z,v) < I(l(v)) =

I(p,t) (Definitions 12 and 13): m(p) = mo(p) — S0 e, TO(W(p,t) —
W(t.p)) = mo(p) = Xpev, (W(p, L(v)) = W(l(v),p)) = ms, () (compare the re-
marks to Definition 11).

(2): Let p be feasible w.r.t. L. Then, by Lemma 1 the place p’ underlying p is feasible
w.r.t. the partial language 1.’ underlying .. The main result of [10] now states that there
is a token flow function x of L’ (called region in [10]) generating p’. We show now that
r = (z,1(p,-)) is a region of L (according to Definition 13). The first part that x is
a token flow function of L is clear since x is a token flow function of L’. It remains
to show I(p,t) > sup({Inh(z,v) | v € Vi,l(v) = t} U{0}). For this let v € V
for S = (V,<,C,l) € L with [(v) = t and S’ be a prefix of v defined by V’. We
have to show that mg/(x) < I(p,t) (compare Definition 12). By Lemma 2 there is a
linearization Sj;,, of S such that V” also defines a prefix Sj;,, of v w.r.t. Sy;,,. Since S is
enabled w.r.t. the one-place net (N, mg) having p as its only place, there is an enabled
step occurrence sequence 0 = 71 ... T, of (N, mg) whose underlying LSO S, equals
Siin- Since prefixes are downward C-closed, a prefix ¢/ = 71...7,, (m < n)of o
with [(v) = t € Ty,41 must exist which corresponds to Sj,,,. In other words, the LSO
S, underlying o’ equals Sj;, . It is enough to show now that m(p) = mgs/(x) for the
marking m reached after the execution of ¢’ in (N, mg), since m(p) < I(p,t) for each
transition ¢ € 7,,41. The necessary computation is as in (1).

Thus the set of all feasible places and therefore a solution for the synthesis problem can
be derived from the set of regions.
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5 Conclusion

In this paper we introduced the notion of regions for a (possibly infinite) set of LSOs
— called stratified language — describing the behaviour of a pti-net. Given a stratified
language L, using such regions allows to define the saturated feasible pti-net (N, my)
w.r.t. L. The set of executions L(N,mg) of (N, mg) includes L and is as small as
possible with this property.® Thus, the contribution of this paper is to solve the synthesis
problem satisfactory from the theoretical point of view (for the considered setting).
Practical algorithmic considerations are a topic of further research (see also below).

The presented approach carries over to the a-posteriori semantics of pti-nets, whose
non-sequential scenario-based behaviour is given by LPOs, i.e. by partial languages.
To define regions for partial languages w.r.t. pti-nets, one can analogously start with
regions of the partial language from [10] not specifying inhibitor arcs and then assign
inhibitor values to each node. Now, these inhibitor values are determined as maxima
over all final markings of classical prefixes of nodes of an LPO, where one has to use
a slightly different definition of final markings. It is moreover possible to adapt the
presented definition of regions to other less general inhibitor net classes, such as p/t-
nets with unweighted inhibitor arcs and elementary nets with inhibitor arcs. Thereby
in the case of elementary nets one additionally has to regard that a place defined by
a region must not carry more than one token in each intermediate state of an LSO.
This can be ensured by only allowing final markings of prefixes < 1 (that means by an
analogous mechanism as used for the definition of inhibitor arcs). For step transition
systems and stratified languages which produce the same language of step sequences,
it would be interesting to compare our (adapted) definition of regions for elementary
nets with inhibitor arcs and the definition of regions from [11,12]. The relation is not
obvious since several different step transition systems may define the same language of
step sequences. In general the ideas presented in this paper should also be useful for the
consideration of the synthesis problem of other so-structure based net classes (such as
nets with read arcs, priorities, reset arcs, etc.) as well as net classes conceptually similar
to inhibitor nets (e.g. elementary nets and nets with capacities).

One of course is interested in practical algorithmic solutions of the synthesis prob-
lem. Basically the regions approach has the problem that there is an infinite number of
feasible places respectively regions of a stratified language. Our recent publication [9]
tackles this problem for finite partial languages and p/t-nets, i.e. a special case of the
setting in [10]. Thereto the definition of token flow function is translated into a finite
integer system of homogenous inequations A -x > 0: The finite vector x represents the
token flow function and the inequations reflect the conditions of Definition 9 and en-
sure positive token flows (x > 0). It is shown that one can calculate a finite set of basis
solutions of this system which defines a set of places spanning all feasible places.® That
means the net consisting only of these finite, algorithmically determinable set of places

3 Note that such a region based approach is not appropriate to find a pti-net (N, my) such that
L(N,mg) C Land L(N,my) is as large as possible.

® An alternative approach is to compute finite many regions which “separate” specified behav-
iour from not specified behaviour. It is possible to deduce appropriate separation properties
from the mentioned algorithm. Such an approach leads to a different finite representation of
the saturated feasible net.
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has the same set of executions as the saturated feasible net. Furthermore an algorithm
testing if this net has the behaviour specified by the finite partial language is shown. In
the setting of this paper a similar approach for the effective synthesis of pti-nets from
finite stratified languages is possible, i.e. it is possible to calculate finitely many basis
regions spanning the set of all regions (using an adequate inequation system). The for-
mal evolution and proofs for this approach including complexity issues are one of our
recent research projects in this topic.

But this approach still leaves the problem that it does not work for infinite stratified
languages. For algorithmic purposes an infinite stratified language first has to be finitely
represented. This problem is strongly connected to the similar problem in the case of
p/t-nets and partial languages which is one of our central current research fields.
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